Midterm

MAT 324
October 2018

Name: (please print)		
	1 2 3 4 5 Total 20 pt 20 pt 20 pt 20 pt 20 pt 100 pts Grade	

- Use the printer paper provided.
- Start each new problem on a new sheet of paper.
- Write down the problem number on the top right of each sheet of paper.
- You can cite theorems from the lectures/textbook (unless you are told to prove them).

Problem 1 (20 PTS)
(a) Let \mathcal{F} be a σ-field on a set Ω. Write down the definition of a probability measure on \mathcal{F}.

Solution: A probability measure is a function

$$
P: \mathcal{F} \longrightarrow[0,1]
$$

satisfying $P(\Omega)=1$ and $P\left(\sqcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$ where $\left(E_{i}\right)_{i \in \mathbb{N}}$ is a pairwise disjoint collection of sets in \mathcal{F}.
(b) Describe all probability measures on the σ-field given by the set of all subsets of $\{0,1\}$.

Solution: We know $P(\Omega)=1$ and hence $P(\emptyset)=0$. Also $1=P(\Omega)=P(\{0,1\})=P(\{0\})+$ $P(\{1\})$ and hence $P(\{1\})=1-P(\{0\})$. Hence P is uniquely determined by $P(\{0\})=p$. This can take any value $p \in[0,1]$.

Hence for each $p \in[0,1]$ we have the probability measure:

$$
P_{p}: 2^{\{0,1\}} \longrightarrow[0,1], P_{p}(\emptyset)=0, P_{p}(\{0\})=p, P_{p}(\{1\})=1-p, P_{p}(\{0,1\})=1 .
$$

Problem 2 (20 PTS)

(a) Let $N \subset \mathbb{R}$ be a null set and let $m, d \in \mathbb{R}$. Show that the set

$$
\{m x+d: x \in N\}
$$

is null.
Solution: Define $N^{\prime}:=\{m x+d: x \in N\}$. Let $\epsilon>0$. Choose an interval cover $\left(I_{n}\right)_{n \in \mathbb{N}}$ of N so that

$$
\sum_{n=1}^{\infty} l\left(I_{n}\right) \leq \frac{\epsilon}{\max (|m|, 1)}
$$

Define

$$
I_{n}^{\prime}:=\left\{m x+d: x \in I_{n}\right\}
$$

for each $n \in \mathbb{N}$. Then $\left(I_{n}^{\prime}\right)_{n \in \mathbb{N}}$ is an interval cover of of N^{\prime} satisfying

$$
\sum_{n=1}^{\infty} l^{\prime}\left(I_{n}\right)=|m| \sum_{n=1}^{\infty} l\left(I_{n}\right) \leq|m| \frac{\epsilon}{\max (|m|, 1)} \leq \epsilon
$$

Hence N^{\prime} is null.
(b) Construct a null set $A \subset \mathbb{R}$ so that $A \cap I$ is uncountable for every non-empty open interval $I \subset \mathbb{R}$.

Solution: Let $C \subset \mathbb{R}$ be the Cantor set. This is an uncountable null set contained in $[0,1]$. For each $a, b \in \mathbb{Q}$ satisfying $a<b$, let

$$
C_{a, b}:=\{a+(b-a) x: x \in C\} .
$$

Then $C_{a, b}$ is null for each $a, b \in \mathbb{Q}$ satisfying $a<b$ by (a). Now define

$$
A:=\bigcup_{\substack{a, b \in \mathbb{Q} \\ a<b}} C_{a, b} .
$$

Then A is a countable union of null sets. Hence A is null. Suppose $I=(c, d)$ is an open interval where $c, d \in \mathbb{R}$ satisfies $c<d$. Choose $a, b \in \mathbb{Q}$ satisfying $a<b$ and $(a, b) \subset(c, d)$. Then $C_{a, b} \subset(a, b) \subset(c, d)$. Hence $C_{a, b} \subset A \cap(c, d)$. Also $C_{a, b}$ is uncountable since we have a bijection

$$
C \xrightarrow{\cong} C_{a, b}, \quad x \longrightarrow a x+b .
$$

Hence $A \cap I$ is uncountable for each non-empty open interval $I=(c, d)$ as above.

