## MAT 540, Homework 6, due Wednesday, Oct 25, in class

1. If $X$ is path-connected, $p: \tilde{X} \rightarrow X$ a covering, and $x_{1}, x_{2} \in X$, show that there is a (non-canonical) bijection between sets $p^{-1}\left(x_{1}\right)$ and $p^{-1}\left(x_{2}\right)$.
2. Find a 3-fold covering $p: \tilde{X} \rightarrow X$ of the space $X=S^{1} \vee S^{1}$ and a loop $\gamma: I \rightarrow X, \gamma(0)=\gamma(1)=x_{0}$, such that when you lift the path $\gamma$ to $\tilde{X}$, you can get a closed loop or an open path, depending on its initial point in $\tilde{X}$. In other words: consider $\tilde{x}_{1}, \tilde{x}_{2} \in \tilde{X}$ such that $p\left(\tilde{x}_{1}\right)=p\left(\tilde{x}_{2}\right)=x_{0}$, and let $\tilde{\gamma}_{1}$, $\tilde{\gamma}_{2}$ be two lifts of $\gamma$, such that $\tilde{\gamma}_{1}(0)=\tilde{x}_{1}$ and $\tilde{\gamma}_{2}(0)=\tilde{x}_{2}$. Find an example where $\tilde{\gamma}_{1}(1)=\tilde{x}_{1}$, so $\tilde{\gamma}_{1}$ is a closed loop, but $\tilde{\gamma}_{2}(1) \neq \tilde{x}_{2}$ (the path $\tilde{\gamma}_{2}$ is not a loop).
3. Let $k>1, n \geq 1, f, g: \mathbb{R} \mathrm{P}^{k} \rightarrow T^{n}$ be two continuous maps. Show that $f$ and $g$ are homotopic.
4. (a) Prove that if $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ is a covering, then $p_{*}: \pi_{k}\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow \pi_{k}\left(X, x_{0}\right)$ is an isomorphism for every $k>1$.
(b) Compute $\pi_{k}\left(\mathbb{R} \mathrm{P}^{\infty}\right)$ for all $k \geq 1, \pi_{k}\left(\mathbb{R} \mathrm{P}^{n}\right)$ for $1 \leq k \leq n$, and $\pi_{k}\left(T^{n}\right)$ for all $k \geq 1$, where $T^{n}=\left(S^{1}\right)^{n}$ is the $n$-dimensional torus, $n \geq 1$. Assume $\pi_{n}\left(S^{n}\right)=\mathbb{Z}$ as known.
5. (a) Let $X$ be a path-connected CW complex, $p: \tilde{X} \rightarrow X$ a covering. Prove that $\tilde{X}$ can be given the structure of a CW complex.
(b) If $X$ has finitely many cells, and $p: \tilde{X} \rightarrow X$ is an $n$-fold covering (that is, $p^{-1}(x)$ consists of $n$ points), compute the Euler characteristic $\chi(\tilde{X})$ in terms of the Euler characteristic $\chi(X)$.
Recall that the Euler characteristic of a finite CW complex $X$ is defined as

$$
\chi(X)=\sum(-1)^{k} c_{k}
$$

where $c_{k}$ is the number of $k$-dimensional cells of $X$. The Euler characteristic is a topological invariant, it does not depend on the choice of the CW structure. (If $X$ and $X^{\prime}$ are homeomorphic, or even just homotopy equivalent, then $\chi(X)=\chi\left(X^{\prime}\right)$ but you need homology to prove invariance.)
6. Does there exist a covering $S^{2} \rightarrow T^{2}$ ?

Note that we didn't yet prove any theorems about classification of coverings or their equivalence. Please give a direct proof even if you already know those theorems.
7. A plane triangle is an unordered triple of points in $\mathbb{R}^{2}$ which are not collinear. Let $T$ be the space of all plane triangles, and $R \subset T$ its subspace consisting of all right triangles. (What is the topology on $T$ ?)
(a) Find the fundamental groups of $T$ and $R$. What is the homomorphism $i_{*}$ induced by the inclusion $i: R \rightarrow T$ ?
(b) Does $T$ retract to $R$ ?

There are some covering spaces lurking here.

