Homework 5 Solutions

Due: Thursday October 4th at 10:00am in Physics P-124
Please write your solutions legibly; the TA may disregard solutions that are not readily readable. All solutions must be stapled (no paper clips) and have your name (first name first) and $H W$ number in the upper-right corner of the first page.

Problem 1: Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $f, g: \Omega \longrightarrow \mathbb{R}$ be non-negative measurable functions whose integrals are finite. Show that $f \leq g$ almost everywhere iff $\int_{E} f d \mu \leq \int_{E} g d \mu$ for each $E \in \mathcal{F}$.

Solution: Suppose that $f \leq g$ almost everywhere. Then there is a null set N so that $f \mathbf{1}_{\Omega-N} \leq g \mathbf{1}_{\Omega-N}$. Since $\mu(N)=0$, we have that $f \mathbf{1}_{N}$ and $g \mathbf{1}_{N}$ are equal to 0 almost everywhere and hence

$$
\int f \mathbf{1}_{E} \mathbf{1}_{N}=\int g \mathbf{1}_{E} \mathbf{1}_{N}=0
$$

since $f \mathbf{1}_{E} \mathbf{1}_{N}$ and $g \mathbf{1}_{E} \mathbf{1}_{N}$ is equal to 0 almost everywhere. Hence

$$
\begin{gathered}
\int_{E} f d \mu=\int f \mathbf{1}_{E} \mathbf{1}_{\Omega-N}+f \mathbf{1}_{E} \mathbf{1}_{N} d \mu \\
=\int f \mathbf{1}_{E} \mathbf{1}_{\Omega-N} d \mu+\int f \mathbf{1}_{E} \mathbf{1}_{N} d \mu=\int f \mathbf{1}_{E} \mathbf{1}_{\Omega-N} \\
\leq \int g \mathbf{1}_{E} \mathbf{1}_{\Omega-N} d \mu=\int g \mathbf{1}_{E} \mathbf{1}_{\Omega-N} d \mu+\int g \mathbf{1}_{E} \mathbf{1}_{N} d \mu \\
=\int g \mathbf{1}_{E} \mathbf{1}_{\Omega-N}+g \mathbf{1}_{E} \mathbf{1}_{N} d \mu=\int g \mathbf{1}_{E} d \mu=\int_{E} g d \mu
\end{gathered}
$$

Conversely suppose that

$$
\begin{equation*}
\int_{E} f d \mu \leq \int_{E} g d \mu \tag{1}
\end{equation*}
$$

for each $E \in \mathcal{F}$. Define

$$
Q_{n}:=\left\{x \in \Omega: f(x) \geq g(x)+\frac{1}{n}\right\}
$$

for each $n \in \mathbb{N}$. Then since $f-g$ is measurable, we have that

$$
Q_{n}=(f-g)^{-1}([1 / n, \infty]) \in \mathcal{F}
$$

for each $n \in \mathbb{N}$. Now

$$
\int_{Q_{n}} f d \mu \geq \int_{Q_{n}} g+\frac{1}{n} d \mu=\int_{Q_{n}} g d \mu+\frac{1}{n} \mu\left(Q_{n}\right)
$$

Hence by our assumption (1) and since the integrals of f and g over Q_{n} are finite,

$$
0 \leq \frac{1}{n} \mu\left(Q_{n}\right) \leq \int_{Q_{n}} f d \mu-\int_{Q_{n}} g d \mu \leq 0
$$

Hence $\mu\left(Q_{n}\right)=0$. Therefore

$$
\{x \in \Omega: f(x)>g(x)\}=\cup_{n \in \mathbb{N}} Q_{n}
$$

has μ-measure 0 by subadditivity of μ. Hence $f \leq g$ almost everywhere.
Problem 2: Construct a sequence of sequence of non-negative measurable functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ on \mathbb{R} so that

$$
\int \liminf _{n \rightarrow \infty} f_{n} d m<\liminf _{n \rightarrow \infty} \int f_{n} d m
$$

Solution:

Define $f_{n}:=n \mathbf{1}_{\left(0, \frac{1}{n}\right]}$. Then $\lim _{n \rightarrow \infty} f_{n}=0$, but $\int_{\mathbb{R}} f_{n}=1$ for each n.
Problem 3: Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $f: \Omega \longrightarrow \mathbb{R}$ be a non-negative measurable function.
(1) Show that

$$
s_{n}:=\sum_{k=0}^{2^{2 n}} \frac{k}{2^{n}} \mathbf{1}_{f^{-1}\left(\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right)}, \quad n \in \mathbb{N}
$$

pointwise converges to f.
(2) Therefore show

$$
\begin{equation*}
\int f d \mu= \tag{2}
\end{equation*}
$$

$\sup \left\{\sum_{i=1}^{k} a_{i} \mu\left(f^{-1}\left(\left[a_{i}, b_{i}\right]\right)\right): k \in \mathbb{N},\left[a_{1}, b_{1}\right], \cdots,\left[a_{k}, b_{k}\right]\right.$ disjoint intervals in $\left.\mathbb{R}\right\}$.

