
Homework 8 Solutions

Due: Thursday November 15th at 10:00am in Physics P-124

Please write your solutions legibly; the TA may disregard solutions that are not readily
readable. All solutions must be stapled (no paper clips) and have your name (first name
first) and HW number in the upper-right corner of the first page.

Throughout this problem set, (R,M,m) is the usual Lebesgue measure on R and
(R2, σ(M×M),m×m) is the product measure. For each E ∈ σ(M×M), we have

(m×m)(E) :=

∫
R
φ dm =

∫
R
ψ dm

where

φ : R −→ R, φ(x) := m(E ∩ ({x} × R))

and

ψ : R −→ R, ψ(y) := m(E ∩ (R× {y})).

Problem 1: For each p, q ∈ [1,∞) satisfying p 6= q, construct a sequence of Lebesgue mea-
surable functions

fn : R −→ R, n ∈ N
so that fn ∈

⋂
r∈[1,∞) L

r(R) and so that (fn)n∈N is a Cauchy sequence in Lp(R)

but not a Cauchy sequence in Lq(R).

Solution: We have two cases to consider.
(1) q < p.
(2) p < q.
(1) Suppose that q < p. Define

fn : R −→ R, fn(x) := x−
2

p+q1[1,n]

for each n ∈ N. This our bounded function which vanish outside a bounded
set. Hence fn ∈

⋂
r∈[1,∞) L

r(R). For each n,m ∈ N satisfying n ≤ m, we
have

‖fn − fm‖p =

(∫
|fn − fm|p dm

) 1
p

=

(∫ m

n

x−
2p
p+q dm

) 1
p

([(
q − p
p+ q

)
x

q−p
p+q

]m
n

) 1
p

=

((
q − p
p+ q

)
m

q−p
p+q −

(
q − p
p+ q

)
n

q−p
p+q

) 1
p

≤
((

p− q
p+ q

)
n

q−p
p+q .

) 1
p

1



2

This tends to 0 as n → ∞ since q−p
p+q

< 0 and hence (fn)n∈N is Cauchy in

Lp(R). Also for each n,m ∈ N satisfying m
p−q
p+q > 2n

p−q
p+q , we have

‖fn − fm‖q =

(∫
|fn − fm|q dm

) 1
q

=

(∫ m

n

x−
2q
p+q dm

) 1
q

([(
p− q
p+ q

)
x

p−q
p+q

]m
n

) 1
q

=

((
p− q
p+ q

)
m

p−q
p+q −

(
p− q
p+ q

)
n

p−q
p+q

) 1
q

≥
((

p− q
p+ q

)
n

p−q
p+q

) 1
q

which tends to ∞ as n → ∞ since p−q
p+q

> 0. Hence (fn)n∈N is not Cauchy

in Lq(R).
(2) Now suppose that p < q. Define

fn : R −→ R, fn(x) := x−
2

p+q1[ 1
n
,1]

for each n ∈ N. This our bounded function which vanish outside a bounded
set. Hence fn ∈

⋂
r∈[1,∞) L

r(R). For each n,m ∈ N satisfying n ≤ m, we
have

‖fn − fm‖p =

(∫
|fn − fm|p dm

) 1
p

=

(∫ 1
n

1
m

x−
2p
p+q dm

) 1
p

([(
q − p
p+ q

)
x

q−p
p+q

] 1
n

1
m

) 1
p

=

((
q − p
p+ q

)(
1

n

) q−p
p+q

−
(
q − p
p+ q

)(
1

m

) q−p
p+q

) 1
p

≤
((

q − p
p+ q

)
n

p−q
p+q

) 1
p

.

This tends to 0 as n → ∞ since p−q
p+q

< 0 and hence (fn)n∈N is Cauchy in

Lp(R). Also for each n,m ∈ N satisfying m
q−p
p+q > 2n

q−p
p+q , we have

‖fn − fm‖q =

(∫
|fn − fm|q dm

) 1
q

=

(∫ 1
n

1
m

x−
2q
p+q dm

) 1
q

([(
p− q
p+ q

)
x

p−q
p+q

] 1
n

1
m

) 1
q

=

((
p− q
p+ q

)(
1

n

) p−q
p+q

−
(
p− q
p+ q

)(
1

m

) p−q
p+q

) 1
q

=

((
q − p
p+ q

)
m

q−p
p+q −

(
q − p
p+ q

)
n

q−p
p+q

) 1
q

≥
((

q − p
p+ q

)
n

q−p
p+q

) 1
q

which tends to ∞ as n → ∞ since p−q
p+q

> 0. Hence (fn)n∈N is not Cauchy

in Lq(R).
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Problem 2: Let (In)n∈N and (I ′n)n∈N be a sequence of intervals in R and let E ∈ σ(M×M).
Suppose E ⊂ ∪n∈NIn × I ′n. Show that

(m×m)(E) ≤
∞∑
n=1

m(In)m(I ′n).

Solution: Define

f : R2 −→ R, f =
∞∑
n=1

1In×I′n ,

g : R2 −→ R, g := 1∪n∈NIn×I′n
and

h : R2 −→ R, h := 1E.

Then since E ⊂ ∪n∈NIn × I ′n, we have

h ≤ g ≤ f.

