Homework 10 Solutions

Due: Thursday December 6th at 10:00am in Physics P-124

Please write your solutions legibly; the TA may disregard solutions that are not readily readable. All solutions must be stapled (no paper clips) and have your name (first name first) and HW number in the upper-right corner of the first page.

Problem 1: Suppose X and Y are random variables on some probability space (Ω, \mathcal{F}, P) with joint density

$$
f_{(X, Y)}: \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad f_{(X, Y)}= \begin{cases}\frac{3}{4}+x y & \text { if }(x, y) \in(0,1)^{2} \\ 0 & \text { otherwise } .\end{cases}
$$

Compute
(a) $P\left(X<Y, Y<\frac{1}{2}\right)$.
(b) $P(X \in(0,1 / 2) \mid Y \in(1 / 2,3 / 4))$.
(c) The density function $f_{(X \mid Y \in(0,1 / 2))}$ of the random variable $(X \mid Y \in(0,1 / 2))$.

Solution:

(a) $P\left(X<Y, Y<\frac{1}{2}\right)=\int_{\left\{(x, y) \in \mathbb{R}^{2}: x<y, y<\frac{1}{2}\right\}} f_{(X, Y)} d m^{2}=$

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}} \int_{0}^{y} \frac{3}{4}+x y d x d y & =\int_{0}^{\frac{1}{2}} \frac{3}{4} y+\frac{y^{3}}{2} d y= \\
\frac{3}{32}+\frac{1}{128} & =\frac{13}{128}
\end{aligned}
$$

(b) $P(X \in(0,1 / 2) \mid Y \in(1 / 2,3 / 4))=\frac{P(X \in(1 / 2), Y \in(1 / 2,3 / 4)}{P(Y \in(1 / 2,3 / 4))}$. Now

$$
\begin{aligned}
P(Y \in(1 / 2,3 / 4)) & =\int_{1 / 2}^{3 / 4} \int_{0}^{1} \frac{3}{4}+x y d x d y=\int_{1 / 2}^{3 / 4} \frac{3}{4}+\frac{y}{2} d y \\
& =\frac{3}{16}+\frac{9}{64}-\frac{1}{16}=\frac{17}{64}
\end{aligned}
$$

Also

$$
\begin{gathered}
P(X \in(0,1 / 2), Y \in(1 / 2,3 / 4))=\int_{1 / 2}^{3 / 4} \int_{0}^{1 / 2} \frac{3}{4}+x y d x d y= \\
\int_{1 / 2}^{3 / 4} \frac{3}{8}+\frac{y}{8} d x d y=\frac{3}{32}+\frac{9}{256}-\frac{1}{64}=\frac{29}{256}
\end{gathered}
$$

So

$$
P(X \in(0,1 / 2) \mid Y \in(1 / 2,3 / 4))=\frac{29 / 256}{17 / 64}=\frac{29}{68}
$$

(c) The conditional density function is equal to

$$
f_{(X \mid Y \in(0,1 / 2))}: \mathbb{R} \longrightarrow \overline{\mathbb{R}}, \quad f_{(X \mid Y \in(0,1 / 2))}(x)=\frac{\int_{0}^{\frac{1}{2}} f_{(X, Y)}(x, y) d y}{P(Y \in(0,1 / 2))}
$$

Now

$$
\begin{gathered}
P(Y \in(0,1 / 2))=\int_{0}^{1 / 2} \int_{0}^{1} \frac{3}{4}+x y d x d y=\int_{0}^{1 / 2} \frac{3}{4}+\frac{y}{2} d x d y \\
=\frac{3}{8}+\frac{1}{16}=\frac{7}{16}
\end{gathered}
$$

Also

$$
\int_{0}^{\frac{1}{2}} f_{(X, Y)}(x, y) d y=\int_{0}^{\frac{1}{2}} \frac{3}{4}+x y d y=\frac{3+x}{8}
$$

if $x \in(0,1)$. This integral is 0 if $x \notin(0,1)$. Hence

$$
f_{(X \mid Y \in(0,1 / 2))}(x)=\left\{\begin{array}{ll}
\frac{16}{7}\left(\frac{3+x}{8}\right) & \text { if } x \in(0,1) \\
0 & \text { otherwise }
\end{array}= \begin{cases}\frac{6+2 x}{7} & \text { if } x \in(0,1) \\
0 & \text { otherwise }\end{cases}\right.
$$

For Problems 2,3,4 below we need the following two definitions.
Definition: Let \mathcal{F} be a σ-field and let μ, ν be measures on \mathcal{F}. We say that ν is absolutely continuous with respect to μ if for each $N \in \mathcal{F}$ satisfying $\mu(N)=0$, we have $\nu(N)=0$. We write $\nu \ll \mu$ if ν is absolutely continuous with respect to μ.