Solution:

(a) If $x \in f^{-1}\left(\left[\frac{2 k}{2^{n+1}}, \frac{2 k+1}{2^{n+1}}\right)\right)$ for some $k \in\left\{0, \cdots, 2^{2 n}\right\}$, then $s_{n}(x)=s_{n+1}(x)=$ $\frac{k}{2^{n}}$. If $x \in f^{-1}\left(\left[\frac{2 k+1}{2^{n+1}}, \frac{2 k+2}{2^{n+1}}\right)\right)$ for some $k \in\left\{0, \cdots, 2^{2 n}\right\}$, then $s_{n}(x)=\frac{2 k}{2^{n+1}}$ and $s_{n+1}(x)=\frac{2 k+1}{2^{n+1}}$ and hence $s_{n}(x)<s_{n+1}(x)$. Hence $s_{n} \leq s_{n+1}$ for each $n \in \mathbb{N}$.
If $x \in f^{-1}\left(\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right)$ for some $k \in\left\{0, \cdots, 2^{2 n}\right\}$, then $s_{n}(x)=\frac{k}{2^{n}}$ and $f(x) \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$. Therefore $0 \leq f(x)-s_{n}(x)<\frac{1}{2^{n}}$ for each $x \in \Omega$ and each $n \geq \log _{2}(f(x))$. Hence for each $\epsilon>0,\left|f(x)-s_{n}(x)\right|<\epsilon$ for each $n>\max \left(\log _{2}\left(\frac{1}{\epsilon}\right), \log _{2}(f(x))\right.$. Therefore for each $x \in \Omega,\left(s_{n}(x)\right)_{n \in \mathbb{N}}$ is a non-decreasing sequence converging to $f(x)$. Hence s_{n} pointwise converges to f.
(b) Let P be the right hand side of Equation (2). Since

$$
\sum_{i=1}^{k} a_{i} \mu\left(f^{-1}\left(\left[a_{i}, b_{i}\right]\right)\right)=\int \sum_{i=1}^{k} a_{i} \mathbf{1}_{f^{-1}\left(\left[a_{i}, b_{i}\right]\right)}
$$

and since $\sum_{i=1}^{k} a_{i} \mathbf{1}_{f^{-1}\left(\left[a_{i}, b_{i}\right]\right)} \leq f$, we get that $\int f d \mu \geq P$.

Now define

Then $s_{n, m}$ pointwise converges to s_{n} as $m \rightarrow \infty$. Also $s_{n, m} \leq s_{n, m+1}$ for each $n, m \in \mathbb{N}$ and hence by the monotone convergence theorem

$$
\begin{gathered}
\int s_{n} d \mu=\int \lim _{m \rightarrow \infty} s_{n, m} d \mu=\lim _{m \rightarrow \infty} \int s_{n, m} d \mu \\
\lim _{m \rightarrow \infty} \sum_{k=0}^{2^{2^{n}}} \frac{k}{2^{n}} \mu\left(f^{-1}\left(\left[\frac{k}{2^{n}}, \frac{k+1-\frac{1}{m}}{2^{n}}\right]\right)\right) \leq P
\end{gathered}
$$

Hence $\lim _{n \rightarrow \infty} \int s_{n} d \mu \leq P$. By the monotone convergence theorem and by (a),

$$
\int f d \mu=\int \lim _{n \rightarrow \infty} s_{n} d \mu=\lim _{n \rightarrow \infty} \int s_{n} d \mu \leq P
$$

Hence Equation (2) holds.
Problem 4: Let $f: \mathbb{R} \longrightarrow \overline{\mathbb{R}}$ be a non-negative measurable function satisfying $\int f d m<\infty$. Define

$$
F:[0, \infty) \longrightarrow \mathbb{R}, \quad F(x):=\int f \mathbf{1}_{[0, x]} d m
$$

Show that F is continuous.
(Hint: Prove this in the case when f is bounded first, and then look at the general case).

