MAT 322 Final exam practice problems

Analysis in several dimensions

May, 2017

- 1. Implicit function theorem: a manifold defined by a set of equations, dimension of this manifold
 - (a) Prove that the equation $x^2 + y^4 + z^6 = 3$ defines a smooth manifold M in \mathbb{R}^3 .
 - (b) Find the dimension of M.
 - (c) Find the equations of the tangent space of M at the point (1,1,1). What is the dimension of the tangent space?
- 2. Implicit function theorem: a manifold defined by a set of equations, dimension of this manifold A manifold defined by more than one equation.
- 3. Manifolds and their tangent spaces: as a graph of a function, parametrized, as set of solutions of equations. Consider the subset of R^3 defined by $4x^2 + y^2 + z^2 = 1$.
 - (a) Find a parametrization of M.
 - (b) Can M be describe as the graph of a function?
 - (c) Find a tangent space of M at the point $(0, 1/\sqrt{2}, 1/\sqrt{2})$, using the definition of M as a solution of equations.
 - (d) Find a tangent space of M at the point $(0, 1/\sqrt{2}, 1/\sqrt{2})$, using the parametrization of M.
 - (e) Find a tangent space of M at the point $(0, 1/\sqrt{2}, 1/\sqrt{2})$, using the definition of M as the graph of a function.
- 4. integral by definition, dyadic cubes.
 - (a) Compute the upper and lower sums $U_1(f)$ and $L_1(f)$ where $f(x,y) = x^2 + y$ if $0 \le x, y \le 1$, and f(x,y) = 0 otherwise.
 - (b) Can you determine without computing the integral $\int f(x,y)|dxdy|$, whether the inequalities $L_1(f) \leq \int f(x,y)|dxdy| \leq U_1(f)$ hold?
- 5. Measure zero Volume
 - (a) Find, if possible, a set of measure 0 and volume not defined or not 0.
 - (b) Find, if possible, a set of volume 0 and measure not defined or not 0.
- 6. When a function is integrable Let Q be the subset of R^2 defined by $|x| + |y| \le 1$. Prove that the function $f(x,y) = \sin(x^2 + \cos(y))I_Q$ is integrable.
- 7. **1-Form fields : Integrate by definition** Consider the 1-form in R^2 , $\sigma = \frac{y}{x^2 + y^2} dx$. Following the procedure we did in class, find the integral of σ against the arc of the circle of radius 2 centered at the origin, running from (1,0) to (-1,0), in the clockwise direction. (You just need to set up the appropriate sequence of partitions of the curve, write down the sum for each partition and express the result as a limit. You do not need to compute the limit.)
- 8. Manifold orientation Find an orientation of the surface S in \mathbb{R}^3 defined by the equation $x^2 + y^4 + z^6 = 1$.

- 9. Form fields: integrate over parametrized domains and over manifolds. Generalized Stokes Theorem. "nice" subsets of Manifolds: orientation of boundary Denote by S the portion of the sphere of radius 2 in R^3 , that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy plane. Orient S by a vector field defined by the upwards pointing normal
 - (a) Find the integral $\int_{\partial S} \omega$, where $\omega = xzdx + yzdy + xydz$.
 - (b) Find the integral $\int_S d\omega$..
 - (c) These two integrals should be the same, why?
- 10. Forms: definition, elementary forms, exterior differential Consider $\omega = xyzdy$.
 - (a) Compute $d\omega$.
 - (b) What do you obtain when you apply $d\omega$ to a point in \mathbb{R}^3 .
 - (c) What do you obtain when you apply ω to a point in \mathbb{R}^3 .
- 11. Form fields: integrate over parametrized domains Set up each of the following integrals of form fields over parametrized domains as an ordinary multiple integrals.
 - (a) $\int_{[\gamma(I)]} y^2 dy + x^2 dz$ where $\gamma(t) = (t^3, t^2 + 1, t^2 1)$ and I = [0, s]
 - (b) $\int_{[\gamma(U)]} \sin(y)^2 dx \wedge dz$ where $\gamma(u,v) = (u^2 v, uv, v^4)$ and $U = [0,s] \times [0,r]$