Homework 7 Solutions

Due: Thursday November 8th at 10:00am in Physics P-124
Please write your solutions legibly; the TA may disregard solutions that are not readily readable. All solutions must be stapled (no paper clips) and have your name (first name first) and $H W$ number in the upper-right corner of the first page.

Problem 1: Definition: A subset $K \subset V$ of a vector space V is convex if for each $p_{1}, p_{2} \in K$, we have that $t p_{1}+(1-t) p_{2} \in K$ for each $t \in[0,1]$ (I.e. the line joining p_{1} and p_{2} is contained in $\left.K\right)$.

Let $(V,\langle\rangle$,$) be a Hilbert space and let K \subset V$ be a closed convex subset. Let $x \in V$. Show that there exists a unique point $p \in K$ satisfying

$$
\|x-p\| \leq \inf \left\{\left\|p^{\prime}-x\right\|: p^{\prime} \in K\right\}
$$

Hint: we proved this statement when K was a subspace.
Solution: Let $L=\inf \left\{\left\|p^{\prime}-x\right\|: p^{\prime} \in K\right\}$. Choose a sequence $\left(p_{j}\right)_{n \in \mathbb{N}}$, so that $\left\|p_{n}-x\right\|$ converges to L as n tends to infinity. Then by the parallelogram identity, we have

$$
\begin{aligned}
& \left\|p_{n}-p_{m}\right\|^{2}=\left\|\left(p_{n}-x\right)-\left(p_{m}-x\right)\right\|^{2}=2\left\|\left(p_{n}-x\right)\right\|^{2}+2\left\|p_{m}-x\right\|^{2}-\left\|p_{n}-x+p_{m}-x\right\|^{2} \\
& =2\left\|\left(p_{n}-x\right)\right\|^{2}+2\left\|p_{m}-x\right\|^{2}-4\left\|\frac{1}{2}\left(p_{n}+p_{m}\right)-x\right\|^{2} \leq 2\left\|\left(p_{n}-x\right)\right\|^{2}+2\left\|p_{m}-x\right\|^{2}-4 L^{2} \rightarrow 0
\end{aligned}
$$ as $n, m \rightarrow \infty$. Hence $\left(p_{n}\right)_{n \in \mathbb{N}}$ is Cauchy. Therefore there exists a point $p \in V$ so that $p_{n} \rightarrow p \in V$ as $n \rightarrow \infty$. Since K is closed, $p \in K$. Also $\|p-x\|=$ $\lim _{n \rightarrow \infty}\left\|p_{n}-x\right\|=L$.

We now need to show that p is unique. Suppose $p^{\prime} \in K$ also satisfies $\left\|p^{\prime}-x\right\|=$ L. Then by the parallelogram identity,

$$
\begin{aligned}
& \left\|p-p^{\prime}\right\|^{2}=\left\|(p-x)-\left(p^{\prime}-x\right)\right\|^{2}=2\|(p-x)\|^{2}+2\left\|p^{\prime}-x\right\|^{2}-\left\|p-x+p^{\prime}-x\right\|^{2} \\
& =2\|(p-x)\|^{2}+2\left\|p^{\prime}-x\right\|^{2}-4\left\|\frac{1}{2}\left(p+p^{\prime}\right)-x\right\|^{2} \leq 2\|(p-x)\|^{2}+2\left\|p^{\prime}-x\right\|^{2}-4 L^{2}=0 \\
& \text { Hence } p=p^{\prime} .
\end{aligned}
$$

Problem 2: For which $p \in[1, \infty]$ is the sequence

$$
f_{n}: \mathbb{R} \longrightarrow \mathbb{R}, \quad f_{n}(x)=x^{-\frac{1}{3}} \mathbf{1}_{\left[n, n^{4}\right]}, \quad n \in \mathbb{N}
$$

a Cauchy sequence in $L^{p}(\mathbb{R}, \mathcal{M}, m)$?
Solution: For $p<\infty$ satisfying $p \neq 3$ and each $n \leq m$, we have

$$
\left\|f_{n}-f_{m}\right\|_{p}=\left(\int_{n}^{\min \left\{n^{4}, m\right\}} x^{-\frac{p}{3}} d x+\int_{\max \left\{n^{4}, m\right\}}^{m^{4}} x^{-\frac{p}{3}} d x\right)^{\frac{1}{p}}=
$$

$$
\begin{gathered}
\left(\left[\frac{x^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}\right]_{n}^{\min \left\{n^{4}, m\right\}}+\left[\frac{x^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}\right]_{\max \left\{n^{4}, m\right\}}^{m^{4}}\right)^{\frac{1}{p}}= \\
\left(\frac{\left(\min \left\{n^{4}, m\right\}\right)^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}-\frac{n^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}+\frac{\left(m^{4}\right)^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}-\frac{\left(\max \left\{n^{4}, m\right\}\right)^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}\right)^{\frac{1}{p}}
\end{gathered}
$$

This tends to 0 as $n, m \rightarrow \infty$ if $1-\frac{p}{3}<0$. In other words, this sequence is Cauchy if $p>3$.

