Differentiate the following functions:

(a) \(f(x) = \frac{2x}{\sqrt{x+1}} \)

\[
\left(\frac{2x}{\sqrt{x+1}} \right)' = \frac{(2x)'\sqrt{x+1} - 2x(\sqrt{x+1})'}{(x+1)^{3/2}} = \frac{2\sqrt{x+1} - 2x \cdot \frac{1}{2\sqrt{x+1}}}{x+1} = \frac{2(x+1) - x}{(x+1)^{3/2}}
\]

using the chain rule to differentiate \(\sqrt{x+1} \): \(u = x+1 \) and \((x+1)' = 1\),

\((\sqrt{u})' = \frac{1}{2\sqrt{u}} \).

(b) \(g(t) = \cos(\ln(t+1)) \)

\[
(\cos(\ln(t+1)))' = -\sin(\ln(t+1)) \cdot \frac{1}{t+1} = -\frac{\sin(\ln(t+1))}{t+1}
\]

using the chain rule with \(u = \ln(t+1) \):

\((\ln(t+1))' = \frac{1}{t+1} \) (this uses another chain rule with \(u = t+1 \) and \((\ln u)' = \frac{1}{u} \)) and \((\cos u)' = -\sin u \).

(c) \(w(z) = z^3 e^z \)

\[
(z^3 e^z)' = (z^3)'e^z + z^3(e^z)' = 3z^2 e^z + z^3 e^z = (3z^2 + z^3)e^z
\]