Problem set 7

- 1. Determine the number of elements of order 4 mod 2^s . What is the smallest positive k such that $n^k \equiv 1 \pmod{32}$, for all a odd. Hint: Start with s = 5 and then study the general case.)
- 2. Determine for which positive integers n, $2^n + 3^n$ is divisible by 17.
- 3. Show that if m has a primitive root and m > 2 then $x^2 \equiv 1 \pmod{m}$ has exactly two solutions.
- 4. Suppose that *p* is prime and that the order of *a* mod *p* is 3. Prove that:
 - (a) 3 divides p 1.
 - (b) $a^2 + a + 1 \equiv 0 \pmod{p}$.
 - (c) the order of $a + 1 \mod p$ is 6.