Homework 8 Solutions

Due: Thursday November 15th at 10:00am in Physics P-124

Please write your solutions legibly; the TA may disregard solutions that are not readily readable. All solutions must be stapled (no paper clips) and have your name (first name first) and $H W$ number in the upper-right corner of the first page.

Throughout this problem set, $(\mathbb{R}, \mathcal{M}, m)$ is the usual Lebesgue measure on \mathbb{R} and $\left(\mathbb{R}^{2}, \sigma(\mathcal{M} \times \mathcal{M}), m \times m\right)$ is the product measure. For each $E \in \sigma(\mathcal{M} \times \mathcal{M})$, we have

$$
(m \times m)(E):=\int_{\mathbb{R}} \phi d m=\int_{\mathbb{R}} \psi d m
$$

where

$$
\phi: \mathbb{R} \longrightarrow \overline{\mathbb{R}}, \phi(x):=m(E \cap(\{x\} \times \mathbb{R}))
$$

and

$$
\psi: \mathbb{R} \longrightarrow \overline{\mathbb{R}}, \psi(y):=m(E \cap(\mathbb{R} \times\{y\}))
$$

Problem 1: For each $p, q \in[1, \infty)$ satisfying $p \neq q$, construct a sequence of Lebesgue measurable functions

$$
f_{n}: \mathbb{R} \longrightarrow \mathbb{R}, n \in \mathbb{N}
$$

so that $f_{n} \in \bigcap_{r \in[1, \infty)} L^{r}(\mathbb{R})$ and so that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{p}(\mathbb{R})$ but not a Cauchy sequence in $L^{q}(\mathbb{R})$.

Solution: We have two cases to consider.
(1) $q<p$.
(2) $p<q$.
(1) Suppose that $q<p$. Define

$$
f_{n}: \mathbb{R} \longrightarrow \mathbb{R}, \quad f_{n}(x):=x^{-\frac{2}{p+q}} \mathbf{1}_{[1, n]}
$$

for each $n \in \mathbb{N}$. This our bounded function which vanish outside a bounded set. Hence $f_{n} \in \bigcap_{r \in[1, \infty)} L^{r}(\mathbb{R})$. For each $n, m \in \mathbb{N}$ satisfying $n \leq m$, we have

$$
\begin{gathered}
\left\|f_{n}-f_{m}\right\|_{p}=\left(\int\left|f_{n}-f_{m}\right|^{p} d m\right)^{\frac{1}{p}}=\left(\int_{n}^{m} x^{-\frac{2 p}{p+q}} d m\right)^{\frac{1}{p}} \\
\left(\left[\left(\frac{q-p}{p+q}\right) x^{\frac{q-p}{p+q}}\right]_{n}^{m}\right)^{\frac{1}{p}}=\left(\left(\frac{q-p}{p+q}\right) m^{\frac{q-p}{p+q}}-\left(\frac{q-p}{p+q}\right) n^{\frac{q-p}{p+q}}\right)^{\frac{1}{p}} \\
\leq\left(\left(\frac{p-q}{p+q}\right) n^{\frac{q-p}{p+q}}\right)^{\frac{1}{p}}
\end{gathered}
$$

This tends to 0 as $n \rightarrow \infty$ since $\frac{q-p}{p+q}<0$ and hence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in $L^{p}(\mathbb{R})$. Also for each $n, m \in \mathbb{N}$ satisfying $m^{\frac{p-q}{p+q}}>2 n^{\frac{p-q}{p+q}}$, we have

$$
\begin{gathered}
\left\|f_{n}-f_{m}\right\|_{q}=\left(\int\left|f_{n}-f_{m}\right|^{q} d m\right)^{\frac{1}{q}}=\left(\int_{n}^{m} x^{-\frac{2 q}{p+q}} d m\right)^{\frac{1}{q}} \\
\left(\left[\left(\frac{p-q}{p+q}\right) x^{\frac{p-q}{p+q}}\right]_{n}^{m}\right)^{\frac{1}{q}}=\left(\left(\frac{p-q}{p+q}\right) m^{\frac{p-q}{p+q}}-\left(\frac{p-q}{p+q}\right) n^{\frac{p-q}{p+q}}\right)^{\frac{1}{q}} \\
\geq\left(\left(\frac{p-q}{p+q}\right) n^{\frac{p-q}{p+q}}\right)^{\frac{1}{q}}
\end{gathered}
$$

which tends to ∞ as $n \rightarrow \infty$ since $\frac{p-q}{p+q}>0$. Hence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is not Cauchy in $L^{q}(\mathbb{R})$.
(2) Now suppose that $p<q$. Define

