Homework 9 Solutions

Due: Thursday November 29th at 10:00am in Physics P-124
Please write your solutions legibly; the TA may disregard solutions that are not readily readable. All solutions must be stapled (no paper clips) and have your name (first name first) and $H W$ number in the upper-right corner of the first page.

Problem 1: Compute

$$
\int f d(m \times m)
$$

where

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad f(x, y):=e^{-|x|-|y|}
$$

Show your working.
Solution: By Fubini's theorem,

$$
\int_{\mathbb{R} \times \mathbb{R}} f d(m \times m)=\int_{\mathbb{R}} \phi_{f} d m
$$

where

$$
\phi_{f}: \mathbb{R} \longrightarrow \mathbb{R}, \quad \phi_{f}(x):=\int_{\mathbb{R}} f_{x} d m
$$

and

$$
f_{x}: \mathbb{R} \longrightarrow \mathbb{R}, f_{x}(y):=f(x, y)
$$

Now $\int_{\mathbb{R}} f_{x} d m=e^{-|x|} \int_{-\infty}^{\infty} e^{-|y|} d y=e^{-|x|} 2 \int_{0}^{\infty} e^{-y} d y=2 e^{-|x|}$. Hence

$$
\int_{\mathbb{R} \times \mathbb{R}} f d(m \times m)=\int_{\mathbb{R}} 2 e^{-|x|} d m=4
$$

Problem 2: Let Ω be a set and 2^{Ω} the set of subsets of Ω.
Definition: An outer measure is a function $\mu^{*}: 2^{\Omega} \longrightarrow[0, \infty]$ satisfying
(a) $\mu^{*}(\emptyset)=0$.
(b) $\mu^{*}(A) \leq \mu^{*}(B)$ for all $A, B \in 2^{\Omega}$ satisfying $A \subset B$.
(c) $\mu^{*}\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)$ for all sequences of elements $\left(A_{i}\right)_{i=1}^{\infty}$ in 2^{Ω}.

A subset $E \subset \Omega$ is μ^{*}-measurable if

$$
\mu^{*}(A)=\mu^{*}(E \cap A)+\mu^{*}\left(E^{c} \cap A\right), \quad \forall A \subset \Omega
$$

Fix an outer measure μ^{*} on Ω and let $\mathcal{F} \subset 2^{\Omega}$ be the set of μ^{*}-measurable subsets of Ω.
(i) Show that for each $E, F \in \mathcal{F}$ and each $A \in 2^{\Omega}$,

$$
\begin{gathered}
\mu^{*}(A)=\mu^{*}(A \cap E \cap F)+\mu^{*}\left(A \cap E \cap F^{c}\right)+\mu^{*}\left(A \cap E^{c} \cap F\right)+\mu^{*}\left(A \cap E^{c} \cap F^{c}\right) \\
\geq \mu^{*}(A \cap(E \cup F))+\mu^{*}\left(A \cap(E \cup F)^{c}\right)
\end{gathered}
$$

(ii) Show that any finite union or intersection of elements of \mathcal{F} are in \mathcal{F}. Also show that $E-F \in \mathcal{F}$ for each $E, F \in \mathcal{F}$.
(iii) For any $E_{1}, \cdots, E_{n} \in \mathcal{F}$ satisfying $E_{i} \cap E_{j}=\emptyset$ for each $i \neq j$, and each $A \in 2^{\Omega}$ show that

$$
\mu^{*}\left(A \cap \cup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} \mu^{*}\left(A \cap E_{i}\right)
$$

(iv) For any sequence of elements $\left(E_{i}\right)_{i=1}^{\infty}$ in \mathcal{F} satisfying $E_{i} \cap E_{j}$ for each $i \neq j$, and each $A \in 2^{\Omega}$ show that

$$
\mu^{*}\left(A \cap\left(\cup_{i=1}^{\infty} E_{i}\right)\right)=\sum_{i=1}^{\infty} \mu^{*}\left(A \cap E_{i}\right)
$$

(v) Show that $\left(\Omega, \mathcal{F},\left.\mu\right|_{\mathcal{F}}\right)$ is a measure space (I.e. show that \mathcal{F} is a σ-field and $\left.\mu\right|_{\mathcal{F}}$ is a measure).

