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A smooth projective variety is rationally connected if there exists a rational holomorphic
curve passing through any two points. In [Kol96], it was conjectured that the property of being
rationally connected is a symplectic invariant. One possible approach to such a conjecture would
involve showing that if a symplectic manifold with a compatible almost complex structure is locally
ruled by genus 0 holomorphic curves representing some homology class, then it is globally ruled by
such curves. This leads us to the following question posed by Zinger.

Question. Let (X,ω) be a connected symplectic manifold and let J be an ω-compatible (or ω-
tame) almost complex structure. If there is a non-empty open subset W ⊂ X so that (W,J |W ) is
uniruled, then doesn’t it follow that (X, J) is uniruled?

See below for a definition of uniruledness. In this note, we show that the answer to the above
question is no by producing an explicit example. The construction of this example and the proof
follow from the key observation that the vector bundleO(−1)⊕O(1) over P1 is trivial as a symplectic
vector bundle.

Another related but important question which will not be answered in this paper is the following.

Question. Suppose that (X,ω) is a compact symplectic manifold and J1, J2 are ω-compatible (or
ω-tame) almost complex structures on X. If (X, J1) is uniruled, doesn’t it follow that (X, J2) is
uniruled?

Definition. An almost complex manifold (X, J) is uniruled if for every x ∈ X, there exists a
non-constant J-holomorphic map u : P1 → X satisfying x ∈ u(P1). Now suppose that we have a
non-trivial homology class β ∈ H2(X;Z). We say that (X,J) is β-uniruled if for every x ∈ X,
there exists a J-holomorphic map u : P1 → X representing β whose image contains x.

Let T = C/Z2 be the standard complex torus and let X be the one-point blowup of T3 ≡
T× T× T at the point (0, 0, 0). Let ω be a Kähler form on X.

Theorem. There is an almost complex structure J on X compatible with ω, a non-empty open
set W ⊂ X, a point y ∈ X, and a non-trivial homology class β ∈ H2(W ;Z) so that

1. (W,J |W ) is β-uniruled and

2. y /∈ u(P1) for all non-constant J-holomorphic maps u : P1 → X.

In order to prove this theorem we need two preliminary lemmas. We let JX : TX → TX be
the standard complex structure on X and let E ⊂ X be the exceptional divisor of the blowdown
map Bl : X → T3.
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Lemma 1. There is an open set U ( X containing E so that every non-constant J-holomorphic
map u : P1 → X has image in U for every almost complex structure J on X satisfying J |X−K =
JX |X−K for some compact K ⊂ U .

Proof. For every r ∈ R+, define

Dr ≡ {z ∈ T = C/Z2 : |z| < r} ⊂ T, Dc
r ≡ T−Dr.

We take U ≡ Bl−1((D 1
2
)3) where (D 1

2
)3 ⊂ T3. For i = 1, 2, 3, let

πi : T3 � T, πi(z1, z2, z3) = zi

be the i-th component projection map.
Let J be any almost complex structure on X satisfying J |X−K = JX |X−K for some compact

K ⊂ U and let u : P1 → X be any non-constant J-holomorphic map. For each i = 1, 2, 3, let
ui ≡ πi ◦Bl◦u. Since K ⊂ U is compact and ui|u−1(X−K) is JX -holomorphic, there exists r ∈ (0, 1

2)

such that K ⊂ π−1
i (Dr) and ∂Dc

r is contained in the set of regular values of ui for every i = 1, 2, 3.
Define Σi ≡ u−1

i (Dc
r) and

u≥ri : Σi → Dc
r, u≥ri (v) = ui(v), ∀v ∈ Σi, ∀i ∈ {1, 2, 3}.

Since ∂Σi = u−1
i (∂Dc

i ) is contained in the set of regular values of ui, u
≥r
i is a holomorphic map

between compact Riemann surfaces with boundary sending ∂Σi to ∂Dc
r.