Definition: Let \mathcal{F} be a σ-field and let ν_{1} and ν_{2} on be measures on \mathcal{F}. We write $\nu_{1} \perp \nu_{2}$ if there are elements $E_{1}, E_{2} \in \mathcal{F}$ satisfying $E_{1} \cap E_{2}=\emptyset$ and

$$
\nu_{j}(E)=\nu_{j}\left(E \cap E_{j}\right), \quad \forall E \in \mathcal{F}, j=1,2 .
$$

Problem 2: Let \mathcal{F} be a σ-field on a set Ω. Let μ, ν_{1}, ν_{2} be measures on \mathcal{F}. Show that
(a) if $\nu_{1}, \nu_{2} \ll \mu$ then $\nu_{1}+\nu_{2} \ll \mu$,
(b) if $\nu_{1}, \nu_{2} \perp \mu$ then $\left(\nu_{1}+\nu_{2}\right) \perp \mu$
(c) and if $\nu_{1} \ll \mu$ and $\nu_{2} \perp \mu$ then $\nu_{1} \perp \nu_{2}$.

Solution:

(a) Let $N \in \mathcal{F}$ satisfy $\mu(N)=0$. Then $\nu_{1}(N)=\nu_{2}(N)=0$ by definition. Hence

$$
\left(\nu_{1}+\nu_{2}\right)(N)=\nu_{1}(N)+\nu_{2}(N)=0+0=0
$$

Therefore $\nu_{1}+\nu_{2} \ll \mu$.
(b) Suppose $\nu_{1}, \nu_{2} \perp \mu$. Then, by definition, there are elements $M_{1}, M_{2}, N_{1}, N_{2} \in$ \mathcal{F} satisfying

$$
M_{1} \cap N_{1}=M_{2} \cap N_{2}=\emptyset
$$

and

$$
\begin{gathered}
\mu(E)=\mu\left(E \cap M_{1}\right)=\mu\left(E \cap M_{2}\right), \forall E \in \mathcal{F} \\
\nu_{1}(E)=\nu_{1}\left(E \cap N_{1}\right), \nu_{2}(E)=\nu_{2}\left(E \cap N_{2}\right), \forall E \in \mathcal{F} .
\end{gathered}
$$

Hence

$$
\mu(E)=\mu\left(E \cap M_{1}\right)=\mu\left(E \cap\left(M_{1} \cap M_{2}\right)\right) \forall E \in \mathcal{F}
$$

Also

$$
\begin{gathered}
\left(\nu_{1}+\nu_{2}\right)(E)=\nu_{1}(E)+\nu_{2}(E)=\nu_{1}\left(E \cap N_{1}\right)+\nu_{2}\left(E \cap N_{2}\right) \\
\leq \nu_{1}\left(E \cap\left(N_{1} \cup N_{2}\right)\right)+\nu_{2}\left(E \cap\left(N_{1} \cup N_{2}\right)\right)
\end{gathered}
$$

for each $E \in \mathcal{F}$. Since $E \cap\left(N_{1} \cup N_{2}\right) \subset E$, we get

$$
\left(\nu_{1}+\nu_{2}\right)(E) \geq \nu_{1}\left(E \cap\left(N_{1} \cup N_{2}\right)\right)+\nu_{2}\left(E \cap\left(N_{1} \cup N_{2}\right)\right)
$$

and hence

$$
\left(\nu_{1}+\nu_{2}\right)(E)=\nu_{1}\left(E \cap\left(N_{1} \cup N_{2}\right)\right)+\nu_{2}\left(E \cap\left(N_{1} \cup N_{2}\right)\right)
$$

for each $E \in \mathcal{F}$. Finally $\left(M_{1} \cap M_{2}\right) \cap\left(N_{1} \cup N_{2}\right)=\emptyset$. Hence $\nu_{1}+\nu_{2} \perp \mu$.
(c) Suppose $\nu_{1} \ll \mu$ and $\nu_{2} \perp \mu$. Then, by definition, there exists $N, M \in \mathcal{F}$ satisfying $N \cap M=\emptyset$ and

$$
\nu_{2}(E)=\nu_{2}(E \cap N), \mu(E)=\mu(E \cap M), \forall E \in \mathcal{F}
$$

Since $\mu(E)=\mu(E \cap M)$, we get that $\mu(E)=0$ for each $E \in \mathcal{F}$ satisfying $E \subset M^{c}$. Hence $\nu_{1}(E)=0$ for each $E \in \mathcal{F}$ satisfying $E \subset M^{c}$. Hence $\nu_{1}(E)=\nu_{1}\left(E \cap M^{c}\right)+\nu_{1}(E \cap M)=\nu_{1}(E \cap M)$. Since $N \cap M=\emptyset$, we get $\nu_{1} \perp \nu_{2}$.

