A proof of Pilgrim’s conjecture

Nikita Selinger

Stony Brook University

ICERM, 18 April 2012
A Thurston map is a pair \((f, P_f)\) where \(f : S^2 \to S^2\) is an orientation-preserving branched self-cover of \(S^2\) of degree \(d_f \geq 2\) and \(P_f\) is a finite forward invariant set that contains all critical values of \(f\).
A *Thurston map* is a pair \((f, P_f)\) where \(f : \mathbb{S}^2 \rightarrow \mathbb{S}^2\) is an orientation-preserving branched self-cover of \(\mathbb{S}^2\) of degree \(d_f \geq 2\) and \(P_f\) is a finite forward invariant set that contains all critical values of \(f\).

In particular, the branched cover \(f\) must be postcritically finite.
Two Thurston maps \(f \) and \(g \) are combinatorially equivalent if and only if there exist two homeomorphisms \(h_1, h_2 : \mathbb{S}^2 \to \mathbb{S}^2 \) such that the diagram commutes, \(h_1 |_{P_f} = h_2 |_{P_f} \), and \(h_1 \) and \(h_2 \) are homotopic relative to \(P_f \).
Theorem (Thurston’s Theorem)

A postcritically finite branched cover $f : \mathbb{S}^2 \to \mathbb{S}^2$ with hyperbolic orbifold is either Thurston-equivalent to a rational map g (which is then necessarily unique up to conjugation by a Möbius transformation), or f has a Thurston obstruction.
Some further notations

- \mathcal{T}_f is the Teichmüller space modeled on the marked surface (\mathbb{S}^2, P_f)
- \mathcal{M}_f is the corresponding moduli space
- Recall that \mathcal{T}_f can be defined as the quotient of the space of all diffeomorphisms from (\mathbb{S}^2, P_f) to the Riemann sphere. We write $\tau = \langle h \rangle$ if a point τ is represented by a homeomorphism h
- $Q(\mathbb{P}, h(P_f))$ is the cotangent space at a point $\tau = \langle h \rangle$ in the Teichmüller space T_f which is canonically isomorphic to the space of all integrable meromorphic quadratic differentials on the marked Riemann surface corresponding to τ
Maps between Teichmüller spaces

Pullback map

Suppose we have a (unbranched) covering map $h: A \to B$ between finite type surfaces A and B. Then we can define $h^*: \mathcal{T}(B) \to \mathcal{T}(A)$ that acts by pulling back complex structures from B to A.

Projection map

Suppose we have an inclusion map $i: A \to B$ between finite type surfaces A and B. This happens exactly when A can be obtained from B by removing finitely many points. Then we can define the forgetful projection $i^*: \mathcal{T}(A) \to \mathcal{T}(B)$ which "forgets" the positions of extra punctures.
Maps between Teichmüller spaces

Pullback map

Suppose we have a (unbranched) covering map $h: A \rightarrow B$ between finite type surfaces A and B. Then we can define $h^*: \mathcal{T}(B) \rightarrow \mathcal{T}(A)$ that acts by pulling back complex structures from B to A.

Projection map

Suppose we have an inclusion map $i: A \rightarrow B$ between finite type surfaces A and B. This happens exactly when A can be obtained from B by removing finitely many points. Then we can define the forgetful projection $i_*: \mathcal{T}(A) \rightarrow \mathcal{T}(B)$ which “forgets” the positions of extra punctures.
In our setting we have the unbranched cover $f: \mathbb{S}^2 \setminus f^{-1}(P_f) \to \mathbb{S}^2 \setminus P_f$ and the identity injection $\text{id}: \mathbb{S}^2 \setminus f^{-1}(P_f) \to \mathbb{S}^2 \setminus P_f$ since $f^{-1}(P_f) \supset P_f$. Denote $\sigma_f = \text{id} \circ f^*: \mathcal{T}_f \to \mathcal{T}_f$.

Another definition of Thurston's iteration $(\mathbb{S}^2, P_f) \to (P_f, \tau_1)$ $(\mathbb{S}^2, P_f) \to (P_f, \tau_\tau)$ - $h_1 f\tau_1 f\tau$.