If $1 \leq p<3$, then $\left(n^{3}\right)^{1-\frac{p}{3}}$ tends to infinity as n tends to infinity. Hence if n, m are large enough so that

$$
\left(n^{3}\right)^{1-\frac{p}{3}}>1
$$

and so that $m>n^{4}$, then the above equality tells us

$$
\begin{gathered}
\left\|f_{n}-f_{m}\right\|_{p}=\left(\frac{\left(n^{4}\right)^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}-\frac{n^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}+\frac{\left(m^{4}\right)^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}-\frac{m^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}\right)^{\frac{1}{p}}= \\
\left(\frac{n^{1-\frac{p}{3}}\left(\left(n^{3}\right)^{1-\frac{p}{3}}-1\right)}{\left(1-\frac{p}{3}\right)}+\frac{m^{1-\frac{p}{3}}\left(\left(m^{3}\right)^{1-\frac{p}{3}}-1\right)}{\left(1-\frac{p}{3}\right)}\right)^{\frac{1}{p}} \\
\quad>\left(\frac{n^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}+\frac{m^{1-\frac{p}{3}}}{\left(1-\frac{p}{3}\right)}\right)^{\frac{1}{p}}
\end{gathered}
$$

which tends to infinity as n, m tends to infinity. Hence this sequence is not Cauchy.

What happens when $p=3$? Then

$$
\begin{gathered}
\left\|f_{n}-f_{m}\right\|_{p}=\left(\int_{n}^{\min \left\{n^{4}, m\right\}} x^{-\frac{p}{3}} d x+\int_{\max \left\{n^{4}, m\right\}}^{m^{4}} x^{-\frac{p}{3}} d x\right)^{\frac{1}{p}}= \\
\left([\log (x)]_{n}^{\min \left\{n^{4}, m\right\}}+[\log (x)]_{\max \left\{n^{4}, m\right\}}^{m^{4}}\right)^{\frac{1}{p}}= \\
\left.\left(\log \left(\min \left\{n^{4}, m\right\}\right)-\log (n)\right)+\log \left(m^{4}\right)-\log \left(\max \left\{n^{4}, m\right\}\right)\right)^{\frac{1}{p}}
\end{gathered}
$$

If $m \geq n^{4}$, then this is equal to

$$
(3 \log (n)+3 \log (m))^{\frac{1}{p}}
$$

which tends to infinity as n, m tend to infinity. Hence this sequence is not Cauchy.

Problem 3: For each distinct $q, p \in[1, \infty]$ show that $L^{p}(E)$ is not contained in $L^{q}(E)$ where $E=(0, \infty)$ (cases $p=\infty$ or $q=\infty$ may require separate treatment).

Solution: We have four cases:
(1) $p, q<\infty$ and $q<p$.
(2) $p, q<\infty$ and $p<q$,
(3) $p=\infty, q<\infty$,
(4) $q=\infty, p<\infty$.
(1) Suppose $p, q<\infty$ and $q<p$. Define

$$
f: E \longrightarrow \mathbb{R}, \quad f(x):=x^{-\frac{2}{p+q}} \mathbf{1}_{[1, \infty)}
$$

Then

$$
\int_{E}|f|^{p} d m=\int_{1}^{\infty} x^{-\frac{2 p}{p+q}} d m=\left[\frac{x^{-\frac{2 p}{p+q}+1}}{-\frac{2 p}{p+q}+1}\right]_{1}^{\infty}=\frac{\lim _{x \rightarrow \infty} x^{-\frac{2 p}{p+q}+1}-1}{-\frac{2 p}{p+q}+1}=\frac{-1}{-\frac{2 p}{p+q}+1} .
$$

since $-\frac{2 p}{p+q}+1<0$. However,

$$
\int_{E}|f|^{q} d m=\int_{1}^{\infty} x^{-\frac{2 q}{p+q}} d m=\left[\frac{x^{-\frac{2 q}{p+q}+1}}{-\frac{2 q}{p+q}+1}\right]_{1}^{\infty}=\frac{\lim _{x \rightarrow \infty} x^{-\frac{2 q}{p+q}+1}-1}{-\frac{2 q}{p+q}+1}=\infty
$$

since $-\frac{2 q}{p+q}+1>0$. Hence $f \in L^{p}(E)$ but not $L^{q}(E)$.
(2) Suppose $p, q<\infty$ and $p<q$. Define

$$
f: E \longrightarrow \mathbb{R}, \quad f(x):=x^{-\frac{2}{p+q}} \mathbf{1}_{(0,1]}
$$