$$
f_{n}: \mathbb{R} \longrightarrow \mathbb{R}, \quad f_{n}(x):=x^{-\frac{2}{p+q}} \mathbf{1}_{\left[\frac{1}{n}, 1\right]}
$$

for each $n \in \mathbb{N}$. This our bounded function which vanish outside a bounded set. Hence $f_{n} \in \bigcap_{r \in[1, \infty)} L^{r}(\mathbb{R})$. For each $n, m \in \mathbb{N}$ satisfying $n \leq m$, we have

$$
\begin{gathered}
\left\|f_{n}-f_{m}\right\|_{p}=\left(\int\left|f_{n}-f_{m}\right|^{p} d m\right)^{\frac{1}{p}}=\left(\int_{\frac{1}{m}}^{\frac{1}{n}} x^{-\frac{2 p}{p+q}} d m\right)^{\frac{1}{p}} \\
\left(\left[\left(\frac{q-p}{p+q}\right) x^{\frac{q-p}{p+q}}\right]_{\frac{1}{m}}^{\frac{1}{n}}\right)^{\frac{1}{p}} \\
=\left(\left(\frac{q-p}{p+q}\right)\left(\frac{1}{n}\right)^{\frac{q-p}{p+q}}-\left(\frac{q-p}{p+q}\right)\left(\frac{1}{m}\right)^{\frac{q-p}{p+q}}\right)^{\frac{1}{p}} \\
\leq\left(\left(\frac{q-p}{p+q}\right) n^{\frac{p-q}{p+q}}\right)^{\frac{1}{p}}
\end{gathered}
$$

This tends to 0 as $n \rightarrow \infty$ since $\frac{p-q}{p+q}<0$ and hence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in $L^{p}(\mathbb{R})$. Also for each $n, m \in \mathbb{N}$ satisfying $m^{\frac{q-p}{p+q}}>2 n^{\frac{q-p}{p+q}}$, we have

$$
\begin{gathered}
\left\|f_{n}-f_{m}\right\|_{q}=\left(\int\left|f_{n}-f_{m}\right|^{q} d m\right)^{\frac{1}{q}}=\left(\int_{\frac{1}{m}}^{\frac{1}{n}} x^{-\frac{2 q}{p+q}} d m\right)^{\frac{1}{q}} \\
\left(\left[\left(\frac{p-q}{p+q}\right) x^{\frac{p-q}{p+q}}\right]_{\frac{1}{m}}^{\frac{1}{n}}\right)^{\frac{1}{q}}=\left(\left(\frac{p-q}{p+q}\right)\left(\frac{1}{n}\right)^{\frac{p-q}{p+q}}-\left(\frac{p-q}{p+q}\right)\left(\frac{1}{m}\right)^{\frac{p-q}{p+q}}\right)^{\frac{1}{q}} \\
=\left(\left(\frac{q-p}{p+q}\right) m^{\frac{q-p}{p+q}}-\left(\frac{q-p}{p+q}\right) n^{\frac{q-p}{p+q}}\right)^{\frac{1}{q}} \geq\left(\left(\frac{q-p}{p+q}\right) n^{\frac{q-p}{p+q}}\right)^{\frac{1}{q}}
\end{gathered}
$$

which tends to ∞ as $n \rightarrow \infty$ since $\frac{p-q}{p+q}>0$. Hence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is not Cauchy in $L^{q}(\mathbb{R})$.

Problem 2: Let $\left(I_{n}\right)_{n \in \mathbb{N}}$ and $\left(I_{n}^{\prime}\right)_{n \in \mathbb{N}}$ be a sequence of intervals in \mathbb{R} and let $E \in \sigma(\mathcal{M} \times \mathcal{M})$. Suppose $E \subset \cup_{n \in \mathbb{N}} I_{n} \times I_{n}^{\prime}$. Show that

$$
(m \times m)(E) \leq \sum_{n=1}^{\infty} m\left(I_{n}\right) m\left(I_{n}^{\prime}\right)
$$

Solution: Define

$$
\begin{aligned}
& f: \mathbb{R}^{2} \longrightarrow \overline{\mathbb{R}}, \quad f=\sum_{n=1}^{\infty} \mathbf{1}_{I_{n} \times I_{n}^{\prime}}, \\
& g: \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad g:=\mathbf{1}_{\cup_{n \in \mathbb{N}} I_{n} \times I_{n}^{\prime}}
\end{aligned}
$$

and

$$
h: \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad h:=\mathbf{1}_{E}
$$

