Math 360 (Spring '16) Homework 8

due on Apr 26

1. Determine which of the following transformations $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are Euclidean transformations. How about affine transformations?
a) $t(x)=\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right) x+\binom{-3}{1}$
b) $t(x)=\left(\begin{array}{cc}-\frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3}\end{array}\right) x+\binom{3}{2}$
c) $t(x)=\left(\begin{array}{cc}-\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{4}{\sqrt{5}}\end{array}\right) x+\binom{2}{5}$
2. Write down an example (if one exists) of each type of transformation $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ described below. In each case, justify your answer.
(a) An affine transformation t which is not a Euclidean transformation.
(b) A Euclidean transformation t which is not an affine transformation.
(c) A transformation t which is both Euclidean and affine.
(d) A transformation t which is one-to-one, but is neither Euclidean nor affine.
3. Which of the following are affine properties (i.e. preserved by affine transformations)?

- distance
- collinearity
- circularity
- magnitude of angle
- midpoint of line segment

4. The affine transformation $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
t(x)=\left(\begin{array}{ll}
1 & -1 \\
2 & -3
\end{array}\right) x+\binom{2}{4}
$$

Determine the image under t of each of the following geometric objects:
a) $2 y=3 x-1$
b) $x^{2}+y^{2}=1$.
5. Determine the affine transformation which maps the points $(1,-1)$, $(5,-4)$ and $(-2,1)$ to the points $(1,1),(4,0)$ and $(0,2)$ respectively.