Problem 3 (20 PTS)

Let $m^{*}: 2^{\mathbb{R}} \longrightarrow[0, \infty]$ be the outer measure on \mathbb{R}. Define $l(I)$ to be the length of any interval I. Define

$$
\widehat{m}^{*}: 2^{\mathbb{R}} \longrightarrow[0, \infty]
$$

$\widehat{m}^{*}(A):=\inf \left\{\sum_{k=1}^{n} l\left(I_{k}\right): I_{1}, \cdots, I_{n}\right.$ are intervals satisfying $A \subset \bigcup_{k=1}^{n} I_{k}$ for some $\left.n\right\}$.
(a) Show that $\widehat{m}^{*}(C) \leq m^{*}(C)$ for any compact subset $C \subset \mathbb{R}$.

Solution: It is sufficient for us to show $\widehat{m}^{*}(C) \leq m^{*}(C)+\epsilon$ for each $\epsilon>0$. Therefore, fix $\epsilon>0$. Choose an interval cover $\left(I_{n}\right)_{n \in \mathbb{N}}$ of C satisfying

$$
\sum_{n=1}^{\infty} l\left(I_{n}\right) \leq m^{*}(C)+\epsilon / 2
$$

Let $a_{n} \leq b_{n}$ be the endpoints of I_{n} for each $n \in \mathbb{N}$. Define $I_{n}^{\prime}:=\left(a_{n}-2^{-n-1}, b_{n}+2^{-n-1}\right)$ for each $n \in \mathbb{N}$. Then $\left(I_{n}^{\prime}\right)_{n \in \mathbb{N}}$ is an open cover of C. Hence it has a finite subcover $I_{n_{1}}^{\prime}, \cdots, I_{n_{k}}^{\prime}$ since C is compact. Hence

$$
\begin{aligned}
& \widehat{m}^{*}(C) \leq \sum_{i=1}^{k} l\left(I_{n_{k}}^{\prime}\right) \leq \sum_{n=1}^{\infty} l\left(I_{n}^{\prime}\right)=\sum_{n=1}^{\infty}\left(l\left(I_{n}\right)+2^{-n}\right) \\
& =\epsilon / 2+\sum_{n=1}^{\infty} l\left(I_{n}\right) \leq m^{*}(C)+\epsilon / 2+\epsilon / 2=m^{*}(C)+\epsilon
\end{aligned}
$$

(b) Give an example of a subset $A \subset \mathbb{R}$ satisfying $\widehat{m}^{*}(A)>m^{*}(A)$.

Solution: Let $A=\mathbb{Q}$ or \mathbb{N} or any other set with finite Lebesgue outer measure which is not bounded from above. Let I_{1}, \cdots, I_{n} be intervals satisfying $A \subset \bigcup_{k=1}^{n} I_{k}$. Let $a_{k} \leq b_{k}$ be the endpoints of I_{k} for $k=1, \cdots, n$. Then since A is not bounded from above, we have that $\max \left\{b_{k}: k=1, \cdots, n\right\}=\infty$. Hence $b_{i}=\infty$ for some $i \in\{1, \cdots, n\}$. Hence $l\left(I_{i}\right)=\infty$. Therefore

$$
\sum_{k=1}^{n} l\left(I_{k}\right) \geq l\left(I_{i}\right)=\infty
$$

and so

$$
\sum_{k=1}^{n} l\left(I_{k}\right)=\infty .
$$

Hence $\widehat{m}^{*}(A)=\infty$. However, $m^{*}(A)<\infty$.

Problem 4 (20 PTS)

Which of the following functions are Lebesgue integrable? Explain your answer.
(a) $f: \mathbb{R} \longrightarrow \overline{\mathbb{R}}, \quad f(x):=\sum_{n=1}^{\infty} e^{-n^{4} x^{2}}$.

