Homework 6 Solutions

Due: Thursday October 18th at 10:00am in Earth \& Space 183
Please write your solutions legibly; the TA may disregard solutions that are not readily readable. All solutions must be stapled (no paper clips) and have your name (first name first) and HW number in the upper-right corner of the first page.

Problem 1: Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let f, g be integrable functions on this space so that g is bounded.
(1) Show that

$$
\left|\int f d m\right| \leq \int|f| d m
$$

(2) Show that $f g$ is integrable over E.

Solution:

(1) $\left|\int f d \mu\right|=\left|\int f^{+} d \mu-\int f^{-} d \mu\right| \leq\left|\int f^{+} d \mu\right|+\left|\int f^{-} d \mu\right|$

$$
=\int f^{+} d \mu+\int f^{-} d \mu=\int f^{+}+f^{-} d \mu=\int|f| d \mu
$$

(2) Since $|g| \leq C$ for some constant C, we have $\int|f g| d \mu \leq \int C f d \mu=C \int f d \mu<$ ∞. Hence $f g$ is integrable.

Problem 2: Show that the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x):= \begin{cases}\frac{x^{2}}{\left(e^{x}-1\right)^{2}} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

is integrable $(\mathbb{R}, \mathcal{M}, m)$. Also, write down the integral

$$
\int f d m
$$

as an expression involving

$$
\zeta:=\sum_{n=1}^{\infty} \frac{1}{n^{3}} .
$$

Solution: Since

$$
\frac{1}{(1-t)^{2}}=\sum_{n=1}^{\infty} n t^{n-1}, \quad \forall t \in(-1,1),
$$

we have

$$
f(x)=\frac{x^{2} e^{-2 x}}{\left(1-e^{-x}\right)^{2}}=\sum_{n=1}^{\infty} n x^{2} e^{-2 x} e^{-(n-1) x}=\sum_{n=1}^{\infty} n x^{2} e^{-(n+1) x}
$$

Let $f_{n}(x):=n x^{2} e^{-(n+1) x}$. Then

$$
\int_{0}^{\infty} f_{n} d m=\frac{2 n}{(n+1)^{3}}
$$

Hence by MCT

$$
\int f d m=\sum_{n=1}^{\infty} \frac{2 n}{(n+1)^{3}}<\sum_{n=1}^{\infty} \frac{2}{n^{2}}
$$

Hence f is integrable. Also

$$
\begin{gathered}
\int f d m=\sum_{n=1}^{\infty} \frac{2 n}{(n+1)^{3}}=\sum_{n=1}^{\infty} \frac{2 n+2}{(n+1)^{3}}-\sum_{n=1}^{\infty} \frac{2}{(n+1)^{3}}= \\
2 \frac{\pi^{2}}{6}-2-2 \zeta+2=\frac{\pi^{2}}{3}-2 \zeta
\end{gathered}
$$

Problem 3: Let

$$
f_{t}: \mathbb{R} \longrightarrow \mathbb{R}, \quad t \in \mathbb{R}
$$

be a family of integrable functions so that the function

$$
g_{x}: \mathbb{R} \longrightarrow \mathbb{R}, \quad g_{x}(t):=f_{t}(x)
$$

is continuous for each $x \in \mathbb{R}$. Suppose also that there is an integrable function $g: \mathbb{R} \longrightarrow \mathbb{R}$ so that $\left|f_{t}\right| \leq g$ for each $t \in \mathbb{R}$. Show that the function

$$
h: \mathbb{R} \longrightarrow \mathbb{R}, \quad h(t):=\int f_{t} d m
$$

is continuous.

Solution:

Let $t \in \mathbb{R}$ and let $t_{n} \rightarrow t$ be a sequence converging to t. Then since $\left|f_{t_{n}}-f_{t}\right| \leq$ $\left|f_{t_{n}}\right|+|f| \leq 2 g$ for each n,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} h\left(t_{n}\right)-h(t)=\lim _{n \rightarrow \infty} \int f_{t_{n}} d m-\int f d m=\lim _{n \rightarrow \infty} \int f_{t_{n}}-f d m \stackrel{D C T}{=} \\
\int \lim _{n \rightarrow \infty} f_{t_{n}}-f d m=\int f-f d m=0
\end{gathered}
$$

by the dominated convergence theorem (DCT). Hence h is continuous.
Problem 4: Give an example of a family of integrable functions

$$
f_{t}: \mathbb{R} \longrightarrow \mathbb{R}, \quad t \in \mathbb{R}
$$

with the following two properties.
(1) The function

$$
g_{x}: \mathbb{R} \longrightarrow \mathbb{R}, \quad g_{x}(t):=f_{t}(x)
$$

is continuous for each $x \in \mathbb{R}$.
(2) The function

$$
h: \mathbb{R} \longrightarrow \mathbb{R}, \quad h(t):=\int f_{t} d m
$$

is discontinuous.
Solution: Define

$$
f_{t}:=\frac{t}{1+t^{2} x^{2}}
$$

for each $t \in \mathbb{R}$. Then g_{x} is continuous for all x since $1+t^{2} x^{2}$ is never 0 . However,

$$
h(t)=\int f_{t}(x) d x= \begin{cases}-\pi & \text { if } t<0 \\ 0 & \text { if } t=0 \\ \pi & \text { if } t>0\end{cases}
$$

Hence h is discontinuous at 0 .