Thurston's iteration
Thurston’s iteration

In our setting we have the unbranched cover
\[f : \mathbb{S}^2 \setminus f^{-1}(P_f) \to \mathbb{S}^2 \setminus P_f \]
and the identity injection
\[\text{id} : \mathbb{S}^2 \setminus f^{-1}(P_f) \to \mathbb{S}^2 \setminus P_f \]
since \(f^{-1}(P_f) \supset P_f \). Denote
\[\sigma_f = \text{id}_* \circ f^* : \mathcal{T}_f \to \mathcal{T}_f. \]

Another definition of Thurston’s iteration

\[
\begin{align*}
(\mathbb{S}^2, P_f) & \xrightarrow{h_1} (\mathbb{P}, h_1(P_f)) \\
\downarrow f & \quad \quad \downarrow f_{\tau} \\
(\mathbb{S}^2, P_f) & \xrightarrow{h_\tau} (\mathbb{P}, h_\tau(P_f))
\end{align*}
\]
Fixed Points of σ_f

Another definition of Thurston’s iteration

\[
\begin{align*}
(S^2, P_f) & \xrightarrow{h_1} (\mathbb{P}, h_1(P_f)) \\
(S^2, P_f) & \xrightarrow{h_\tau} (\mathbb{P}, h_\tau(P_f))
\end{align*}
\]

Lemma

A Thurston map f is equivalent to a rational function if and only if σ_f has a fixed point.
Lemma (Douady, Hubbard)

There exists an intermediate cover \mathcal{M}'_f of \mathcal{M}_f (so that $\mathcal{T}_f \xrightarrow{\pi_1} \mathcal{M}'_f \xrightarrow{\pi_2} \mathcal{M}_f$ are covers and $\pi_2 \circ \pi_1 = \pi$) such that

i. π_2 is finite,

ii. $\mathcal{T}_f \xrightarrow{\pi_1} \mathcal{M}'_f \xrightarrow{\pi_2} \mathcal{M}_f$ commutes for some map $\tilde{\sigma}_f: \mathcal{M}'_f \to \mathcal{M}_f$,

iii. If $\pi_1(\tau_1) = \pi_1(\tau_2)$ then $f_{\tau_1} = f_{\tau_2}$ up to pre- and post-composition by Moebius transformations.
Co-derivative of σ_f

Definition

The push-forward operator is locally defined by the formula

$$g_*q|_U = \sum_i g_i^* q,$$

where g_i are all inverse branches of g.

Lemma σ_f is a holomorphic self-map of T_f and the co-derivative of σ_f satisfies

$$(d\sigma_f(\tau))^* = (f\tau)^*$$

where $(f\tau)^*$ is the push-forward operator on quadratic differentials.
Co-derivative of σ_f

Definition

The push-forward operator is locally defined by the formula

$$g_\ast q\big|_U = \sum_i g_i^\ast q,$$

where g_i are all inverse branches of g.

Lemma

σ_f is a holomorphic self-map of T_f and the co-derivative of σ_f satisfies $(d\sigma_f(\tau))^\ast = (f_\tau)_\ast$ where $(f_\tau)_\ast$ is the push-forward operator on quadratic differentials.
Metrics on Teichmüller space

Metric definitions

For a meromorphic integrable quadratic differential on \mathbb{P} we define

- its Teichmüller norm

$$||q||_T = 2 \int_{\mathbb{P}} |q|$$

and

- its Weil-Petersson norm

$$||q||_{WP} = \left(\int_{\mathbb{P}} \rho^{-2} |q|^2 \right)^{1/2}$$
Estimates on the norm of $d\sigma_f^*$

Lemma

$\|(d\sigma_f)^*\|_T \leq 1.$
Estimates on the norm of $d\sigma_f^*$

Lemma

\[
\| (d\sigma_f)^* \|_T \leq 1.
\]

Proof.

\[
\int_U |g^* q| = \int_U \left| \sum_i g_i^* q \right| \leq \sum_i \int_U |g_i^* q| = \sum_i \int_{U_i} |q|
\]
Estimates on the norm of $d\sigma_f^*$

Lemma

$$\| (d\sigma_f)^* \|_T \leq 1.$$

Proof.

$$\int_U |g^* q| = \int_U | \sum_i g_i^* q | \leq \sum_i \int_U |g_i^* q | = \sum_i \int_{U_i} |q |$$

Corollary (almost)

There exists at most one fixed point of σ_f, hence the uniqueness in Thurston’s theorem follows.
Lemma

\[\| (d \sigma_f)^* \|_{WP} \leq \sqrt{d}. \]
Lemma

$$\| (d\sigma_f)^* \|_{WP} \leq \sqrt{d}.$$

Proof.

$$\int_{U} \frac{|g_\ast q|^2}{\rho^2} = \int_{U} \frac{|\sum_i g_i^\ast q|^2}{\rho^2} \leq d \sum_i \int_{U} \frac{|g_i^\ast q|^2}{\rho^2} =$$

$$= d \sum_i \int_{U} \frac{|q|^2}{g^\ast \rho^2} \leq d \int_{g^{-1}(U)} \frac{|q|^2}{\rho_1^2},$$
Lemma
\[\|(d\sigma_f)^*\|_{WP} \leq \sqrt{d}. \]

