Homework 1

Due: Thursday September 6th at 10:00am in Physics P-124
Please write your solutions legibly; the TA may disregard solutions that are not readily readable. All solutions must be stapled (no paper clips) and have your name (first name first) and $H W$ number in the upper-right corner of the first page.

Problem 1: Is the function

$$
f:[0,1] \longrightarrow \mathbb{R}, \quad f(x):= \begin{cases}1 & \text { if } x \in\left[\frac{1}{2^{k}}, \frac{1}{2^{k-1}}\right] \text { for some odd } k \\ -1 & \text { if } x \in\left(\frac{1}{2^{k}}, \frac{1}{2^{k-1}}\right) \text { for some even } k \\ 0 & \text { if } x=0\end{cases}
$$

Riemann integrable? Justify your answer.
Problem 2: Let $f, g:[0,1] \longrightarrow \mathbb{R}$ be continuous functions. Define

$$
F:[0,1] \longrightarrow \mathbb{R}, \quad F(x):= \begin{cases}f(x) & \text { if } x \text { is rational } \\ g(x) & \text { otherwise }\end{cases}
$$

Compute the upper and lower Riemann integral of F in terms of integrals involving f and g.

Problem 3: Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function whose derivative f^{\prime} is bounded and let $A \subset \mathbb{R}$ be a null set. Show that $f(A)$ is null.

Problem 4: Let A, B be a null sets. Is it true that

$$
A+B:=\{a+b: a \in A, b \in B\}
$$

is null? If it is then prove it, otherwise give a counterexample.