Suppose that the image of u is not contained in U . Then there is some i ∈ {1, 2, 3} so that the
image of ui is not contained in D 1

2
⊂ T and hence Σi 6= ∅. Thus, there is a connected component

Σ of Σi so that v ≡ u≥ri |Σ : Σ→ Dc
r is a non-constant holomorphic map. Since v is a non-constant

proper holomorphic map of degree d ≥ 1, we get that

χ(Σ) ≤ dχ(Dc
r) = −d (1)

by the Riemann-Hurwicz formula. Let B ∈ N be the number of boundary components of Σ. Since
Σ is connected and of genus 0,

χ(Σ) = 2−B. (2)

Since v|∂Σ : ∂Σ → ∂Dc
r is an orientation-preserving covering map of degree d as ∂Dc

r is contained
in the set of regular values of ui, B ≤ d. Hence by Equations (1) and (2), 2− d ≤ −d which gives
us a contradiction. Therefore u(P1) ⊂ U .

Lemma 2. For every compact set K ⊂ X whose interior contains E, there is an almost complex
structure J compatible with ω, a non-empty open set W ⊂ K and an element β ∈ H2(W ;Z) so
that J |X−K = JX |X−K and (W,J |W ) is β-uniruled.

Proof. Let L ⊂ E be a complex line in the exceptional divisor E ∼= P2. Let ωC2 be the standard
symplectic form on C2 and define ωL ≡ ω|L. Since the normal bundle of L is isomorphic as a
complex vector bundle to O(−1)⊕O(1), it has trivial first Chern class. Hence by [MS98, Theorem
2.69], it is trivial as a symplectic vector bundle. Therefore, by the Symplectic Neighborhood
Theorem [MS98, Theorem 3.30], there is a neighborhood N (L) of L in X, a neighborhood N of
L× {0} inside L× C2, and a symplectomorphism

Φ : (N , (ωL + ωC2)|N )→ (N (L), ω|N (L)).
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Let JC2 be the standard complex structure on C2 and let JL be equal to the induced complex
structure on the JX -holomorphic submanifold L ⊂ X. For ε > 0 small enough,

L×Bε ⊂ Φ−1(K ∩N (L)),

where Bε ⊂ C2 is the ball of radius ε > 0. Define W ≡ Φ(L × Bε). By Proposition , there is an
almost complex structure J such that

J |W = Φ∗(JL ⊕ JC2)|W , J |X−K = JX |X−K .

Choose a JL-holomorphic isomorphism φ : P1 → L. For each b ∈ Bε, define

ub : P1 → X, ub(x) = Φ(φ(x), b), ∀x ∈ P1.

Since W ⊂ Φ(L×Bε) and J |W = Φ∗(JL ⊕ JC2)|W , ub is a JL-holomorphic map.
Since for every w in W there is a unique point (l, b) ∈ L × Bε so that Φ(l, b) = b, the images

of (ub)b∈Bε cover W . Define β ≡ [L] ∈ H2(W ;Z). Then each of the J-holomorphic maps (ub)b∈Bε
also represent β.

Proof of Theorem . We let U be the open set from Lemma 1. Hence there exists a point y ∈ X−U
and a compact set K ⊂ U whose interior contains E. By Lemma 2, there is a non-empty open set
W ⊂ K, an almost complex structure J compatible with ω, and an element β ∈ H2(X;Z) so that
so that J |X−K = JX |X−K and (W,J |W ) is β|W -uniruled. By Lemma 1, we get that y /∈ u(P1) for
all J-holomorphic maps u : P1 → X.

Appendix: Extending Compatible Almost Complex Structures.

Proposition. Let (X,ω) be a symplectic manifold and U1,W1, U2,W2 ⊂ X be open subsets
such that

U1 ⊂W1, U2 ⊂W2, W1 ∩W2 = ∅ .

If J1 and J2 are almost complex structures on W1 and W2, respectively, compatible with ω|W1

and ω|W2 , then there exists an almost complex structure J on X compatible with ω such that
J |U1 =J1 and J |U2 =J2.

The above Proposition will follow immediately either from Lemma 3 or from Lemma 4 below.
Lemma 3 uses general results by Palais and Steenrod, whereas Lemma 4 gives us a more direct
proof of the above Proposition.

