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Factoring and primality testing have become increasingly important in today's in- 
formation based society, since they both have produced techniques used in the secure 
transmission of data. However, often lost in the modern-day shuffle of information are 
the contributions of the pioneers whose ideas ushered in the computer age and, as we 
shall see, some of whose ideas are still used today as the underpinnings of powerful al- 
gorithms for factoring and primality testing. We offer this brief history to help readers 
know more about these contributions and appreciate their significance. 

Virtually everyone who has graduated from high school knows the definition of 
a prime number, namely a p E N = {1, 2, 3, 4, . . .} such that p > 1 and if p = Em 
where X, m E , then either f = 1 or m = 1. (If n E N and n > 1 is not prime, then n 
is called composite.) Although we cannot be certain, the concept of primality probably 
arose with the ancient Greeks over two and one-half millennia ago. The first recorded 
definition of prime numbers was given by Euclid around 300 BCE in his Elements. 
However, there is some indirect evidence that the concept of primality might have 
been known far earlier, for instance, to Pythagoras and his followers. 

The Greeks of antiquity used the term arithmetic to mean what today we would 
call number theory, namely the study of the properties of the natural numbers and the 
relationships between them. The Greeks reserved the word logistics for the study of 
ordinary computations using the standard operations of addition/subtraction and mul- 
tiplication/division, which we now call arithmetic. The Pythagoreans introduced the 
term mathematics, which to them meant the study of arithmetic, astronomy, geometry, 
and music. This curriculum became known as the quadrivium in the Middle Ages. 

Although we have enjoyed the notion of a prime for millennia, only very recently 
have we developed eJficient tests for primality. This seemingly trivial task is in fact 
much more difficult than it appears. 

A primality test is an algorithm (a methodology following a set of rules to achieve 
a goal), the steps of which verify that given some integer n, we may conclude "n is a 
prime number." A primality proof is a successful application of a primality test. 

Such tests are typically called true primality tests to distinguish them from prob- 
abilistic primality tests (which can only conclude that "n is prime" up to a specified 
likelihood). We will not discuss such algorithms here (see [9] for these). 

A concept used frequently in primality testing is the notion of a sieve. A "sieve" is a 
process to find numbers with particular characteristics (for instance primes) by search- 
ing among all integers up to a prescribed bound, and eliminating invalid candidates 
until only the desired numbers remain. Eratosthenes (ca. 284-204 scE) proposed the 
first sieve for finding primes. The following example illustrates the Sieve of Eratos- 
thenes. 

EXAMPLE 1. Suppose that we want tofind all primes less than 30. First, we write 
down all natural numbers less than 30 and bigger than 1. Thefirst uncrossed number, 



2, is a prime. We now cross out all numbers (bigger than 2) that are multiples of 2 
(and hence composite). 

{2, 3, 4,5, #, 7, $, 9, ,I,0, 11, ,I,2, 13, ,a4, 15, ,I,6, 17, ,I,S, 19, ;,0, 21, ;g, 

23,;4,25,;5,27,g,S,29,/,0}. 

The next uncrossed number, 3, must be a prime, so we cross out all numbers (bigger 
than 3) that are (composite) multiples of 3. 

{2,3,5,7,2, 11, 13,,I,S, 17, 19,;/,23,25,;/7,29}. 

Then 5 is the next uncrossed number, so we conclude it is prime, and we cross out all 
numbers (bigger than 5) that are multiples of 5. 

{2,3,5,7, 11, 13, 17, 19,23,;,S,29}. 

(We need not check any primes bigger than 5 since such primes are larger than ). 
An historical description of thisfactfollows.) 

The set of primes less than 30 is what remains: 

{2,3,5,7, 11, 13, 17, 19,23,29}. 

The Sieve of Eratosthenes represents the only known algorithm from antiquity that 
we would call a primality test? but it is highly inefficient and it could not come close to 
verifying some of the primes known today. The number 26')795')3 _ 1, shown to be prime 
on June 1, 1999, has 2,098,960 decimal digits (see the discussion of Mersenne primes 
below). Using the Sieve of Eratosthenes to verily its primality would take longer than 
the life expectancy of our sun using the fastest computers known today. The modern 
techniques that yield such a spectacular primality proof as this one are based on the 
ideas of later pioneers, whose contributions we highlight in this article. 

