
CW complexes: a summary of what we covered

• Inductive definition of a CW complex X: start with a discrete space X0. Assuming that Xn−1

is already constructed, attach n-cells Dn
α to Xn−1 via attaching maps ϕα : ∂Dn

α → Xn−1 to form
the space Xn, with quotient topology. Set X = ∪n≥1X

n, with weak topology. The space Xn is
the n-skeleton of X.

• For each n-cell, we have a characteristic map Φn
α : Dn

α → X. Then X is the disjoint union of cells
enα = Φn

α(IntD
n
α). Each n-cell enα ⊂ X is open in the corresponding skeleton Xn (but typically

not open in X).
• Every CW complex is Hausdorff. We constructed open neighborhoods of points, working induc-
tively with the skeleta Xn.

• From the Hausdorff property and compactness, it follows that Φn
α(D

n
α) is closed in X. Moreover,

Φn
α(D

n
α) = ēnα is the closure of the cell enα.

• A subcomplex A of a CW complex X is the union of some collection of cells emβ in X, such that
the closure of each cell is contained in A. A subcomplex is a closed subset of X. A subcomplex
is a CW complex, and the CW structure (given by the cells of X) gives the same topology as the
subspace topology on A ⊂ X.

• Every finite CW complex is compact. Every compact subset C of a CW complex X is contained
in a finite subcomplex A ⊂ X (in particular, C can only intersect finitely many cells).

The proofs of these statements can be found, for example, in Appendix to Hatcher or other books.
I think it’s best to go in the order as above: it’s easy to get caught up in a logical vicious circle.

• The classical definition of CW complexes, due to Whitehead, doesn’t use the inductive approach,
instead describing X as a Hasdorff space given as the union of cells, with topology satisfying
certain axioms (C) and (W). This is the definition the Fomenko–Fuchs book uses (but they leave
most of the properties as an exercise). Recommended reading: Proposition A.2 and its preceding
discussion in Hatcher Appendix shows equivalence of the two definitions. (We didn’t cover this
in class because the inductive definition is typically easier to work with; the point is that you can
build arguments working cell-by-cell and using induction on dimension and weak topology.)

• A function f : X → Y is continuous iff its restriction to each skeleton is continuous. A homotopy
F : X × I → Y is continuous iff its restrictions to each Xn × I is continuous. (The statement
about the homotopy is non-trivial and follows from the fact that the weak topology on X × I
induced by the filtration by Xn × I’s is equivalent to the product topology. See lemma below.)

• Homotopy extension property for CW pairs: we followed the proof from Fomenko–Fuchs to con-
struct the extension directly cell-by-cell (continuity of the resulting homotopy follows from the
statement above).

• Corollary: if (X,A) is a CW pair, and A is contractible, then X/A ∼ X.

Lemma. Let X be a CW complex. Suppose that U ⊂ X × I is a subset such that U ∩ (Xn× I) is open
for each n. Then U is open in the product topology on X × I.

Proof. Let (x0, s0) ∈ U , then we can find an open neighbohood (a, b) ∋ s0 such that {x0} × [a, b] ⊂ U .
Set

V = {y ∈ X| {y} × [a, b] ⊂ U}.

Then V ∩Xn is open inXn for each n. Indeed, we can use the “tube lemma”. Fix an arbitrary y ∈ V ∩Xn.
Then, since U is open in Xn × I, for every t ∈ [a, b] there is an open neighborhood y ∈ Vt ⊂ Xn and
ϵt > 0 such that Vt×(t−ϵt, t+ϵt) ⊂ U . The intervals (t−ϵt, t+ϵt) cover [a, b]; choosing an open subcover
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corresponding to some t1, t2, . . . , tk, we see that

y ∈
k⋂

i=1

Vtk ⊂ V ∩Xn,

so every y has an open neighborhood, and V ∩ Xn is open. Then V is open in X, and it follows that
V ∩ (a, b) is a product neighborhood of (x0, s0) in X × I. □

A similar argument can be used to show that the weak topology coincides with the product topology
of two CW spaces X and Y if X or Y is locally compact (but in general, the two topologies on X × Y
can be different).