Solution:

(i) We have

$$
\begin{gathered}
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)= \\
\mu^{*}(A \cap E \cap F)+\mu^{*}\left(A \cap E \cap F^{c}\right)+\mu^{*}\left(A \cap E^{c} \cap F\right)+\mu^{*}\left(A \cap E^{c} \cap F^{c}\right) .
\end{gathered}
$$

Since

$$
A \cap(E \cup F)=\left(A \cap E \cap F^{c}\right) \cup(A \cap E \cap F) \cup\left(A \cap E^{c} \cap F\right)
$$

and since $A \cap(E \cup F)^{c}=A \cap E^{c} \cap F^{c}$, we have by (c) that

$$
\begin{aligned}
\mu^{*}(A \cap E \cap F) & +\mu^{*}\left(A \cap E \cap F^{c}\right)+\mu^{*}\left(A \cap E^{c} \cap F\right)+\mu^{*}\left(A \cap E^{c} \cap F^{c}\right) \\
& \geq \mu *(A \cap(E \cup F))+\mu^{*}\left(A \cap(E \cup F)^{c}\right)
\end{aligned}
$$

(ii) By (i), we have that

$$
\mu^{*}(A) \geq m^{*}(A \cap(E \cup F))+m^{*}\left(A \cap(E \cup F)^{c}\right)
$$

for each $E, F \in \mathcal{F}$. Also by (c),

$$
\mu^{*}(A) \leq m^{*}(A \cap(E \cup F))+m^{*}\left(A \cap(E \cup F)^{c}\right)
$$

and hence

$$
\mu^{*}(A)=m^{*}(A \cap(E \cup F))+m^{*}\left(A \cap(E \cup F)^{c}\right)
$$

By induction this implies that any finite union of elements of \mathcal{F} is in \mathcal{F}.
If $E \in \mathcal{F}$ then $E^{c} \in \mathcal{F}$ because $m^{*}(A)=m^{*}(E \cap A)+m^{*}\left(E^{c} \cap A\right)=$ $m^{*}\left(E^{c} \cap A\right)+m^{*}\left(\left(E^{c}\right)^{c} \cap A\right)$ for all $A \in 2^{\Omega}$.
If $E, F \in \mathcal{F}$ then $E \cap F=\left(E^{c} \cup F^{c}\right)^{c} \in \mathcal{F}$ by previous arguments. Hence by induction any finite intersection is in \mathcal{F}.
Also if $E, F \in \mathcal{F}$ then $E-F=E \cap F^{c} \in \mathcal{F}$.
(iii) If $n=2$, then by (i) with A replaced by $A \cap\left(E_{1} \cup E_{2}\right)$ and E, F replaced with E_{1}, E_{2},

$$
\begin{gather*}
\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)= \\
\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right) \cap E_{1} \cap E_{2}\right)+\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right) \cap E_{1} \cap E_{2}^{c}\right)+ \\
\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right) \cap E_{1}^{c} \cap E_{2}\right)+\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right) \cap E_{1}^{c} \cap E_{2}^{c}\right) \\
\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{2}\right) . \tag{1}
\end{gather*}
$$

Now suppose (by induction) we have shown

$$
\mu^{*}\left(A \cap\left(\cup_{i=1}^{k-1} E_{i}\right)\right)=\sum_{i=1}^{k-1} \mu^{*}\left(A \cap E_{i}\right)
$$

for some $k>2$. Then by Equation (1) with E_{1} replaced by $\cup_{i=1}^{k-1} E_{i}$ and E_{2} replaced with E_{k}, we have

$$
\begin{aligned}
& \mu^{*}\left(A \cap\left(\cup_{i=1}^{k} E_{i}\right)\right)=\mu^{*}\left(A \cap\left(\cup_{i=1}^{k-1} E_{i}\right)\right)+\mu^{*}\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k-1} \mu^{*}\left(A \cap E_{i}\right)+\mu^{*}\left(A \cap E_{k}\right)=\sum_{i=1}^{k} \mu^{*}\left(A \cap E_{i}\right) .
\end{aligned}
$$