Hence

(m×m)(E) =

∫
h d(m×m) ≤

∫
h d(m×m). (1)

Also by the monotone convergence theorem,∫
h d(m×m) = lim

n→∞

∫ n∑
k=1

1Ik×I′k d(m×m)

= lim
n→∞

n∑
k=1

(m×m)(Ik × I ′k) =
∞∑
n=1

n∑
k=1

(m×m)(In × I ′n)

=
∞∑
n=1

∫
m(I ′n)1In dm =

∞∑
n=1

m(In)m(I ′n).

Therefore by Equation (1),

(m×m)(E) ≤
∞∑
n=1

m(In)m(I ′n).

Problem 3: Show that any continuous function f : R2 −→ R is m×m-measurable.

Solution: We need to show that the preimage of any interval is measurable.
Since any interval is a countably infinite intersection of open intervals it is
sufficient to show that the preimage of an open set is measurable. Since f is
continuous, the preimage of an open set is open. And hence it is sufficient to
show that any open subset of R2 is contained in M ×M. Let O ⊂ R2 be an
open set. Then O is a union of products (a, b) × (c, d) of open intervals whose
closure is contained in O. After enlarging these intervals slightly, we can assume
that the endpoints of these intervals a, b, c, d are rational. Since Q4 is countable,
we then have that O is a countable union of products of open intervals. Since



4

open intervals are measurable we get that O is a countable union of measure
rectangles and hence O ∈M×M.

Problem 4: Let E ∈ σ(M ×M). Show that for each ε > 0 there is an open set O ⊂ R2

containing E satisfying (m×m)(O) ≤ (m×m)(E) + ε.

You may assume that open subsets of R2 are in σ(M×M).

Solution: We wish to show:

∀ ε > 0 there exists an open set O ⊂ R2 s.t. (m×m)(O) ≤ (m×m)(E) + ε. (2)

We will prove this in stages.
(a) When E is a measure rectangle.
(b) When E is a union ∪n∈NEn of elements of σ(M×M) satisfying En ⊂ En+1

for each n ∈ N and satisfying (2) with E replaced by En.
(c) When E is an intersection ∩n∈NEn of elements of σ(M × M) satisfying

(m × m)(En) < ∞, En ⊃ En+1 and (2) with E replaced by En for each
n ∈ N.

(d) The general case.

(a) Suppose E = A×B for some A,B ∈M and (m×m)(E) = m(A)m(B) <∞.

Let ε > 0. Define ε′ := min(
√
ε/3, ε/3, ε

3m(A)
, ε
3m(B)

). Choose interval covers

(I ′n)n∈N of A and (J ′n)n∈N of B satisfying
∞∑
n=1

l(I ′n) < m(A) + ε′/2

and
∞∑
n=1

l(J ′n) < m(B) + ε′/2.

Let an ≤ bn be the endpoints of I ′n and cn ≤ dn the endpoints of J ′n. Define

In := (an − ε′/2n, bn + ε′/2n), Jn := (cn − ε′/2n, dn + ε′/2n)

for each n ∈ N. Define O := ∪n,m∈NIn× Im. Since O is a union of products
of open intervals, we get that O is open. Also

(m×m)(O) ≤
∞∑

n,m=1

l(In)l(Im) =

(
∞∑
n=1

l(In)

)(
∞∑
n=1

l(Jn)

)
≤ m(A)m(B) +m(A)ε′ + ε′m(B) + (ε′)2

≤ m(E) + ε/3 + ε/3 + ε/3 = m(E) + ε.

(b) Suppose E, En is as in (b) above. Let ε > 0. Choose an open set On

containing En so that (m × m)(On) < m(En) + ε. Define O := ∪n∈NOn.
Then

(m×m)(O) = lim
n→∞

(m×m)(On) ≤ lim
n→∞

(m×m)(En) + ε = (m×m)(E) + ε.
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(c) Suppose E, En is as in (c). Let ε > 0. Choose an open set On containing
En so that (m×m)(On) < m(En) + ε. Then since (m×m)(On) <∞,

(m×m)(O) = lim
n→∞

(m×m)(On) ≤ lim
n→∞

(m×m)(En) + ε = (m×m)(E) + ε.

(d) Define
Mk := {E ∈ σ(M×M) : E ⊂ [−k, k]2}

for each k ∈ N. Let σ(Mk ×Mk) be the corresponding product σ-field on
[−k, k]2. Let Qk ⊂ σ(Mk × Mk) be the set of subsets E satisfying (2).
Then by (a), (b), Qk contains elementary sets and by (b) and (c), Qk is
a monotone class. Hence Qk = σ(Mk × Mk) for each k ∈ N. Now let
E ∈ σ(M ×M) and let ε > 0. Define Ek := E ∩ [−k, k]2 ∈ σ(Mk ×Mk).
Then since Ek ∈ Qk, there exists an open subset O′k ⊂ R2 containing E
satisfying (m × m)(Ok) ≤ (m × m)(Ek) + ε/2k for each k ∈ N. Define
O′k := ∪ki=1Ok. Define O := ∪k∈NOk. Then

(m×m)(Ok) ≤ (m×m)(Ek) + ε

(
k∑
i=1

2−i

)
≤ (m×m)(Ek) + ε.

Hence
(m×m)(O) = lim

k→∞
(m×m)(Ok)

≤ lim
k→∞

(m×m)(Ek) + ε = (m×m)(E) + ε.


