## MAT 540, Homework 4, due Wednesday, Oct 4, in class

1. Compute the following fundamental groups.

Your tools should be 1) finding convenient homotopy equivalences and 2) computing $\pi_{1}$ from cell attachments. Please don't use the van Kampen theorem. You can use the facts that $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ and that $\pi_{1}$ (wedge of circles) is a free group on the corresponding number of generators.
(a) the complement of two disjoint lines in $\mathbb{R}^{3}$.
(b) the sphere $S^{n}, n \geq 2$, with $k$ distinct points identified: if $K=\left\{x_{1}, x_{2}, \ldots x_{k}\right\} \subset S^{n}$, what is $\pi_{1}\left(S^{n} / K\right)$ ?
(c) the quotient space $X$ of $S^{2}$ under the identifications $x \sim-x$ for $x$ in the equator $S^{1}$. (Note that $X$ is not the same as $\mathbb{R P}^{2}$ : the opposite points outside the equator are not identified in pairs.)
(d) the CW complex $Y$ obtained from $S^{1}$ by attaching two 2-cells, via maps $z \mapsto z^{2}$ and $z \mapsto z^{3}$, respectively. (Think of a 2 -cell as unit disk $D \subset \mathbb{C}$, so that $\partial D=\{|z|=1\}$ ).
(e) the space $Z$ obtained from two tori $S^{1} \times S^{1}$ by identifying a circle $S^{1} \times\left\{x_{0}\right\}$ in one torus with the corresponding circle $S^{1} \times\left\{x_{0}\right\}$ in the other torus.
2. (a) Suppose that $X$ retracts onto a subspace $A \subset X$. Let $i: A \hookrightarrow X$ be the inclusion map. Show that the induced homomorphism $i_{*}: \pi_{k}\left(A, x_{0}\right) \rightarrow \pi_{k}\left(X, x_{0}\right)$ is injective for every $k \geq 1$.
The standard application is that $S^{1}$ is not a retract of $D^{2}$, since $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ and $\pi_{1}\left(D^{2}\right)=0$; once you know that $\pi_{n}\left(S^{n}\right)=\mathbb{Z}$ (to be proved later), it similarly follows that $S^{n}$ is not a retract of $D^{n+1}$.
Part (a) is directly useful for one of the questions below; for the other, you need a variant of the idea from (a).
(b) Prove that the Möbius band does not retract to its boundary circle.
(c) Prove that the solid torus $D^{2} \times S^{1}$ does not retract to the curve $C \subset D^{2} \times S^{1}$ shown in the figure below. (Think of $D^{2} \times S^{1}$ as bounded in $\mathbb{R}^{3}$ by the 2 -dimensional torus shown in the figure: the boundary surface of $D^{2} \times S^{1}$ is the 2-torus. The curve is inside.)

3. Given an arbitrary group $G$, show that there exists a path-connected CW complex $X$ with $\pi_{1}\left(X, x_{0}\right)=$ $G$. Use the fact that every group is a quotient of a free group (possibly on infinitely many generators) by a normal subgroup.
4. Let $K$ be the subspace of $\mathbb{R}^{3}$ formed by the Klein bottle intersecting itself in a circle, as shown in the figure. (Alternatively, $K$ can be obtained by gluing two boundary circles of a cylinder to a third, nullhomotopic circle on the cylinder surface, with appropriate orientations.) Note that this is different from the usual Klein bottle.
(a) Compute $\pi_{1}(K)$.
(b) Does $K$ retract to the circle $C$ shown in the figure?
(c) Does $K$ retract to any other circle?