Proof.
\[
\int_U \frac{|g^* q|^2}{\rho^2} = \int_U \left\| \sum_i g_i^* q \right\|^2 \leq d \sum_i \int_U \frac{|g_i^* q|^2}{\rho^2} = \\
= d \sum_i \int_{U_i} \frac{|q|^2}{g^* \rho^2} \leq d \int_{g^{-1}(U)} \frac{|q|^2}{\rho_1^2},
\]

Corollary
\(\sigma_f \) is Lipschitz with respect to the WP-metric.
Yet some more definitions:

- a closed curve γ is *essential* if every component of $S^2 \setminus \gamma$ contains at least two points of P_f
Yet some more definitions:

- A closed curve γ is *essential* if every component of $S^2 \setminus \gamma$ contains at least two points of P_f.
- A *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves.
Yet some more definitions:

- A closed curve \(\gamma \) is *essential* if every component of \(S^2 \setminus \gamma \) contains at least two points of \(P_f \).
- A *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves.
- \(f^{-1}(\Gamma) \) is the multicurve of all essential mutually non-homotopic preimages of curves in \(\Gamma \).
Invariant multicurves

Yet some more definitions:

- a closed curve γ is *essential* if every component of $S^2 \setminus \gamma$ contains at least two points of P_f
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves
- $f^{-1}(\Gamma)$ is the multicurve of all essential mutually non-homotopic preimages of curves in Γ
- A multicurve Γ is *invariant* if $f^{-1}(\Gamma) \subseteq \Gamma$
Yet some more definitions:

- A closed curve γ is *essential* if every component of $\mathbb{S}^2 \setminus \gamma$ contains at least two points of P_f.
- A *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves.
- $f^{-1}(\Gamma)$ is the multicurve of all essential mutually non-homotopic preimages of curves in Γ.
- A multicurve Γ is *invariant* if $f^{-1}(\Gamma) \subseteq \Gamma$.
- A multicurve Γ is *completely invariant* if $f^{-1}(\Gamma) = \Gamma$.

The augmented Teichmüller space \mathcal{T}_f - the set of all marked noded stable Riemann surfaces of the same type

- The augmented Teichmüller space \mathcal{T}_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (\mathbb{S}^2, P_f). In particular, $\mathcal{T}_f = S_\emptyset$.

Structure of the boundary of the augmented Teichmüller space
The augmented Teichmüller space \overline{T}_f - the set of all marked noded stable Riemann surfaces of the same type

- The augmented Teichmüller space \overline{T}_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S^2, P_f). In particular, $T_f = S_\emptyset$.

- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological noded surface with marked points.
The augmented Teichmüller space \overline{T}_f - the set of all marked noded stable Riemann surfaces of the same type

- The augmented Teichmüller space \overline{T}_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S^2, P_f). In particular, $\overline{T}_f = S_\emptyset$.

- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological noded surface with marked points.

- S_Γ is the product of Teichmüller spaces of these components.
The augmented Teichmüller space \overline{T}_f - the set of all marked noded stable Riemann surfaces of the same type

- The augmented Teichmüller space \overline{T}_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S^2, P_f). In particular, $T_f = S_\emptyset$.

- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological noded surface with marked points.

- S_Γ is the product of Teichmüller spaces of these components.

- Within each stratum one can define its own natural Teichmüller and Weil-Petersson metrics.
Augmented Teichmüller space

Lemma

The quotient \overline{M}_f of the augmented Teichmüller space by the action of the pure mapping class group is compact.
Lemma

The quotient $\overline{\mathcal{M}}_f$ of the augmented Teichmüller space by the action of the pure mapping class group is compact.

Recall the diagram
Lemma

The quotient $\overline{\mathcal{M}}_f$ of the augmented Teichmüller space by the action of the pure mapping class group is compact.

Recall the diagram

\[
\begin{array}{ccc}
\overline{T}_f & \xrightarrow{\sigma_f} & \overline{T}_f \\
\pi & & \pi \\
\pi_1 & & \pi_2 \\
\pi & & \pi \\
\overline{\mathcal{M}}_f & & \overline{\mathcal{M}}_f \\
\overline{\mathcal{M}}'_f & & \\
\overline{\mathcal{M}}_f & & \overline{\mathcal{M}}_f \\
\end{array}
\]
Theorem (Masur)

The augmented Teichmüller space \tilde{T}_f is homeomorphic to the WP-completion of the Teichmüller space.
Theorem (Masur)

The augmented Teichmüller space \overline{T}_f is homeomorphic to the WP-completion of the Teichmüller space.