Then

$$
\begin{gathered}
\int_{E}|f|^{p} d m=\int_{1}^{\infty} x^{-\frac{2 p}{p+q}} d m=\left[\frac{x^{-\frac{2 p}{p+q}+1}}{-\frac{2 p}{p+q}+1}\right]_{0}^{1}=\frac{1-\lim _{x \rightarrow 0^{+}} x^{-\frac{2 p}{p+q}+1}}{-\frac{2 p}{p+q}+1}=\frac{1}{-\frac{2 p}{p+q}+1} . \\
\text { since }-\frac{2 p}{p+q}+1>0 . \text { However, } \\
\int_{E}|f|^{q} d m=\int_{1}^{\infty} x^{-\frac{2 q}{p+q}} d m=\left[\frac{x^{-\frac{2 q}{p+q}+1}}{-\frac{2 q}{p+q}+1}\right]_{0}^{1}=\frac{1-\lim _{x \rightarrow 0+} x^{-\frac{2 q}{p+q}+1}}{-\frac{2 q}{p+q}+1}=\infty \\
\text { since }-\frac{2 q}{p+q}+1<0 . \text { Hence } f \in L^{p}(E) \text { but not } L^{q}(E) .
\end{gathered}
$$

(3) Now suppose $p=\infty$ and $q<\infty$. Define

$$
f: E \longrightarrow \mathbb{R}, \quad f:=\mathbf{1}_{(0, \infty)} .
$$

Then f is bounded and hence $f \in L^{p}(E)=L^{\infty}(E)$. However, $\int_{E} f^{q} d m=$ $\int_{0}^{\infty} 1 d m=\infty$ and so $f \notin L^{q}(E)$. Hence $L^{p}(E)$ is not contained in $L^{q}(E)$.
(4) Finally suppose $q=\infty$ and $p<\infty$. Define

$$
f: E \longrightarrow \mathbb{R}, \quad f(x):=x^{-\frac{1}{2 p}} \mathbf{1}_{(0,1]}
$$

Then

$$
\int_{E}|f|^{p} d m=\int_{0}^{1} \frac{1}{\sqrt{x}} d m=[2 \sqrt{x}]_{0}^{1}=1<\infty
$$

However, $\operatorname{esssup}(|f|)=\infty$ since $f^{-1}((a, \infty))=\left(0, a^{-2 p}\right)$ has positive measure for each $a>0$.

Problem 4: Definition: A subset E of a metric space (X, d) is dense if for each $\epsilon>0$ and $x \in X$, there exists $e \in E$ satisfying $d(x, e)<\epsilon$.

Show that $L^{\infty}(\mathbb{R})$ does not have a countable dense subset.
Solution: Let E be a dense subset of $L^{\infty}(\mathbb{R})$. Define $\epsilon:=\frac{1}{4}$.
Define

$$
f_{r}: \mathbb{R} \longrightarrow \mathbb{R}, \quad f_{r}:=\mathbf{1}_{(0, r)}
$$

for each $r \in(0, \infty)$. These are all elements of $L^{\infty}(\mathbb{R})$ since they are bounded measurable functions. Also $\left\|f_{r_{1}}-f_{r_{2}}\right\|_{\infty}=1$ for each distinct r_{1}, r_{2}. Hence the subset $S:=\left\{f_{r}: r \in(0, \infty)\right\} \subset L^{\infty}(\mathbb{R})$ is uncountable. Since E is dense by assumption, for each $f_{r} \in S$, there exists $e_{r} \in E$ satisfying $\left\|f_{r}-e_{r}\right\|<\epsilon$. If $e_{r_{1}}=e_{r_{2}}$ for some r_{1}, r_{2} then
$\left\|f_{r_{1}}-f_{r_{2}}\right\|_{\infty} \leq\left\|f_{r_{1}}-e_{r_{1}}\right\|_{\infty}+\left\|f_{r_{2}}-e_{r_{2}}\right\|_{\infty}+\left\|e_{r_{1}}-e_{r_{2}}\right\|_{\infty}<\frac{1}{4}+\frac{1}{4}=\epsilon$.
Hence $r_{1}=r_{2}$ since $\left\|f_{r_{1}^{\prime}}-f_{r_{2}^{\prime}}\right\|_{\infty}=1>\frac{1}{2}$ for distinct $r_{1}^{\prime}, r_{2}^{\prime}$. Therefore the map $S \longrightarrow E, \quad f_{r} \longrightarrow e_{r}$
is injective. Since S is uncountable, we get that E is uncountable. Hence $L^{\infty}(\mathbb{R})$ cannot have an uncountable dense subset.