Arabs and Italians 

Arabic scholars were primarily responsible for preserving much of the mathematics 
from antiquity, and they extended many ancient results. Indeed, it was said that Caliph 
al-Mamun (809-833) experienced a vision, which included a visit from Aristotle; after 
this epiphany, al-Mamun was driven to have all of the Greek classics translated into 
Arabic, including Euclid's Elements. 

Under the caliphate of al-Mamun lived Mohammed ibn Musa al-Khowarizmi (Mo- 
hammed, son of Moses of Kharezm, now Khiva), who was one of those to whom 
Europe owes the introduction of the Hindu-Arabic number system. Around 825 CE, he 
completed a book on arithmetic, which was later translated into Latin in the twelfth 
century under the title Algorithmi de numero Indorum. This book is one of the best- 
known works which introduced to Europe the Hindu-Arabic number system. This may 
account for the widespread, although mistaken, belief that our numerals are Arabic in 
origin. Not long after Latin translations of al-Khowarizmi's book were available in 
Europe, readers began to attribute the new numerals to him, and began contracting his 
name, in connection with these numerals, to algorism, and ultimately to algorithm. 

Al-Khowarizmi also wrote a book on algebra, Hisab aljabr wa'lmuqa-bala. The 
word algebra is derived from al jabr or restoration. The term referred to the operation 
of removing a quantity that is subtracted on one side of an equation and "restoring" it 
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on the other side as an added quantity. In the Spanish work Don Quixote, which came 
much later, the term algebrist is used for a bone-setter or restorer. 

As we observed, Eratosthenes did not discuss the issue of when his algorithm would 
terminate. However, Ibn al-Banna (ca. 1258-1339) appears to have been the first to 
observe that, in order to find the primes less than n using the sieve of Eratosthenes, 
one can restrict attention to prime divisors less than . 

Fibonacci The resurrection of mathematical interest in Europe during the thirteenth 
century is perhaps best exemplified by the work of Leonardo of Pisa (ca. 1170-1250), 
better known as Fibonacci. While living in North Africa, where his father served as 
consul, Fibonacci was tutored by an Arab scholar. Thus, Fibonacci was well-educated 
in the mathematics known to the Arabs. Fibonacci's first book, and certainly his best 
known, is Liber Abaci or Book of Calculation first published in 1202, which continued 
to promote the use of the Hindu-Arabic number system in Europe. However, only the 
second edition, published in 1228 has survived. 

In this work, Fibonacci gave an algorithm to determine if n is prime by dividing n by 
natural numbers up to >. This represents the first recorded instance of a deterministic 
algorithm for primality testing, where deterministic means that the algorithm always 
terminates with either a yes answer or a no answer. (A deterministic algorithm may 
also be viewed as an algorithm that follows the same sequence of operations each 
time it is executed with the same input. This is in contrast to randomized algorithms 
that make random decisions at certain points in the execution, so that the execution 
paths may differ each time the algorithm is invoked with the same input. See [9] for a 
discussion of some randomized algorithms, which we will not discuss here.) 

Fibonacci also discussed the well-known class of Fibonacci numberks, { Fn } defined 
by the sequence 

F1 = F2 = 1, Fn = Fn-l + Fn-2 (n > 3) 

In addition to being one of Fibonacci's memorable accomplishments, this sequence 
later played a surprising role in primality testing, as we shall see. 

Perfect numbers 

Another distinguished set of numbers that had a deep influence on the development 
of primality testing was the set of perfect numbers. A perfect number is an integer 
n E N equal to the sum of its proper divisors (those m E N where m I n but m 7& n). 
For example, 6 is a perfect number, since 6 = 3 + 2 + 1. The Pythagoreans probably 
knew about perfect numbers; the idea is founded in mysticism, which was their venue. 
Perfect numbers appear in Euclid's Elements, so we know the concept had been around 
for some time. The number 2n-1 (2n-1) is perfect for n = 2,3,5,7, and these are the 
first four perfect numbers: 6,28,496, and 8128. 