For a finite-dimensional symplectic vector space (V,Ω), we denote by J (V,Ω) the manifold
of linear complex structures compatible with Ω. For a symplectic vector bundle (E,ω) over a
topological space X, we denote by J(E,ω)−→X the fiber bundle with fiber J (Ex, ωx) over x∈X.
If (E,ω) is a smooth symplectic vector bundle, then J(E,ω)−→X is a smooth fiber bundle.

Because the fibers of J(E,ω)−→X are contractible by [MS98, Proposition 2.50(iii)], we have
that the proposition above follows immediately from the following lemma.

Lemma 3. Let π : Q→ B be a fiber bundle whose fiber is a contractible metrizable manifold and
whose base is a metrizable topological space. Let U,U ′ ⊂ B be open sets so that U ′ ⊂ U and let
σU : U → Q be a section of π|U . Then there is a section σ of π so that σ|U ′ = σU |U ′. If π : Q→ B
is a smooth fiber bundle and σU is smooth section then the section σ can be chosen to be smooth.
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Proof. Since B is a normal topological space, there is an open set U ′′ in B so that U ′ ⊂ U ′′ ⊂ U ′′ ⊂
U . By [Pal66, Theorem 9], there is a continuous section s of π so that s|U ′′ = σU |U ′′ . If π : Q→ B
is smooth then by the Steenrod approximation theorem [Ste99, Section 6.7, Main Theorem], there
is a smooth section σ of π so that σ|U ′ = s|U ′ . Therefore σ|U ′ = σU |U ′ .

Lemma 4. Let (E,ω) be a symplectic vector bundle over a paracompact topological space X and
U,W ⊂X be open subsets such that U ⊂W . If JW is a section of J(E,ω)|W , then there exists a
section J of J(E,ω) such that J |U =JW |U . If (E,ω) is a smooth symplectic vector bundle and JW
is a smooth section of J(E,ω)|W , then the section J can be chosen to be smooth.

Proof. For a finite-dimensional vector space V , we denote by M(V ) the manifold of positive-
definite inner-products on V . For a finite-dimensional symplectic vector space (V,Ω), we denote
by Sp(V,Ω)⊂GL(V ) the subgroup of linear automorphisms Φ preserving the symplectic form Ω
and define

sV,Ω : J (V,Ω) −→M(V ),
{
sV,Ω(J)

}
(v, w) = Ω(v, Jw) ∀ v, w∈V, J ∈J (V,Ω).

We note that
sV,Ω

(
Φ∗J

)
= Φ∗

(
sV,Ω(J)

)
∀ J ∈J (V,Ω), Φ∈Sp(V,Ω). (3)

By [MS98, Proposition 2.50], there exists a continuous map

rV,Ω :M(V ) −→ J (V,Ω) s.t.

rV,Ω◦sV,Ω = idJ (V,Ω), rV,Ω
(
Φ∗g

)
= Φ∗

(
rV,Ω(g)

)
∀ g∈M(V ), Φ∈Sp(V,Ω). (4)

By [MS11, Exercise 2.52], the map rV,Ω is in fact smooth.

For a real vector bundle E over X, we denote by M(E)−→X the fiber bundle with fiber M(Ex)
over x∈X. If E is a smooth vector bundle, then M(E)−→X is a smooth fiber bundle. By (3) and
the second identity in (4), the maps sV,Ω and rV,Ω induce continuous bundle maps

sE,ω : J(E,ω) −→M(E) and rE,ω : M(E) −→ J(E,ω).

If (E,ω) is a smooth symplectic vector bundle, then these maps are smooth. By the first identity
in (4),

rE,ω◦sE,ω = idJ(E,ω). (5)

Choose any section gX of M(E) and a continuous function

ρ : X −→ [0, 1] s.t. ρ(x) =

{
1, if x∈U ;

0, if x 6∈W.

Let gW =sE|W ,ω|W (JW ) and define

g : X −→M(E), g|x =

{
ρ(x)gW |x+(1−ρ(x))gX |x, if x∈W ;

gX |x, if x 6∈W ;

J : X −→ J(E,ω), J(x) = rE,ω(g|x).

By (5), J |U =JW |U .
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