Then since $E \subset \cup_{n \in \mathbb{N}} I_{n} \times I_{n}^{\prime}$, we have

$$
h \leq g \leq f
$$

Hence

$$
\begin{equation*}
(m \times m)(E)=\int h d(m \times m) \leq \int h d(m \times m) . \tag{1}
\end{equation*}
$$

Also by the monotone convergence theorem,

$$
\begin{gathered}
\int h d(m \times m)=\lim _{n \rightarrow \infty} \int \sum_{k=1}^{n} \mathbf{1}_{I_{k} \times I_{k}^{\prime}} d(m \times m) \\
=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(m \times m)\left(I_{k} \times I_{k}^{\prime}\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{n}(m \times m)\left(I_{n} \times I_{n}^{\prime}\right) \\
=\sum_{n=1}^{\infty} \int m\left(I_{n}^{\prime}\right) \mathbf{1}_{I_{n}} d m=\sum_{n=1}^{\infty} m\left(I_{n}\right) m\left(I_{n}^{\prime}\right) .
\end{gathered}
$$

Therefore by Equation (1),

$$
(m \times m)(E) \leq \sum_{n=1}^{\infty} m\left(I_{n}\right) m\left(I_{n}^{\prime}\right)
$$

Problem 3: Show that any continuous function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is $m \times m$-measurable.
Solution: We need to show that the preimage of any interval is measurable. Since any interval is a countably infinite intersection of open intervals it is sufficient to show that the preimage of an open set is measurable. Since f is continuous, the preimage of an open set is open. And hence it is sufficient to show that any open subset of \mathbb{R}^{2} is contained in $\mathcal{M} \times \mathcal{M}$. Let $O \subset \mathbb{R}^{2}$ be an open set. Then O is a union of products $(a, b) \times(c, d)$ of open intervals whose closure is contained in O. After enlarging these intervals slightly, we can assume that the endpoints of these intervals a, b, c, d are rational. Since \mathbb{Q}^{4} is countable, we then have that O is a countable union of products of open intervals. Since
open intervals are measurable we get that O is a countable union of measure rectangles and hence $O \in \mathcal{M} \times \mathcal{M}$.

Problem 4: Let $E \in \sigma(\mathcal{M} \times \mathcal{M})$. Show that for each $\epsilon>0$ there is an open set $O \subset \mathbb{R}^{2}$ containing E satisfying $(m \times m)(O) \leq(m \times m)(E)+\epsilon$.

You may assume that open subsets of \mathbb{R}^{2} are in $\sigma(\mathcal{M} \times \mathcal{M})$.
Solution: We wish to show:
$\forall \epsilon>0$ there exists an open set $O \subset \mathbb{R}^{2}$ s.t. $(m \times m)(O) \leq(m \times m)(E)+\epsilon$.
We will prove this in stages.
(a) When E is a measure rectangle.
(b) When E is a union $\cup_{n \in \mathbb{N}} E_{n}$ of elements of $\sigma(\mathcal{M} \times \mathcal{M})$ satisfying $E_{n} \subset E_{n+1}$ for each $n \in \mathbb{N}$ and satisfying (2) with E replaced by E_{n}.
(c) When E is an intersection $\cap_{n \in \mathbb{N}} E_{n}$ of elements of $\sigma(\mathcal{M} \times \mathcal{M})$ satisfying $(m \times m)\left(E_{n}\right)<\infty, E_{n} \supset E_{n+1}$ and (2) with E replaced by E_{n} for each $n \in \mathbb{N}$.
(d) The general case.
(a) Suppose $E=A \times B$ for some $A, B \in \mathcal{M}$ and $(m \times m)(E)=m(A) m(B)<\infty$. Let $\epsilon>0$. Define $\epsilon^{\prime}:=\min \left(\sqrt{\epsilon / 3}, \epsilon / 3, \frac{\epsilon}{3 m(A)}, \frac{\epsilon}{3 m(B)}\right)$. Choose interval covers $\left(I_{n}^{\prime}\right)_{n \in \mathbb{N}}$ of A and $\left(J_{n}^{\prime}\right)_{n \in \mathbb{N}}$ of B satisfying

$$
\sum_{n=1}^{\infty} l\left(I_{n}^{\prime}\right)<m(A)+\epsilon^{\prime} / 2
$$

and

$$
\sum_{n=1}^{\infty} l\left(J_{n}^{\prime}\right)<m(B)+\epsilon^{\prime} / 2 .
$$