The ancient Greeks attributed mystical properties to perfect numbers. St. Augustine 
(354430 CE) iS purported to have said that God created the earth in six days since the 
perfection of the work is signified by the perfect number 6. Also, the moon orbits the 
earth every twenty-eight days, and 28 is the second perfect number. 

Pietro Antonio Cataldi (1548-1626) developed an algorithmic approach to primal- 
ity testing, but is probably best known for his work on continued fractions. In partic- 
ular, his work Trattato del modo brevissimo di trovar la radice quadra delli numeri 
published in 1613, represents a significant contribution to the development of contin- 
ued fractions. His work on perfect numbers was also considerable. Among his thirty 
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books, he wrote on military applications of algebra, and even published an edition of 
Euclid's Elements. Cataldi proved that the fifth, sixth, and seventh perfect numbers 
are: 

33550336 = 2l2(2l3 - 1) 

8589869056 = 216(2l7 - 1), 

and 

137438691328 = 218(2l9 - 1). 

It is uncertain whether Cataldi was the first to discover these perfect numbers, but 
his are the first known proofs of these facts. Cataldi was also the first to observe that 
if 2n _ 1 is prime then n must be prime. In fact, the following result was known to 
Cataldi, though proved by Fermat. 

THEOREM 1. (PERFECTNUMBERS) If 2n _ 1 is prime, then n is prime and 
2n- 1 (2n-1 ) is perfect. 

Proof: Since (2'n-l ) l (2n-1) whenever m W n, then n must be prime whenever 
2n _ l is prime. (Note that, in general, if n = Tm, then for any b E 1S, bn _ 1 = 
(b)n_l)Lf, lbm(e-.i)) 

Let Sl be the sum of all divisors of 2t1-l and let S2 be the sum of all the divisors of 
the prime 2"-l. Then the sum S of all divisors of 2''-l (2''-1) is given by: 

S= E T= E TT'= Lf E T'=SIS2. 
019'' 1(2"-I) 61''' 1 ('1('''-I) t1n'' 1 ('1(2't-I) 

Also, Sl = El,._() 2i, so as a geometric series, we know that 

S = 2n _ 1 

Finally, since 2'/-l is prime, then S2 = 2t1. Hence, 

S = 2 (2 - 1), 

so 2n-l (2n-1) is perfect. 

Long after Cataldi, Euler showed that every even perfect number has the form given 
in Theorem 1. It is unknown whether there are any odd perfect numbers and the search 
for them has exceeded the bound 103°°. Moreover, if such a beast exists, then it is 
known that it must have at least twenty-nine (not necessarily distinct) prime factors 
(see Guy [6, B l, p. 44]). 

The French enter the fray 

Theorem 1 tells us that the search for even perfect numbers is essentially the search 
for primes of the form 

Mp = 2P-1, where p is prime. 

Such primes are called Mersenne primes, the largest known of which is given above 
(see: http://www.utm.edu/research/primes/largest.html). These are named after the 
mendicant monk, Marin Mersenne (1588-1648). Although Mersenne was not a for- 



mally trained mathematician, he had great enthusiasm for number theory. Among his 
contributions were his multifarious communications with many of the outstanding 
scholars of the day, including Descartes, Fermat, Frenicle de Bessy, and Pascal. He 
also published Cognitata Physica-Mathematica in 1644 in which he claimed that of 
all the primes p < 257, the only Mersenne primes Mp that occur are when 

p =2,3,5,7, 13, 17, 19,31,67, 127,257. 

It was not until the twentieth century that Mersenne's claims were completely checked. 
We now know that Mersenne made five mistakes. For example, Mp is not prime for 
p = 67 and p = 257, but Mp is prime for p = 61, p = 89, and p = 107. It is for this 
list, and the impact which it had, that these primes were named after him. 

Pierre de Fermat (1607-1665) kept Mersenne informed of the progress that he, too, 
was making in number theory. In particular, Fermat informed him that he had proved 

223 1 (237-1) = M37. 

Fermat was able to do this by using a series of results, that began with his well-known 
"little theorem." 

THEOREM 2. (FERMAT s LITTLE THEOREM) If q is a prime not dividing b E , 
thenq I (bv-l-1). 