(iv) By (b) and (iii),

$$
\mu^{*}\left(A \cap\left(\cup_{i=1}^{\infty} E_{i}\right)\right) \geq \mu^{*}\left(A \cap\left(\cup_{i=1}^{n} E_{i}\right)\right)=\sum_{i=1}^{n} \mu^{*}\left(A \cap E_{i}\right)
$$

for each $n \in \mathbb{N}$. Taking the limit as n goes to infinity gives us:

$$
\mu^{*}\left(A \cap \cup_{i=1}^{n} E_{i}\right) \geq \sum_{i=1}^{n} \mu^{*}\left(A \cap E_{i}\right)
$$

The inequality

$$
\mu^{*}\left(A \cap \cup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A \cap E_{i}\right)
$$

follows from (c). Hence

$$
\mu^{*}\left(A \cap \cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu^{*}\left(A \cap E_{i}\right)
$$

(v) We will first show that \mathcal{F} is a σ-field.
(α) Let $A \in 2^{\Omega}$. Then by (a), $m^{*}(A)=m^{*}(\Omega \cap A)+m^{*}(A \cap \emptyset)=$ $m^{*}(\Omega \cap A)+m^{*}\left(A \cap \Omega^{c}\right)$ and hence $\Omega \in \mathcal{F}$.
(β) If $E \in \mathcal{F}$ then $E^{c} \in \mathcal{F}$ by (ii).
(γ) Suppose $\left(A_{i}\right)_{i=1}^{\infty}$ are elements of \mathcal{F} and let $A \in 2^{\Omega}$. Define $A_{i}^{\prime}:=$ $A_{i}-\cup_{j=1}^{i-1} A_{j}$ for each $i \in \mathbb{N}$. Define $B:=\Omega-\cup_{i=1}^{\infty} A_{i}$. Then

$$
\mu^{*}(A)=\mu^{*}\left(A \cap\left(B \cup \bigcup_{i=1}^{\infty} A_{i}^{\prime}\right)\right) \stackrel{(i v)}{=} \mu^{*}(A \cap B)+\sum_{i=1}^{\infty} \mu^{*}\left(A \cap A_{i}^{\prime}\right)
$$

$\stackrel{(c)}{\geq} \mu^{*}(A \cap B)+\mu^{*}\left(A \cap\left(\cup_{i=1}^{\infty} A_{i}^{\prime}\right)\right)=\mu^{*}\left(A \cap\left(\cup_{i=1}^{\infty} A_{i}\right)\right)+\mu^{*}\left(A \cap\left(\cup_{i=1}^{\infty} A_{i}\right)^{c}\right)$.
Hence $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
Therefore \mathcal{F} is a σ-field. Also $\mu:=\left.\mu^{*}\right|_{\mathcal{F}}$ is additive on countable unions of disjoint sets by (iv). Hence $\left(\Omega, \mathcal{F},\left.\mu\right|_{\mathcal{F}}\right)$ is a measure space.