Problem 3: Let \mathcal{M} be the set of Lebesgue measurable sets in \mathbb{R} and let m be the standard Lebesgue measure. Define

$$
\mu: \mathcal{M} \longrightarrow[0, \infty], \quad \mu(E):=m(E)+\sum_{n \in \mathbb{Z} \cap E} 2^{-n}
$$

and

$$
\nu: \mathcal{M} \longrightarrow[0, \infty], \quad \nu(E):=m(E)+\sum_{n \in \mathbb{N} \cap E} n^{2}
$$

(a) Show that $\nu \ll \mu$.
(b) Show that μ is not absolutely continuous with respect to ν.
(c) Find a measurable function

$$
h: \mathbb{R} \longrightarrow[0, \infty]
$$

so that

$$
\nu(E)=\int_{E} h d \mu, \quad \forall E \in \mathcal{M} .
$$

Solution:

(a) Suppose $\mu(E)=0$. Then $m(E)+\sum_{n \in \mathbb{Z} \cap E} 2^{-n}=0$. Hence $m(E)=0$ and $\mathbb{Z} \cap E=\emptyset$. Therefore $\mathbb{N} \cap E=\emptyset$. Hence

$$
\nu(E)=m(E)+\sum_{n \in \mathbb{N} \cap E}=0+\sum_{n \in \emptyset} n^{2}=0 .
$$

Hence $\nu \ll \mu$.
(b) Let $E=\{-1\} \in \mathcal{M}$. Then

$$
\mu(E)=m(\{-1\})+2^{-(-1)}=0+2=2 .
$$

However $\nu(E)=m(E)=0$. Therefore μ is not absolutely continuous with respect to ν.
(c) Define

$$
h: \mathbb{R} \longrightarrow \mathbb{R}, \quad h(x)= \begin{cases}\frac{n^{2}}{2^{-n}} & \text { if } n \in \mathbb{N} \\ 0 & \text { if } n \in \mathbb{Z}-\mathbb{N} \\ 1 & \text { otherwise }\end{cases}
$$

and

$$
h_{k}: \mathbb{R} \longrightarrow \mathbb{R}, \quad h_{k}(x)= \begin{cases}\frac{n^{2}}{2^{-n}} & \text { if } n \in \mathbb{N}, n \leq k \\ 0 & \text { if } n \in \mathbb{Z}, n \notin[0, k] \\ 1 & \text { otherwise }\end{cases}
$$

Then h_{k} is a simple function for each $k \in \mathbb{N}$ and $h=\lim _{k \rightarrow \infty} h_{k}$.
Let $E \in \mathcal{M}$. Then since h_{k} is simple for each $k \in \mathbb{N}$, we have by the monotone convergence theorem

$$
\begin{aligned}
\int_{E} h d \mu & =\lim _{k \rightarrow \infty} \int_{E} h_{k} d \mu=\lim _{k \rightarrow \infty}\left(m(E-\mathbb{Z})+\sum_{n \in \mathbb{N} \cap E \cap[0, k]} h(n) 2^{-n}\right) \\
& =m(E)+\sum_{n \in \mathbb{N} \cap E} \frac{n^{2}}{2^{-n}} 2^{-n}=m(E)+\sum_{n \in \mathbb{N} \cap E} n^{2}=\nu(E) .
\end{aligned}
$$

Hence $h=\frac{d \nu}{d \mu}$ and so

$$
\frac{d \nu}{d \mu}= \begin{cases}\frac{n^{2}}{2^{-n}} & \text { if } n \in \mathbb{N} \\ 0 & \text { if } n \in \mathbb{Z}-\mathbb{N} \\ 1 & \text { otherwise }\end{cases}
$$

Problem 4: Given an example of measures ν, μ on \mathcal{M} satisfying the property $\nu \ll \mu$ but not satisfying

$$
\forall \epsilon>0, \exists \delta>0 \text { so that } \forall E \in \mathcal{F}, \mu(E)<\delta \quad \Longrightarrow \quad \nu(E)<\epsilon
$$

Solution: Let $\mathcal{M} \subset 2^{\mathbb{R}}$ be the set of Lebesgue measurable sets and let

$$
m: \mathcal{M} \longrightarrow[0, \infty]
$$

be the usual Lebesgue measure. Define

$$
h: \mathbb{R} \longrightarrow \mathbb{R}, \quad h(x)=x^{2}
$$

Define

$$
m_{h}: \mathcal{M} \longrightarrow[0, \infty], \quad m_{h}(E):=\int_{E} h d m .
$$

This is a measure. Also if $m(E)=0$, we have $m_{h}(E)=\int_{E} h d m=0$ since E is null and hence $m_{h} \ll m$. However, define

$$
E_{n}:=\left[n, n+\frac{1}{n}\right] .
$$

Then $m\left(E_{n}\right)=l\left(E_{n}\right)=\frac{1}{n}$. But

$$
m_{h}\left(E_{n}\right)=\int_{n}^{n+\frac{1}{n}} x^{2} d m=\left[\frac{x^{3}}{3}\right]_{n}^{n+\frac{1}{n}}=\frac{1}{3}\left(\left(n+\frac{1}{n}\right)^{3}-n^{3}\right) \geq \frac{1}{3}
$$

Hence for each $\delta>0$, we have $m\left(E_{n}\right)<\delta$ for each $n>\frac{1}{\delta}$ and $m_{h}\left(E_{n}\right) \geq \frac{1}{3}$.