Proof: The result is obvious if q = 2, so we assume that q > 2. We now use the 
Binomial Theorem. First, we establish that q l (jq) for any natural number j < q. Since 
q > 2 is prime, then neither j nor q-j divides q for any j with l < j < q-1. 
Therefore, the integer 

tqA q! 
ViJ (q-j)!j! 

is a multiple of q. Now, the Binomial Theorem in conjunction with this fact tells us 
that 

bq =(b-1+l)q = (9)(b-l)q-ili =(b-I)q+ I +qa 

for some a, E N. Applying this same argument to (b-l)q, we get 

(b-1 )q = (b-2)q + 1 + qa2 

for some a2 E N. Continuing in this fashion, for each (b-i)q with 1 < i < b, we 
ultimately get that 

b 

bq = b + q E ay. 
j=l 

Hence, q I (bq-b) = b(bq-l-1), but q t b so q I (bq--1). l 

Fermat was actually interested in a result slightly different from the "little theorem" 
stated above. It is trivial that the little theorem implies the following theorem: 

THEOREM 3. Let b E N and q a prime such that q does not divide b. Then there 
existsan n E N such thatn I (q-1) and q I (b(q-l)/n-1). 
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This is trivially implied by the little theorem by setting n = 1. However, cases where 
larger values of n occur were of special interest to Fermat, as we shall see. The follow- 
ing result shows that in some cases we may actually find them: 

COROLLARY 1. If p > 2 is prime, then any prime divisor q of 2P _ 1 must be of 
the form q = 2mp + 1 for some m E N. Also, if m is the smallest natural number for 
which q I (bm-1), then q I (bt-1) whenever m I t. 

Here, the number "2m" takes the role of n in the statement of Theorem 2. In partic- 
ular, not only may we assume that n > 1, but that it is even. 

Proof: First we prove the second assertion, which follows from the fact that if t = 
ms for some s E , then (bt-1) = (bm-1) EJ=I bm(X-i). 

Now we establish the first assertion. Let q be a prime dividing 2P-1. Then by the 
"little theorem," ql(2q-l-1). 

CLAIM. gCd(2P-1, 2q-] -1) = 2gCd(/) q-])-1. 

Let g = gcd(p, q-1) and gl = gcd(2P-1, 2q-1-1). Thus, by the second asser- 
tion (2g-1) Igl . It remains to show that gl I (2g-1). By the Euclidean Algorithm there 
exist x, y E S such that g = xp-y(q-l). Since gl 1(2s)-1), then gl 1(2PX-1) by 
the second assertion, and similarly gl 12(q-l)Y _ 1. Thus, gl divides 

2P-t-2(b- l ). = 2("- 1 )-& (2/9X-(b- 1 )-- l ) = 2(q ).Y (2'¢- l ) . 

However, since gl is odd, then gl 1(2g-1). This proves the Claim. 

Since ql(2q-1-1) and ql(21'-1), then g > 1. However, since p is prime, then we 
must have that g = p, so Pl (q-I ). In other words, there exists an n E S such that 
q-I = np. Since p, q > 2, then n = 2m for some m E S. This completes the proof. 

. 

From these results Fermat sought a number n > 1 as in Corollary 1 to use in trial 
divisions to test Mersenne numbers for primality. He saw that Corollary 1 could be 
useful to detect possible primes q such that q | (237-1). For example, q = 37n + 1 
may be tested for low, even values of n until we find, when n = 6, that 223 divides 
(237-1 ) = (2(q- 1)/l-1 ) . Fermat also discovered that 

q = 47 divides (223-1 ) = (2('- l )/2 _ l ) 

using this method. We note that it takes only two trial divisions using this method to 
prove that 

q = 233 divides (229-1 ) = (2(233- 1)/8-1 ) 

The reason is that by Corollary 1 any prime divisor of 229-1 must be of the form 
58m + 1 so by testing for m = 1, 2, 3, 4 of which only two are prime, 59 and 233, we 
get the nontrivial prime divisor q = 233. 

