Math 360 (Spring '16)
 Homework 9

due on May 5

1. Let ℓ be a line, and $P \notin \ell$ a point.
i) What is the locus of points at fixed distance x from P ?
ii) What is the locus of points at fixed distance y from ℓ ?
iii) Find a point Q which is at distance x from P and distance y from ℓ.
iv) How many points Q are at distance x from P and distance y from ℓ ? (N.B. here you should get different answers depending on the _ between ℓ and P)
2. Given a segment $A B$ and a point M on this segment:
i) Construct a point P such that $\angle A P B=60^{\circ}$. What is the locus of points P with this property?
ii) Construct a point P such that $\angle A P B=60^{\circ}$ and $P M$ is the bisector of angle $\angle P$.
3. (This exercise tests the use of sine/cosine laws)
1) Compute $\sin 60^{\circ}$ and $\cos 60^{\circ}$ (Hint: use an equilateral triangle).
2) Given a triangle $A B C$ such that $\angle B A C=60^{\circ}, A B=2, A C=5$, compute $B C$ and then the other two angles (i.e. sin or cos of those angles).
3) Decide if the angles at B and C are acute or obtuse. (Before you do any computation, which angle could be obtuse - justify)
4) Compute the distance from A to the line $B C$.
4. You are given segments of length a, b, c, \ldots and if needed a segment of length 1. Construct the following quantities and indicate if you need to use the unit segment.
i) $a \sqrt{2}$
ii) $\sqrt{2 a}$
iii) $\frac{a^{2} c}{b^{2}}$
iv) $\frac{1}{a}+\frac{1}{b}$
v) $\sqrt{a^{2}+b c}$
5. Let $T(\vec{x})=A \vec{x}+\vec{b}$ be an affine transformation.
i) Give an example of affine transformation such that

$$
T\binom{2}{3}=\binom{-1}{2}
$$

ii) List all affine transformations that preserve the origin and the y-axis.
iii) Prove that an affine transformation that preserves both the x-axis and y-axis, preserves also the origin. List all such transformations.
iv) Find an affine transformation T that transforms the triangle with vertices $A=\binom{2}{3}, B=\binom{4}{3}, C=\binom{4}{6}$ into the standard triangle (vertices $\binom{0}{0},\binom{1}{0},\binom{0}{1}$).
6. Prove using affine geometry that the medians in a triangle meet in a single point.