Corollary

σ_f extends continuously to \overline{T}_f.
Definition of σ_f on the boundary

We represent points in \overline{T}_f not only by homeomorphisms but also by continuous maps from (S^2, P_f) to a noded Riemann surface that are allowed to send a whole simple closed curve to a node. Consider such an h representing some point in \overline{T}_f.
We represent points in \overline{T}_f not only by homeomorphisms but also by continuous maps from (\mathbb{S}^2, P_f) to a noded Riemann surface that are allowed to send a whole simple closed curve to a node. Consider such an h representing some point in \overline{T}_f.

We complete this diagram as before

$$
\begin{array}{ccc}
(\mathbb{S}^2, P_f) & \xrightarrow{h_1} & (R_1, P_f) \\
\downarrow f & & \downarrow \{f^C_i\} \\
(\mathbb{S}^2, P_f) & \xrightarrow{h} & (R, P_f) \\
\end{array}
$$
Action of σ_f on \mathcal{T}_f

Theorem

The map σ_f as defined above is continuous on \mathcal{T}_f.

Remark.

Note that by definition σ_f maps any stratum S_Γ into the stratum $S_{f^{-1}}(\Gamma)$, therefore invariant boundary strata are in one-to-one correspondence with completely invariant multicurves.
Denote by \mathcal{C} the set of all homotopy classes of essential simple closed curve. Define Thurston linear operator $M: \mathbb{R}^\mathcal{C} \to \mathbb{R}^\mathcal{C}$ by setting

$$M(\gamma) = \sum_{f(\gamma_i) = \gamma, \deg f|_{\gamma_i}} \frac{1}{\deg f|_{\gamma_i}} \gamma_i.$$

Every multicurve Γ has its associated Thurston matrix M_Γ which is the restriction of M to \mathbb{R}^Γ.

Definition
Thurston matrix and obstructions

Definition

Denote by \mathcal{C} the set of all homotopy classes of essential simple closed curve. Define Thurston linear operator $M: \mathbb{R}^\mathcal{C} \rightarrow \mathbb{R}^\mathcal{C}$ by setting

$$M(\gamma) = \sum_{f(\gamma_i)=\gamma} \frac{1}{\deg f|_{\gamma_i}} \gamma_i.$$

Every multicurve Γ has its associated Thurston matrix M_Γ which is the restriction of M to \mathbb{R}^Γ.

Definition

Since all entries of M_Γ are non-negative real, the leading eigenvalue λ_Γ of M_Γ is also real and non-negative. A multicurve Γ is a Thurston obstruction if $\lambda_\Gamma \geq 1$.
Definition

We call Γ *simple* if there exists a leading eigenvector of M_Γ with positive coordinates. Each multicurve has a simple sub-multicurve with the same leading eigenvalue.
Dynamics near boundary strata

Definition
We call Γ *simple* if there exists a leading eigenvector of M_Γ with positive coordinates. Each multicurve has a simple sub-multicurve with the same leading eigenvalue.

Definition
An invariant stratum S of \overline{T}_f is *weakly attracting* if there exists a nested decreasing sequence of neighborhoods U_n such that $\sigma_f(U_n) \subset U_n$ and $\bigcap U_n = S$.
Dynamics near boundary strata

Definition
We call Γ *simple* if there exists a leading eigenvector of M_{Γ} with positive coordinates. Each multicurve has a simple sub-multicurve with the same leading eigenvalue.

Definition
An invariant stratum S of \overline{T}_f is *weakly attracting* if there exists a nested decreasing sequence of neighborhoods U_n such that $\sigma_f(U_n) \subset U_n$ and $\bigcap U_n = S$.

Definition
An invariant stratum S of \overline{T}_f is *weakly repelling* if for any compact set $K \subset S$ there exists a neighborhood $K \subset U$ such that every point of $U \cap T_f$ escapes from U after finitely many iterations.
Lemma

If \(\Gamma = \{ \gamma_1, \gamma_2, \ldots, \gamma_m \} \) is a completely invariant simple multicurve and \(\lambda_{\Gamma} \geq 1 \), then \(S_{\Gamma} \) is weakly attracting. Otherwise it is weakly repelling.
Sketch of the proof of Thurston’s theorem

Pick any starting point \(\tau \in \mathcal{T}_f \) and consider \(\tau_n = \sigma_f^n(\tau) \). Take an accumulation point in \(\overline{\mathcal{M}_f} \) of the projection of \(\tau_n \) to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that \(\tau_n \) accumulates on some \(\tau_0 \in \mathcal{S}_\Gamma \).
Pick any starting point $\tau \in \mathcal{T}_f$ and consider $\tau_n = \sigma_f^n(\tau)$. Take an accumulation point in \overline{M}_f of the projection of τ_n to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that τ_n accumulates on some $\tau_0 \in S_\Gamma$.