Problem 3: Let $(\Omega, \mathcal{F}, \mu),\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mu^{\prime}\right)$ be σ-finite measure spaces. Let $\sigma\left(\mathcal{F} \times \mathcal{F}^{\prime}\right)$ be the smallest σ-field containing all sets of the form $A \times B, A \in \mathcal{F}, B \in \mathcal{F}^{\prime}$. Let ν be a measure on $\sigma\left(\mathcal{F} \times \mathcal{F}^{\prime}\right)$ satisfying

$$
\nu(A \times B)=\mu(A) \mu^{\prime}(B), \quad \forall A \in \mathcal{F}, B \in \mathcal{F}^{\prime}
$$

Show that ν is equal to the product measure $\mu \times \mu^{\prime}$.
Solution: Since $(\Omega, \mathcal{F}, \mu),\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mu^{\prime}\right)$ are σ-finite, there is a sequence of measure rectangles $\left(R_{i}\right)_{i \in \mathbb{N}}$ in $\sigma\left(\mathcal{F} \times \mathcal{F}^{\prime}\right)$ satisfying

$$
R_{i} \subset R_{i+1}, \quad\left(\mu \times \mu^{\prime}\right)\left(R_{i}\right)<\infty, \forall i \in \mathbb{N}, \quad \cup_{i \in \mathbb{N}} R_{i}=\Omega \times \Omega^{\prime}
$$

Let
$\mathcal{G}:=\left\{E \in \sigma\left(\mathcal{F} \times \mathcal{F}^{\prime}\right): \nu\left(E \cap R_{i}\right)=\left(\mu \times \mu^{\prime}\right)\left(E \cap R_{i}\right)\right.$, for each $\left.i \in \mathbb{N}\right\}$.
We first need to show that \mathcal{G} is a σ-field containing all measure rectangles. Since $\left(\Omega \times \Omega^{\prime}\right) \cap R_{i}$ is a measure rectangle for each $i \in \mathbb{N}$, we have that $\Omega \times \Omega^{\prime} \in \mathcal{G}$. Now let $E \in \mathcal{G}$. Then since $\nu\left(R_{i}\right)=\left(\mu \times \mu^{\prime}\right)\left(R_{i}\right)$ is finite for each $i \in \mathbb{N}$,

$$
\begin{gathered}
\nu\left(E^{c} \cap R_{i}\right)=\nu\left(R_{i}\right)-\nu\left(E \cap R_{i}\right)= \\
\left(\mu \times \mu^{\prime}\right)\left(R_{i}\right)-\left(\mu \times \mu^{\prime}\right)\left(E \cap R_{i}\right)=\left(\mu \times \mu^{\prime}\right)\left(E^{c} \cap R_{i}\right)
\end{gathered}
$$

for each $i \in \mathbb{N}$. Hence $E^{c} \in \mathcal{G}$. If $\left(E_{i}\right)_{i \in \mathbb{N}}$ are elements of \mathcal{G} then

$$
\begin{gathered}
\nu\left(\cup_{j \in \mathbb{N}} E_{j} \cap R_{i}\right)=\lim _{j \rightarrow \infty} \nu\left(\cup_{k=1}^{j} E_{k} \cap R_{i}\right)=\lim _{j \rightarrow \infty}\left(\mu \times \mu^{\prime}\right)\left(\cup_{k=1}^{j} E_{k} \cap R_{i}\right)= \\
\left(\mu \times \mu^{\prime}\right)\left(\cup_{j \in \mathbb{N}} E_{j} \cap R_{i}\right)
\end{gathered}
$$

for each $i \in \mathbb{N}$ and hence $\cup_{j=1}^{\infty} E_{j} \in \mathcal{G}$. Therefore \mathcal{G} is a σ-algebra containing all measure rectangles and hence $\mathcal{G} \supset \sigma\left(\mathcal{F} \times \mathcal{F}^{\prime}\right)$. Hence

$$
\nu\left(E \cap R_{i}\right)=\left(\mu \times \mu^{\prime}\right)\left(E \cap R_{i}\right)
$$

for each $E \in \sigma\left(\mathcal{F} \times \mathcal{F}^{\prime}\right)$ and each $i \in \mathbb{N}$. Hence

$$
\nu(E)=\lim _{i \rightarrow \infty} \nu\left(E \cap R_{i}\right)=\lim _{i \rightarrow \infty}\left(\mu \times \mu^{\prime}\right)\left(E \cap R_{i}\right)=\left(\mu \times \mu^{\prime}\right)(E)
$$

for each $E \in \sigma\left(\mathcal{F} \times \mathcal{F}^{\prime}\right)$.