Solution (without using dominated convergence theorem): For $x, y \geq$ 0 satisfying $x \leq y$, we have

$$
F(y)=\int f \mathbf{1}_{[0, y]} d m=\int f \mathbf{1}_{[0, x]} d m+\int f \mathbf{1}_{(x, y]} d m
$$

and hence

$$
\begin{equation*}
F(y)-F(x)=\int f \mathbf{1}_{(x, y]} d m \tag{3}
\end{equation*}
$$

Now let $x \in[0, \infty)$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of non-negative real numbers converging to x. Define $I_{n}:=\left(x, x_{n}\right]$ if $x_{n} \geq x$ and $I_{n}:=\left(x_{n}, x\right]$ if $x_{n}<x$ for each $n \in \mathbb{N}$. Define $I_{n}^{\prime}:=I_{n}-\{x\}$ for each $n \in \mathbb{N}$. Then by Equation (5),

$$
\begin{equation*}
\left|F(x)-F\left(x_{n}\right)\right|=\int f \mathbf{1}_{I_{n}} d m=\int f \mathbf{1}_{I_{n}^{\prime}} \tag{4}
\end{equation*}
$$

since $f \mathbf{1}_{I_{n}}=f \mathbf{1}_{I_{n}^{\prime}}$ almost everywhere. Define $f_{n}:=f-f \mathbf{1}_{I_{n}^{\prime}}$ for each $n \in \mathbb{N}$. Then

$$
\int f d m=\int f_{n}+f \mathbf{1}_{I_{n}^{\prime}} d m=\int f_{n} d m+\int f \mathbf{1}_{I_{n}^{\prime}} d m
$$

for each $n \in \mathbb{N}$. Hence

$$
\int f \mathbf{1}_{I_{n}^{\prime}} d m=\int f d m-\int f_{n} d m
$$

for each $n \in \mathbb{N}$. Therefore since f_{n} is a non-decreasing sequence of non-negative functions pointwise converging to f and $\int f d m<\infty$, we have:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int f \mathbf{1}_{I_{n}^{\prime}} d m=\lim _{n \rightarrow \infty}\left(\int f d m-\int f_{n} d m\right)=\int f d m-\lim _{n \rightarrow \infty} \int f_{n} d m \\
=\int f d m-\int \lim _{n \rightarrow \infty} f_{n} d m=\int f d m-\int f d m=0
\end{gathered}
$$

by the monotone convergence theorem. Hence by Equation (6),

$$
\lim _{n \rightarrow \infty}\left|F(x)-F\left(x_{n}\right)\right|=\lim _{n \rightarrow \infty} \int f \mathbf{1}_{I_{n}^{\prime}} d m=0
$$

Therefore F is continuous.
Solution (using dominated convergence theorem): For $x, y \geq 0$ satisfying $x \leq y$, we have

$$
F(y)=\int f \mathbf{1}_{[0, y]} d m=\int f \mathbf{1}_{[0, x]} d m+\int f \mathbf{1}_{(x, y]} d m
$$

and hence

$$
\begin{equation*}
F(y)-F(x)=\int f \mathbf{1}_{(x, y]} d m \tag{5}
\end{equation*}
$$

Now let $x \in[0, \infty)$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of non-negative real numbers converging to x. Define $I_{n}:=\left(x, x_{n}\right]$ if $x_{n} \geq x$ and $I_{n}:=\left(x_{n}, x\right]$ if $x_{n}<x$ for each $n \in \mathbb{N}$. Define $I_{n}^{\prime}:=I_{n}-\{x\}$ for each $n \in \mathbb{N}$. Then by Equation (5),

$$
\begin{equation*}
\left|F(x)-F\left(x_{n}\right)\right|=\int f \mathbf{1}_{I_{n}} d m=\int f \mathbf{1}_{I_{n}^{\prime}} \tag{6}
\end{equation*}
$$

since $f \boldsymbol{1}_{I_{n}}=f \boldsymbol{1}_{I_{n}^{\prime}}$ almost everywhere. Now $\left|f \boldsymbol{1}_{I_{n}^{\prime}}\right| \leq|f|$ and hence by the dominated convergence theorem

$$
\lim _{n \rightarrow \infty}\left|F(x)-F\left(x_{n}\right)\right|=\lim _{n \rightarrow \infty} \int f \mathbf{1}_{I_{n}^{\prime}} d m=\int \lim _{n \rightarrow \infty} f \mathbf{1}_{I_{n}^{\prime}} d m=0
$$

Therefore F is continuous.