Let $a_{n} \leq b_{n}$ be the endpoints of I_{n}^{\prime} and $c_{n} \leq d_{n}$ the endpoints of J_{n}^{\prime}. Define

$$
I_{n}:=\left(a_{n}-\epsilon^{\prime} / 2^{n}, b_{n}+\epsilon^{\prime} / 2^{n}\right), \quad J_{n}:=\left(c_{n}-\epsilon^{\prime} / 2^{n}, d_{n}+\epsilon^{\prime} / 2^{n}\right)
$$

for each $n \in \mathbb{N}$. Define $O:=\cup_{n, m \in \mathbb{N}} I_{n} \times I_{m}$. Since O is a union of products of open intervals, we get that O is open. Also

$$
\begin{gathered}
(m \times m)(O) \leq \sum_{n, m=1}^{\infty} l\left(I_{n}\right) l\left(I_{m}\right)=\left(\sum_{n=1}^{\infty} l\left(I_{n}\right)\right)\left(\sum_{n=1}^{\infty} l\left(J_{n}\right)\right) \\
\leq m(A) m(B)+m(A) \epsilon^{\prime}+\epsilon^{\prime} m(B)+\left(\epsilon^{\prime}\right)^{2} \\
\leq m(E)+\epsilon / 3+\epsilon / 3+\epsilon / 3=m(E)+\epsilon .
\end{gathered}
$$

(b) Suppose E, E_{n} is as in (b) above. Let $\epsilon>0$. Choose an open set O_{n} containing E_{n} so that $(m \times m)\left(O_{n}\right)<m\left(E_{n}\right)+\epsilon$. Define $O:=\cup_{n \in \mathbb{N}} O_{n}$. Then

$$
(m \times m)(O)=\lim _{n \rightarrow \infty}(m \times m)\left(O_{n}\right) \leq \lim _{n \rightarrow \infty}(m \times m)\left(E_{n}\right)+\epsilon=(m \times m)(E)+\epsilon
$$

(c) Suppose E, E_{n} is as in (c). Let $\epsilon>0$. Choose an open set O_{n} containing E_{n} so that $(m \times m)\left(O_{n}\right)<m\left(E_{n}\right)+\epsilon$. Then since $(m \times m)\left(O_{n}\right)<\infty$, $(m \times m)(O)=\lim _{n \rightarrow \infty}(m \times m)\left(O_{n}\right) \leq \lim _{n \rightarrow \infty}(m \times m)\left(E_{n}\right)+\epsilon=(m \times m)(E)+\epsilon$.
(d) Define

$$
\mathcal{M}_{k}:=\left\{E \in \sigma(\mathcal{M} \times \mathcal{M}): E \subset[-k, k]^{2}\right\}
$$

for each $k \in \mathbb{N}$. Let $\sigma\left(\mathcal{M}_{k} \times \mathcal{M}_{k}\right)$ be the corresponding product σ-field on $[-k, k]^{2}$. Let $Q_{k} \subset \sigma\left(\mathcal{M}_{k} \times \mathcal{M}_{k}\right)$ be the set of subsets E satisfying (2). Then by (a), (b), Q_{k} contains elementary sets and by (b) and (c), Q_{k} is a monotone class. Hence $Q_{k}=\sigma\left(\mathcal{M}_{k} \times \mathcal{M}_{k}\right)$ for each $k \in \mathbb{N}$. Now let $E \in \sigma(\mathcal{M} \times \mathcal{M})$ and let $\epsilon>0$. Define $E_{k}:=E \cap[-k, k]^{2} \in \sigma\left(\mathcal{M}_{k} \times \mathcal{M}_{k}\right)$. Then since $E_{k} \in Q_{k}$, there exists an open subset $O_{k}^{\prime} \subset \mathbb{R}^{2}$ containing E satisfying $(m \times m)\left(O_{k}\right) \leq(m \times m)\left(E_{k}\right)+\epsilon / 2^{k}$ for each $k \in \mathbb{N}$. Define $O_{k}^{\prime}:=\cup_{i=1}^{k} O_{k}$. Define $O:=\cup_{k \in \mathbb{N}} O_{k}$. Then
$(m \times m)\left(O_{k}\right) \leq(m \times m)\left(E_{k}\right)+\epsilon\left(\sum_{i=1}^{k} 2^{-i}\right) \leq(m \times m)\left(E_{k}\right)+\epsilon$.
Hence

$$
\begin{gathered}
(m \times m)(O)=\lim _{k \rightarrow \infty}(m \times m)\left(O_{k}\right) \\
\leq \lim _{k \rightarrow \infty}(m \times m)\left(E_{k}\right)+\epsilon=(m \times m)(E)+\epsilon
\end{gathered}
$$