Some of Fermat's most famous results were found in his correspondence with an 
excellent amateur mathematician, Bernard Frenicle de Bessy (1605-1675). In Fermat's 
letter dated October 8, 1640, Fermat's Little Theorem, in certain special cases, makes 
its first recorded appearance. Frenicle de Bessy also corresponded with Descartes, 
Huygens, and Mersenne. He actually solved several problems posed by Fermat, and 
posed further problems himself. 

After Fermat's earlier success with Mersenne primes, he suggested to Frenicle de 
Bessy that numbers of the form 



22n + 1 

should be prime. Today such numbers are called Fermat numbers, denoted by Wn. Fer- 
mat knew that Wn for n = O, 1, 2, 3, 4 were prime, called Fermat primes, but could not 
prove primality for n = 5. Today we know that Wn is composite for 5 < n < 24, and 
it is suspected that Wn is composite for all n > 24 as well. (On July 25, 1999, F382447, 
which has over 101° decimal digits, was shown to be composite by John Cosgrave 
(see http://www.spd.dcu.ie/johnbcos/fermat.htm).) 

Fermat's work also had consequences for factoring. We define afactorization algo- 
rithm as one that solves the problem of determining the complete factorization of an in- 
teger n > 1, as guaranteed by the Fundamental Theorem of Arithmetic. In other words, 
the algorithm should find distinct primes py and aj E N such that n = nk=l PJ j . 
We observe that it suffices for such algorithms to merely find r, s E N such that 
1 < r < s < n with n = rs (called splitting n), since we can then apply the algorithm 
to r and to s, thereby recursively splitting each composite number until a complete 
factorization is found. Furthermore, since deciding whether a given n > 1 is compos- 
ite or prime is easier, in general, than factoring, one should always check first whether 
n is composite (primality test) before applying a factorization algorithm. 

In 1643, Fermat developed a method for factoring that was based on a simple ob- 
servation. If n = rs is an odd natural number with r < fii, then 

n = a2 _ b2 where a = (s + r)/2 and b = (s-r)/2. 

Hence, in order to find a factor of n, we look through the various quantities a2 _ n as 
a ranges among the values a = L>2 + 1, L>2 + 2, . . ., (n-1)/2 until we find a 
perfect square, which will play the role of b2. (Here Lzj is the greatest integerfunction 
or toor, namely the greatest integer less than or equal to z.) Once the appropriate 
values of a and b have been determined, we may solve for the factors r and s. This 
is called the diJference of squares method of factoring, and it has been rediscovered 
numerous times. 

From Euler to Gauss 

The Swiss mathematician, Leonhard Euler (1707-1783), became interested in Fer- 
mat's work in 1730. He found that 

641 1@5, 

thereby refuting Fermat's conjecture. Euler's method was to generalize a result of Fer- 
mat: 

THEOREM 4. (EULER s RESULT ON FERMAT NUMBERS) If Wn = 22 + 1, then 
every prime divisor of Wn is of the form 2n+lr + 1 for some r E N. 

Proof: Let p be a prime divisor of Wn. Suppose that m E N is the smallest value 
such that p l (2m-1), and set 2m = pw + 1 for some integer w. Then since p l (22 + 
1) and p l (22 + -1), we must have 2n+l > m > 2n. By the Division Algorithm, there 
must exist k E N and a nonnegative integer f < m, such that 2n+l = mk + t. Since 
m > 2n, then k = 1 must be true. Also, p divides 

(22n+l - 1) = 2m+t _ 1 = (2m)2t - 1 = (pw + 1)2 - 1, 

so we have shown that p l (2t-1). By the minimality of m, we must have f = 0. 
Hence m = 2n+l 
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Now, by Theorem 2, p | (2P-1-1), so p-1 > 2n+l. Again, by the Division 
Algorithm, there must exist r E N and a nonnegative integer t1 < 2n+l such that 
p-1 = 2n+lr + t1. Since p divides 

(2P-1 _ 1) = 22n+lr+t1 _ 1 = (22 )r2t1 _ 1 = (pW + l)r2fl - 1, 

a quick application of the Binomial Theorem shows that this equals (pvl + 1)2t1-1 
for some integer vl. This means that p | (2t'-1), forcing t1 = 0 by the minimality 
of 2n+l. Hence, p = 2n+lr + 1. 