- If $\Gamma = \emptyset$ then τ_0 is a fixed point of σ_f.
Sketch of the proof of Thurston’s theorem

Pick any starting point $\tau \in \mathcal{T}_f$ and consider $\tau_n = \sigma_f^n(\tau)$. Take an accumulation point in $\overline{\mathcal{M}}_f$ of the projection of τ_n to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that τ_n accumulates on some $\tau_0 \in \mathcal{S}_\Gamma$.

- If $\Gamma = \emptyset$ then τ_0 is a fixed point of σ_f.
- If $\Gamma \neq \emptyset$ then Γ must be a Thurston obstruction. Otherwise, \mathcal{S}_Γ is weakly repelling and therefore τ_n can not have an accumulation point there.
Pilgrim’s theorems

Definition

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $l(\gamma, \sigma^n_f(\tau)) \to 0$ for all $\tau \in \mathcal{T}_f$.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

Theorem

For any point $\tau \in \mathcal{T}_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \not\in \Gamma_f$ the inequality $l(\gamma, \sigma^n_f(\tau)) \geq L$ holds for all n.
Definition

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $l(\gamma, \sigma^n_f(\tau)) \to 0$ for all $\tau \in T_f$.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.
Pilgrim’s theorems

Definition

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $l(\gamma, \sigma^n_f(\tau)) \to 0$ for all $\tau \in T_f$.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

Theorem

*For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma^n_f(\tau)) \geq L$ holds for all n.***
Benefits of our framework

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma^n_f(\tau)) \geq L$ holds for all n.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction. — the sequence τ_n accumulates on S_{Γ_f}

Theorem

For any point $\tau \in \mathcal{T}_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma^n_f(\tau)) \geq L$ holds for all n.
Benefits of our framework

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction. — *the sequence* τ_n *accumulates on* S_{Γ_f}

Theorem

For any point $\tau \in \mathcal{T}_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma^n_f(\tau)) \geq L$ holds for all n. — *the accumulation set of* $\{\pi(\tau_n)\}$ *is precompact in* $S_{[\Gamma_f]}$
Recall that the action on any invariant stratum is given by pullbacks of complex structures by a collection of maps σ_{f_C} for all components C of any surface in the stratum. Combinatorics of the process is very simple: we have a map from a finite set into itself, every component is pre-periodic. The whole action, therefore, can be characterized by studying cycles of components. For each cycle Y there are three cases, the composition f^Y of all coverings in the cycle is either of the following:

- a homeomorphism,
- a Thurston map with a parabolic orbifold,
- a Thurston map with a hyperbolic orbifold.
Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} has hyperbolic orbifold then f^Y is not obstructed and, hence, equivalent to a rational map.
Pilgrim’s conjecture

Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} has hyperbolic orbifold then f^Y is not obstructed and, hence, equivalent to a rational map.

Idea of the proof

We may assume that our component is mapped to itself. Take an accumulation point $\tau_0 \in S_{\Gamma_f}$ of $\sigma^n_f(\tau)$. Let τ' be the coordinate corresponding to Y. Let Γ_Y be the canonical obstruction for f^Y.
Pilgrim’s conjecture

Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} has hyperbolic orbifold then f^Y is not obstructed and, hence, equivalent to a rational map.

Idea of the proof

We may assume that our component is mapped to itself. Take an accumulation point $\tau_0 \in S_{\Gamma_f}$ of $\sigma_f^n(\tau)$. Let τ' be the coordinate corresponding to Y. Let Γ_Y be the canonical obstruction for f^Y. Then the accumulation set of $\sigma_f^n(\tau')$ must be a subset of the closure of $S_{\Gamma_f} \cup \Gamma_Y$. On the other hand, it is clearly a subset of the accumulation set of $\sigma_f^n(\tau) \subset S_{\Gamma_f}$. This means Γ_Y must be empty.
Generalized Pilgrim’s conjecture

Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} is a Thurston map then the canonical obstruction of f^Y is empty.
Generalized Pilgrim’s conjecture

Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} is a Thurston map then the canonical obstruction of f^Y is empty.

This, with some extra effort, leads to a complete topological description of canonical obstructions.