(1) Let (W, ξ) be a contact manifold of dimension $2 n-1$ and let $\alpha \in \Omega^{1}(W)$ satisfy $\xi=\operatorname{ker}(\alpha)$. Show that $\alpha \wedge d \alpha^{n-1}$ does not vanish at any point in W.
(2) Let (M, ω) be a symplectic manifold of dimension 4 or higher. Let X be any vector field satisfying $\mathcal{L}_{X} \omega=f \omega$ for some nowhere vanishing smooth function

$$
f: M \longrightarrow \mathbb{R}-\{0\} .
$$

Show that f must be a constant function.
(3) Let E be an oriented vector bundle with a conformal symplectic structure. Show that E admits a symplectic structure.
(4) (McDuff-Salamon). Let (M, ω) be a symplectic manifold of dimension ≥ 4 and let $W \subset M$ be a compact hypersurface. Let X, X^{\prime} be a Liouville vector fields transverse to W. Show that both vector fields give the same coorientation for W (I.e. they induce isotopic trivializations of the normal bundle of W).

Hint: Consider $X-X^{\prime}$.
(5) Show that the Thurston-Bennequin number of a Legendrian knot can be computed from its Legendrian front diagram in terms of the writhe and the number of cusps.