In particular, we know from Theorem 4 that all divisors of @5 must be of the form 
64k + l. Thus, Euler only needed five trial divisions to find the factor 641, namely for 
k = 3, 4, 7, 9, 10, since the values 64k + 1 for k = 2, 5, 8 are divisible by 3, and those 
for k = 1, 6 are divisible by 5. 

Euler also knew of the seven perfect numbers 

2n-1(2Zl-l)forn=2,3,5,7, 13, 17, 19. 

By 1771, he had determined that MS1 is also prime (using a methodology we outline 
below), the largest known prime to that date, a record that held until 1851. 

In 1830, a valuable technique for factoring any odd integer n was discovered by 
Adrien-Marie Legendre ( 1752-1 833 ) uksing the theory of quadratic reisidues. This the- 
ory, studied since the time of Euler and greatly advanced by Gauss waks applied by 
Legendre to develop a new ksieve method. An integer c is called a quadratic residue 
modulo sl E S if there is an integer x such that 

( -x2(mod n) 

(meaning that n I (c-xX ) ). 
Suppose we wish to find prime divisors of an integer sI. For different primes p, 

Legendre studied congruences of the form 

x2 _ Ap (mod sl ) . 

Suppose a solution to this congruence could be found. This would imply that Ap is 
a quadratic residue modulo all prime factors of n. This fact can be used to greatly 
reduce the ksearch for prime divisors of n by only considering those primes q for 
which p is also a quadratic residue (modq). For instance, suppose 2 is a quadratic 
residue (modn). A result that follows from Fermat's Little Theorem states that 2 is a 
quadratic residue modulo a prime q if and only if q--Jrl (mod 8). Thus, already we 
have halved the search for factors of n (by eliminating odd divisors whose remainders 
are 43(mod8)). 

Legendre applied this method repeatedly for various primes p. This can be viewed 
as constructing a (quadratic) sieve by computing lots of residues modulo n, thereby 
eliminating potential prime divisors of n that sit in various linear sequences. He found 
that if you computed enough of them, then one could eliminate primes up to a as 
prime divisors and thus show n was prime. 

Some results of Euler had actually anticipated Legendre's work. He considered two 
representations of n: 

n = X2 +ay2 = Z2 +aw2 

SO 

(x w) _ (n-ay ) w -n w -ay w ay2 w2 (Z2 _ n)y2 _ (zy)2 (mod n), 



and we are back to a potential factor for n. The basic idea in the above, for a given 
n E , is simply that if we can find integers x, y such that 

x2-y2(mod n) (1) 

and x W iy(modn), then gcd(x-y, n) is a nontrivial factor of n. This idea is still 
exploited by numerous algorithms in current use: Pollard's p-1 algorithm, the con- 
tinued fraction algorithm, the quadratic sieve, and the powerful numberfield sieve. 
For a complete description of these methods and their applications to cryptography, 
see [9]. 

Legendre was only concerned with building the sieve on the prime factors of n, and 
so he was unable to predict, for a given prime p, a second residue to yield a square. 
In other words, if he found a solution to x2 _ py2(modn), he could not predict a 
different solution W2-pZ2 (mod n) . If he had been able to do this, then he would have 
been able to combine the two as 

(xw)2_ (pzy)2(modn), 

so if xw t Apzy(modn), then gcd(xw-pzy, n) would be a nontrivial factor of n, 
thereby putting us back in the situation given in (1). 

The idea of trying to match the primes to create a square can be attributed to Maurice 
Borisovich Kraitchik (1882-1957). Kraitchik, in the early 1920s, reasoned that it might 
suffice to find a multiple of n E N as a difference of squares. He chose a quadratic 
polynomial of the form kn = ax2 + by2 for some k E N. In its simplest form with 
k = a = b = 1, he would sieve over x2-n for x > Lj. This is the basic idea 
behind the quadratic sieve method mentioned above. Thus, what Kraitchik had done 
was to opt for "fast" generation of quadratic residues, and in so doing abandoned 
Legendre's Method (meaning that, generally, he did not have residues less than 2>), 
but gained control over finding of two distinct residues at a given prime to form a 
square (as described above), which Legendre was unable to do. Thus, Kraitchik could 
start at values bigger than > and sieve until "large" residues were found. 