Problem 4: Definition: A cuboid in \mathbb{R}^{n} is a product $C=\prod_{j=1}^{n} I_{j} \subset \mathbb{R}^{n}$ where I_{1}, \cdots, I_{n} are intervals in \mathbb{R}. The volume $\operatorname{Vol}(C)$ of C is the product $\prod_{j=1}^{n} l\left(I_{j}\right)$ where $l\left(I_{j}\right)$ is the length of the interval I_{j} for each j.

Define

$$
m^{*}: 2^{\mathbb{R}^{n}} \longrightarrow[0, \infty]
$$

$m^{*}(E):=\inf \left\{\sum_{i=1}^{\infty} \operatorname{Vol}\left(C_{i}\right):\left(C_{i}\right)_{i \in \mathbb{N}}\right.$ are cuboids satisfying $\left.E \subset \cup_{i=1}^{\infty} C_{i}\right\}$.
Let \mathcal{M}^{n} be the product σ-field $\sigma(\mathcal{M} \times \cdots \times \mathcal{M})$ on \mathbb{R}^{n} and we let $m^{n}=m \times \cdots m$ be the product measure on \mathcal{M}^{n}..
(i) Show that m^{*} is an outer measure as in Problem 2.
(ii) Show that $m^{n}(E) \leq m^{*}(E)$ for each $E \in \mathcal{M}^{n}$.
(iii) Show that $m^{n}(E)=m^{*}(E)$ for each measure rectangle E.
(iv) Show that $m^{n}\left(\cup_{i=1}^{\infty} E_{i}\right)=m^{*}\left(\cup_{i=1}^{\infty} E_{i}\right)$ for any collection $\left(E_{i}\right)_{i=1}^{\infty}$ of measure rectangles satisfying $E_{i} \cap E_{j}=\emptyset$.
(v) Show that $E \subset 2^{\mathbb{R}^{n}}$ is m^{*}-measurable if and only if

$$
m^{*}(C)=m^{*}(E \cap C)+m^{*}\left(E^{c} \cap C\right)
$$

for all cuboids C.
(vi) Show that every measure rectangle is m^{*}-measurable.
(vii) Therefore show that every element of \mathcal{N}^{n} is m^{*}-measurable and hence show that the measure spaces $\left(\mathbb{R}^{n}, \mathcal{M}^{n}, m^{n}\right)$ and $\left(\mathbb{R}^{n}, \mathcal{\mathcal { N } ^ { n }},\left.m^{*}\right|_{\mathcal{M}^{n}}\right)$ coincide.

Solution:

(i) First of all $m^{*}(\emptyset)=0$ since the empty set admits a countable cuboid cover consisting of empty cuboids which all have volume 0 . Let $A \subset B$ then for any cuboid cover $\left(C_{i}\right)_{i \in \mathbb{N}}$ of B is a cuboid cover of A. Hence $m^{*}(A) \leq$ $\sup _{i=1}^{\infty} \operatorname{Vol}\left(C_{i}\right)$. Taking the infimum of all such cuboid covers of B gives us $m^{*}(A) \leq m^{*}(B)$.
Finally, suppose $\left(A_{i}\right)_{i \in \mathbb{N}}$ are subsets of \mathbb{R}^{n}. Let $\epsilon>0$. Let $\left(C_{i, j}\right)_{j \in \mathbb{N}}$ be a cuboid cover of A_{i} for each $i \in \mathbb{N}$ satisfying

$$
m^{*}\left(A_{i}\right)+\frac{\epsilon}{2^{i+1}} \geq \sum_{j=1}^{\infty} \operatorname{Vol}\left(C_{i, j}\right)
$$

for each $i \in \mathbb{N}$. Then $\left(C_{i, j}\right)_{i, j \in \mathbb{N}}$ is a cuboid cover of $\cup_{i=1}^{\infty} A_{i}$. Hence

$$
m^{*}\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \operatorname{Vol}\left(C_{i, j}\right) \leq \sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)+\frac{\epsilon}{2^{i+1}}=\epsilon+\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)
$$

