Homework 5

Due: Thursday October 4th at 10:00am in Physics P-124
Please write your solutions legibly; the TA may disregard solutions that are not readily readable. All solutions must be stapled (no paper clips) and have your name (first name first) and $H W$ number in the upper-right corner of the first page.

Problem 1: Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $f, g: \Omega \longrightarrow \mathbb{R}$ be non-negative measurable functions whose integrals are finite. Show that $f \leq g$ almost everywhere iff $\int_{E} f d \mu \leq \int_{E} g d \mu$ for each $E \in \mathcal{F}$.

Problem 2: Construct a sequence of sequence of non-negative measurable functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ on \mathbb{R} so that

$$
\int \liminf _{n \rightarrow \infty} f_{n} d m<\liminf _{n \rightarrow \infty} \int f_{n} d m
$$

Problem 3: Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $f: \Omega \longrightarrow \mathbb{R}$ be a non-negative measurable function.
(1) Show that

$$
s_{n}:=\sum_{k=0}^{2^{2 n}} \frac{k}{2^{n}} \mathbf{1}_{f^{-1}\left(\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right)}, \quad n \in \mathbb{N}
$$

pointwise converges to f.
(2) Therefore show

$$
\begin{gathered}
\int f d \mu= \\
\sup \left\{\sum_{i=1}^{k} a_{i} \mu\left(f^{-1}\left(\left[a_{i}, b_{i}\right]\right)\right): k \in \mathbb{N},\left[a_{1}, b_{1}\right], \cdots,\left[a_{k}, b_{k}\right] \text { disjoint intervals in } \mathbb{R}\right\} .
\end{gathered}
$$

Problem 4: Let $f: \mathbb{R} \longrightarrow \overline{\mathbb{R}}$ be a non-negative measurable function satisfying $\int f d m<\infty$. Define

$$
F:[0, \infty) \longrightarrow \mathbb{R}, \quad F(x):=\int f \mathbf{1}_{[0, x]} d m
$$

Show that F is continuous.