A version of Legendre's method for factoring was developed by one of the greatest 
mathematicians who ever lived, Carl Friederich Gauss (1777-1855), in his influen- 
tial masterpiece Disquisitiones Arithmeticae [5]. Gauss recognized the importance of 
factoring [5, Art. 329, p. 396]: "The problem of distinguishing prime numbers from 
composite numbers and of resolving the latter into their prime factors is known to 
be one of the most important and useful in arithmetic." Gauss also discussed another 
factoring method in [5], which may be described as follows. 

Suppose that we want to factor n E N. We choose some m E N such that 
gcd(m, n) = 1. Suppose that x = r, s E N are two solutions of 

n | (X2-m) (2) 

Then, if n t (r i s), then gcd(r-s, n) must be a nontrivial divisor of n because n l 
(r-s)(r + s), while n t (r-s) and n t (r + s). 

Landry, Lucas, and Lehmer 

Once we enter the nineteenth century, the work of several individuals stands out in the 
development of factoring and primality testing. Among these is C. G. Reuschle (1813- 
1875). Tables compiled by Reuschle included all known prime factors of bn _ 1 for 
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b = 2,3,5,7, ll,andn < 42. 



He also included partial factorizations of 2n _ 1 for some values of n < 156, and as we 
have already seen, this information is useful for primality testing. In 1925, Cunning- 
ham and Woodall [3] published tables of factorizations of bn i 1 for a small number 
of values b < 12, and some high powers of n. As a consequence, work on extending 
these tables has come to be known as the Cunningham Project. (Relatively recent work 
on the Cunningham Project and related problems is available [1].) 

In the late 1860s a Parisian named Fortune Landry worked on finding factors of 
Mn. He began by looking closely at Euler's proof of the primality of M31, and tried 
to improve it. Euler had observed that any prime p dividing M31 must be of the 
form p _ 1 mod62. Since primes dividing forms of the type x2 _ 2y2 must satisfy 
p _ Al(mod8), Euler knew that if p l M31, then p-1, 63(mod248), given that 
p l ((216)2-2). Since L2 = 46340, Euler had to trial divide M31 by primes of 
the form p = 248k + 1 or p = 248k + 63, where p < 46340. Finding no such primes, 
he concluded that M31 must be prime. Landry extended Euler's ideas as follows: If a 
given n E N is known to have only factors of the form ax + b for some (known) 
integers a, b, and if n = (axl + b)(ax2 + b) for some (unknown) integers xl, x2, he 
deduced that there exist integers q, h, r such that 

XlX2=q-bh, (3) 

X1 +X2 = r +ah, (4) 

and 

h = q-xl (r-xl ) 
axl +b 

Landry also showed that if h = gh' + k for some integers g, h', then there exists a 

bound B such that if xl > B, then h' = O. Hence, his algorithm involved testing all 
possible values of k-h to see whether Equations (3)-(4) have solutions when xl > B. 
If they do, then we have a factor of n. If they do not, then we test all possible values of 
xl < B to see if Equation (5) has a solution. We either get a factor of n or show that n 
is prime. (Dickson [4, p. 371] mentions Landry's efforts in the case where a = 6 and 
b = + 1, for instance.) 

Using these methods, Landry completely factored 2n + l for all n < 64 with four 
exceptions. He even found the largest known prime of the time, namely 

(253 + l)/321 = 2805980762433. 

Perhaps the most influential nineteenth-century individual in the area of primal- 
ity testing was Franbcois Edouard Anatole Lucas (1842-1891). Lucas had interests in 
recreational mathematics, such as his invention of the well-known Tower of Hanoi 
problem. However, his serious interest was in number theory, especially Diophantine 
analysis. Although he spent only the years 1875-1878 on the problems of factoring 
and primality testing, his contribution was impressive. Some of the ideas developed 
by Lucas may be interpreted today as the beginnings of computer design. He studied 
Fibonacci numbers and by 1877 had completely factored the first sixty of them. This 
led him to develop results on the divisibility of Fibonacci numbers, and ultimately to a 
proof that Ml27 is prime (modulo a corrected proof of the theorem below). The signif- 
icance of this feat is revealed by the fact that this number held the distinction of being 
the largest known prime for three-quarters of a century. A larger prime was not found 
until 1951 by Miller and Wheeler [8]. 