Since this holds for all $\epsilon>0$, we have $m^{*}\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)$. Hence m^{*} is an outer measure.
(ii) Suppose $\left(C_{i}\right)_{i \in \mathbb{N}}$ is a cuboid covering of E. Then

$$
\mathbf{1}_{E} \leq \sum_{i=1}^{\infty} \mathbf{1}_{C_{i}}
$$

and hence

$$
\begin{aligned}
m^{n}(E) & =\int \mathbf{1}_{E} d m \leq \int \sum_{i=1}^{\infty} \mathbf{1}_{C_{i}} d m \stackrel{M C T}{=} \\
\sum_{i=1}^{\infty} \int \mathbf{1}_{C_{i}} d m^{n} & =\sum_{i=1}^{\infty} \operatorname{Vol}\left(C_{i}\right)
\end{aligned}
$$

Hence taking the infimum of $\sum_{i=1}^{\infty} \operatorname{Vol}\left(C_{i}\right)$ over all such cuboid coverings $\left(C_{i}\right)_{i \in \mathbb{N}}$ gives us

$$
m^{n}(E) \leq m^{*}(E)
$$

(iii) By (ii), it is sufficient to show that $m^{n}(E)(1+\epsilon)^{n} \geq m^{*}(E)$ for each measure rectangle $E=\prod_{i=1}^{n} E_{i}, E_{1}, \cdots, E_{n} \in \mathcal{M}$ and each $\epsilon>0$. Fix such E and ϵ. Choose an interval cover $\left(I_{i, j}\right)_{j=1}^{\infty}$ of E_{i} so that

$$
\sum_{j=1}^{\infty} l\left(I_{i, j}\right)<m\left(E_{i}\right)(1+\epsilon)
$$

for each $i=1, \cdots, n$. Then $\left(\prod_{i=1}^{n} I_{i, j_{i}}\right)_{j_{1}, \cdots, j_{n} \in \mathbb{N}}$ is a cuboid covering of E and

$$
\begin{gathered}
\sum_{j_{1}, \cdots, j_{n} \in \mathbb{N}} \operatorname{Vol}\left(\prod_{i=1}^{n} I_{i, j_{i}}\right)=\sum_{j_{1}, \cdots, j_{n} \in \mathbb{N}} \prod_{i=1}^{n} l\left(I_{i, j_{i}}\right) \\
=\prod_{i=1}^{n}\left(\sum_{j=1}^{\infty} l\left(I_{i, j}\right)\right)<\prod_{i=1}^{n}\left(m\left(E_{i}\right)(1+\epsilon)\right)=m(E)(1+\epsilon)^{n} .
\end{gathered}
$$

(iv)

$$
m^{n}\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} m^{n}\left(E_{i}\right) \stackrel{(i i i)}{=} \sum_{i=1}^{\infty} m^{*}\left(E_{i}\right) \geq m^{*}\left(\cup_{i=1}^{\infty} E_{i}\right)
$$

Also $m^{n}\left(\cup_{i=1}^{\infty} E_{i}\right) \leq m^{*}\left(\cup_{i=1}^{\infty} E_{i}\right)$ by (ii). Hence $m^{n}\left(\cup_{i=1}^{\infty} E_{i}\right)=m^{*}\left(\cup_{i=1}^{\infty} E_{i}\right)$.
(v) If E is measurable then

$$
m^{*}(C)=m^{*}(E \cap C)+m^{*}\left(E^{c} \cap C\right)
$$

holds for each cuboid C by definition.
Now suppose that

$$
m^{*}(C)=m^{*}(E \cap C)+m^{*}\left(E^{c} \cap C\right)
$$

for every cuboid C. We wish to show that E is measurable. Let $A \subset \mathbb{R}$ be any subset. Since m^{*} is an outer measure, it is sufficient to show that

