- (1) I added the area and my square-side so it was $(0; 45)_{60}$.
- (2) You put down $(1)_{60}$, the projection.
- (3) You break off half of $(1)_{60}$. You combine $(0; 30)_{60}$ and $(0; 30)_{60}$.
- (4) You add (0; 15)₆₀ to (0; 45)₆₀.
- (5) (1)₆₀ squares (1)₆₀.
- (6) You take away (0; 30)₆₀ which you combined from inside (1)₆₀ so that the square side is (0; 30)₆₀.

In this Babylonian problem, the equation $x^2 + bx = c$ is solved. Find the values of b and c, and explain geometrically the Babylonian solution (in terms of b and c, not in terms of their concrete values. Hint: See Figure 1)

FIGURE 1.