MAT 540, Homework 10, due Friday, Dec 8

1. Let $S^{n}=\left\{x_{1}, x_{2}, \ldots, x_{n+1} \mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=1\right\}$ be the sphere in \mathbb{R}^{n+1}.
(a) Compute the degree of a reflection map, $\left(x_{1}, x_{2}, \ldots x_{n}\right) \rightarrow\left(-x_{1}, x_{2}, \ldots, x_{n}\right)$.
(b) Compute the degree of the reflection map, $\left(x_{1}, x_{2}, \ldots x_{n}\right) \rightarrow\left(-x_{1},-x_{2}, \ldots,-x_{n}\right)$.
(c) For every $m \in \mathbb{Z}$, explain how to construct a map $S^{n} \rightarrow S^{n}$ of degree m.
(d) Prove that if $f: S^{n} \rightarrow S^{n}$ be a continuous map without fixed points, then f has degree $(-1)^{n+1}$.
2. Let G be a group acting freely on S^{n} for some even n. (This means that every nontrivial element $g \in G$ is a homeomorphism $g: S^{n} \rightarrow S^{n}$ without fixed points, and the product operation in G is given by composition of maps of S^{n}.) Prove that G is isomorphic to $\mathbb{Z} / 2$.
3. This long question defines the winding number of a loop around a point and establishes its properties.

Suppose $u: S^{1} \rightarrow \mathbb{R}^{2}$ is a continuous map, and $x \notin u\left(S^{1}\right)$. Then u determines an element in $\pi_{1}\left(\mathbb{R}^{2}-\{x\}\right)=$ \mathbb{Z}, called the winding number of u with respect to x, and often denoted $\operatorname{ind}_{x} u$. Note that for each $x \in \mathbb{R}^{2}$, we will choose the homotopy class of the couterclockwise standard loop going once around x as the generator $1 \in \mathbb{Z}$
(a) Draw a loop with some self-intersections, pick a point in each connected component of the complement of your loop, and compute the corresponding winding numbers.
(b) Show that the winding number $\operatorname{ind}_{x} u$ can be characterized as the degree of the map

$$
\phi_{u, x}: S^{1} \rightarrow S^{1}, \quad \quad \phi_{u, x}(z)=\frac{u(z)-x}{|u(x)-z|}
$$

(c) Prove that the formula $x \mapsto \operatorname{ind}_{x} u$ defines a locally constant function on $\mathbb{R}^{2}-u\left(S^{1}\right)$. (It follows that if u is a "nice" curve, possibly with some self-intersections, so that it divides \mathbb{R}^{2} into some connected components, and the winding number remains the same within each component.)
(d) Let $u: S^{1} \rightarrow \mathbb{R}^{2}$, and suppose that $x, y \in \mathbb{R}^{2}-u\left(S^{1}\right)$, such that $\operatorname{ind}_{x} u \neq \operatorname{ind}_{y} u$. Show that any path from x to y must intersect $u\left(S^{1}\right)$.
(e) Show that if $u\left(S^{1}\right)$ is contained in a disk D and $x \notin D$, then $\operatorname{ind}_{x} u=0$.
(f) If $u, v: S^{1} \rightarrow \mathbb{R}^{2}$ are two loops with common basepoint $u\left(s_{0}\right)=v\left(s_{0}\right)$, and $u v$ is their product, then

$$
\operatorname{ind}_{x} u v=\operatorname{ind}_{x} u+\operatorname{ind}_{x} v \text { for every } x \notin u v\left(S^{1}\right) .
$$

(g) Let R be a ray in \mathbb{R}^{2} starting at x. Show that R meets $u\left(S^{1}\right)$ in at least $\left|\operatorname{ind}_{x} u\right|$ points.

Please also do questions 32, 33 from Hatcher Section 4.2.