$$
\begin{equation*}
m^{*}(E \cap A)+m^{*}\left(A \cap E^{c}\right) \leq m^{*}(A)+\epsilon \tag{2}
\end{equation*}
$$

for each $\epsilon>0$. Therefore, fix $\epsilon>0$. Choose an countable cuboid covering $\left(C_{i}\right)_{i \in \mathbb{N}}$ of A so that $\sum_{i \in \mathbb{N}} \operatorname{Vol}\left(C_{i}\right)<m^{*}(A)+\epsilon$. Now

$$
\begin{aligned}
& m^{*}(A)+\epsilon>\sum_{i=1}^{\infty} \operatorname{Vol}\left(C_{i}\right) \stackrel{(i i i)}{=} \sum_{i=1}^{\infty} m^{*}\left(C_{i}\right)= \\
& \sum_{i=1}^{\infty}\left(m^{*}\left(E \cap C_{i}\right)+m^{*}\left(E^{c} \cap C_{i}\right)\right)= \\
& \sum_{i=1}^{\infty} m^{*}\left(E \cap C_{i}\right)+\sum_{i=1}^{\infty} m^{*}\left(E^{c} \cap C_{i}\right) \geq \\
& m^{*}\left(\cup_{i \in \mathbb{N}}\left(E \cap C_{i}\right)\right)+m^{*}\left(\cup_{i \in \mathbb{N}}\left(E^{c} \cap C_{i}\right)\right. \\
& \geq m^{*}\left(E \cap\left(\cup_{i \in \mathbb{N}} C_{i}\right)\right)+m^{*}\left(E^{c} \cap\left(\cup_{i \in \mathbb{N}} C_{i}\right)\right) \\
& \geq m^{*}(E \cap A)+m^{*}\left(E^{c} \cap A\right) .
\end{aligned}
$$

Hence Equation (2) holds and we are done.
(vi) Let C be a cuboid and let E be a measure rectangle. Then $E \cap C$ is a measure rectangle and $E^{c} \cap C$ is a disjoint union of 2^{n-1} measure rectangles. Hence $m^{n}(C)=m^{*}(C), m^{n}(E \cap C)=m^{*}(E \cap C)$ and $m^{n}\left(E^{c} \cap C\right)=$ $m^{*}\left(E^{c} \cap C\right)$ by (iv). Therefore
$m^{*}(C)=m^{n}(C)=m^{n}(E \cap C)+m^{n}\left(E^{c} \cap C\right)=m^{*}(E \cap C)+m^{*}\left(E^{c} \cap C\right)$.
Hence E is m^{*}-measurable by (v).
(vii) Let \mathcal{F} be the set of m^{*}-measurable sets. Then \mathcal{F} is a σ-field by Problem 2 and induction on n. Also \mathcal{F} contains all measure rectangles by (vi). Therefore $\mathcal{N}^{n} \subset \mathcal{F}$. Hence every element of \mathcal{N}^{n} is m^{*}-measurable.
Now \mathbb{R}^{n} is an increasing union of measure rectangles in \mathcal{M}^{n} of finite m^{n} measure and m^{*}-measure. Hence $\left(\mathbb{R}^{n}, \mathcal{M}^{n}, m^{n}\right)$ and $\left(\mathbb{R}^{n}, \mathcal{M}^{n},\left.m^{*}\right|_{\mathcal{M}^{n}}\right)$ are σ-finite measure spaces. Therefore since m^{n} and m^{*} agree on the subset of measure rectangles in \mathcal{M}^{n}, we have by Problem 3 and induction on n that $m^{n}=\left.m^{*}\right|_{\mathcal{M}^{n}}$. Hence

$$
\left(\mathbb{R}^{n}, \mathcal{M}^{n}, m^{n}\right)=\left(\mathbb{R}^{n}, \mathcal{M}^{n},\left.m^{*}\right|_{\mathcal{M}^{n}}\right)
$$