The influence that Lucas had on modern-day primality testing is well described in a 

recent book by Hugh Williams [10], devoted to a discussion of the work of Lucas and 
his influence on the history of primality testing. 
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To see how Lucas determined that M127 is prime, we state the following result that 
was known to Lucas, although it was not given a valid proof until 1913 by R. D. 
Carmichael [2]. 

THEOREM 5. Suppose that Fk denotes the kth Fibonacci number and n E N is 
given. If n _ i3(mod 10) and n | Fn+l but n t Fm for all divisors m of n with 1 < 
m < n, then n is prime. Also, if n--i1 (mod 10) and n | Fn_l but n t Fm for all divi- 
sors m of n with 1 < m < n-2, then n is prime. 

Based upon this result, all Lucas had to establish was that M127 I F2l27 but M127 t F2n 
for all natural numbers n < 127. He did this in 1876, using methods that led to a 
primality test, the last we include in our historical discussion. 

In the 1930S a pioneering giant in the world of primality testing, Derrick Henry 
Lehmer (1905-1991), extended the ideas of Lucas to provide the following primality 
test. (A look at his collected works [7] is highly recommended.) 

Lucas-Lehmer true primality test for Mersenne numbers The algorithm consists 
of the following steps performed on a Mersenne number Mn = 2n _ 1 with n > 3. 

(l) Set sl = 4 and compute Sy _ s2_l-2(modMn) for j = 1, 2, . . ., n-1. 
(2) If Sn-l-O(modMn), then conclude that Mn is prime. Otherwise, conclude that 

Mtl is composite. 

Lucas knew only that the test was sufficient for primality, and this only for certain 
restricted types of values of n. In 1930, Lehmer proved both that the condition is 
necessary and that the test holds for any n E N. 

EXAMPLE 2. Input M7 = 127. Then we compute sj, the least nonnegative residue 
of s; modulo M7 as follows. 52 = 14, sS = 67, 54 = 42, s5 = 111, and S6 = 0. Thus, 
M7 is prime by the Lucas-Lehmer Test. 

This celebrated test is a fine example of the efforts of the pioneers such as Lehmer 
whose work, it may reasonably be said, had a deep and lasting influence upon the 
development of computational number theory, an experimental science with its feet 
in both the mathematical and computer science camps. One aspect of computational 
number theory that has given it high profile is cryptography, the study of methods for 
sending messages in secret. 

Our age is dominated by information, and the need for secrecy is paramount in in- 
dustry, academe, and the military, not to mention our personal lives. As we send email 
messages and financial data, we hope they remain private. Factoring and primality 
testing play a dominant role in the development of modern cryptographic techniques. 
Though the ideas of the pioneers are ubiquitous in modern algorithms, credit for their 
work is often overlooked. We hope to have increased the readers interest, understand- 
ing, and appreciation for these ideas. 
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Doing Math 
DONNA DAVIS 
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Au contraire, Three Dog Night, one 
is not the loneliest number. Two, 
however, is indeed the loneliest number 
since the number one is out of the running. 
In a three-legged race, it helps to become one 
with the two you're tied-to. 

The Foursquare Gospel Church has truth 
cornered. Five in the hive and before 
you know it, honey, we're done for. 

. . . . . S1x tzmes S1X tlmeS S1X gets 
you 200+ years 
to plant apricots and pots of petunias. 

Two calls me again it's that double 
helix, the doublecross, the double we 
all are said to have somewhere in the world. 
Mine was on a TV show once, Jeopardy, but 
then again aren't we all in danger? 

Seven's so lucky, we should prime the pump 
with her before every bath and baptism. Eight 
won't wait ask any cat with only one more life left. 
Nine is fine-faceted like a sparkle. 
And ten lets you start again where 

your number system's bass'ed 
and cello'ed and violin'ed and viola'ed 
and the way to heaven is charted for you. 
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