Solution: We have

$$
\int e^{-n^{4} x^{2}} d m=\int e^{-\left(n^{2} x\right)^{2}} d x=\frac{1}{n^{2}} \int e^{-y^{2}} d y
$$

where $y=n^{2} x$ for each $n \in \mathbb{N}$. Also $\int e^{-x^{2}} d x<\infty$ because $e^{-x^{2}} \leq e^{-|x|+1}$ and $\int e^{-|x|+1} d x=$ $2 e<\infty$. Hence by Beppo-Levi

$$
\int f d m=\int \sum_{n=1}^{\infty} e^{-\left(n^{2} x\right)^{2}} d x=\sum_{n=1}^{\infty} \int e^{-\left(n^{2} x\right)^{2}} d x=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int e^{-x^{2}} d x<\infty .
$$

Hence this function is integrable since $f \geq 0$.
(b) $g: \mathbb{R} \longrightarrow \mathbb{R}, \quad g(x):=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \mathbf{1}_{[-n, n]}(x) \sin (x)$, where $\mathbf{1}_{[-n, n]}: \mathbb{R} \longrightarrow \mathbb{R}, \quad \mathbf{1}_{[-n, n]}(x):=\left\{\begin{array}{ll}1 & \text { if } x \in[-n, n] \\ 0 & \text { otherwise }\end{array}\right.$ for each $n \in \mathbb{N}$.

Solution: This function is integrable if and only if its absolute value

$$
|g|(x):=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \mathbf{1}_{[-n, n]}(x)|\sin (x)|
$$

is integrable. Let $\lfloor n / \pi\rfloor$ be the largest integer $\leq n / \pi$. Now

$$
\int_{-n}^{n}|\sin (x)| d x \geq \int_{-\lfloor n / \pi\rfloor \pi}^{\lfloor n / \pi\rfloor \pi}|\sin (x)| d x=2\lfloor n / \pi\rfloor>\frac{4 n}{\pi}-2 .
$$

Hence by the monotone convergence theorem:

$$
\begin{aligned}
\int|g| d m= & \sum_{n=1}^{\infty} \int \frac{1}{n^{2}} \mathbf{1}_{[-n, n]}|\sin (x)| d x \geq \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\frac{4 n}{\pi}-2\right) \\
& =\sum_{n=1}^{\infty}\left(\frac{4}{\pi n}-\frac{2}{n^{2}}\right) \geq \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}=\infty
\end{aligned}
$$

and hence f is not Lebesgue integrable.

Problem 5 (20 PTS)
Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Lebesgue integrable function. Define

$$
g: \mathbb{R} \longrightarrow \mathbb{R}, \quad g(x):=f(2 x)
$$

Show that

$$
\int f d m=2 \int g d m
$$

where m is the usual Lebesgue measure on \mathbb{R} (you may assume that g is Lebesgue integrable).

Solution:

We show this in four stages:
(A) When $f=\mathbf{1}_{E}$ for some Lebesgue measurable $E \subset \mathbb{R}$.
(B) When f is simple.
(C) When $f \geq 0$.
(D) General case.
(A) Suppose $f=\mathbf{1}_{E}$ for some Lebesgue measurable $E \subset \mathbb{R}$. For any set $A \subset \mathbb{R}$, define

$$
\frac{1}{2} A:=\left\{\frac{1}{2} x: x \in A\right\}
$$

Then $g=\mathbf{1}_{\frac{1}{2} E}$. Hence

$$
\begin{aligned}
& \int g d m=m\left(\frac{1}{2} E\right) \\
& =\inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left(I_{n}\right)_{n \in \mathbb{N}} \text { is an interval cover of } \frac{1}{2} E\right\} \\
& =\inf \left\{\sum_{n=1}^{\infty} l\left(\frac{1}{2} I_{n}\right):\left(\frac{1}{2} I_{n}\right)_{n \in \mathbb{N}} \text { is an interval cover of } \frac{1}{2} E\right\} \\
& =\inf \left\{\sum_{n=1}^{\infty} l\left(\frac{1}{2} I_{n}\right):\left(I_{n}\right)_{n \in \mathbb{N}} \text { is an interval cover of } E\right\} \\
& =\frac{1}{2} \inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left(I_{n}\right)_{n \in \mathbb{N}} \text { is an interval cover of } E\right\} \\
& =\frac{1}{2} m(E)=\frac{1}{2} \int f d m .
\end{aligned}
$$

Hence

$$
\int f d m=2 \int g d m
$$

(B) Now suppose that $g=\sum_{n=1}^{k} a_{n} \mathbf{1}_{A_{n}}$ for some $a_{1}, \cdots, a_{k} \in \mathbb{R}$ and measurable $A_{1}, \cdots, A_{k} \subset$ \mathbb{R}. Define

$$
g_{n}: \mathbb{R} \longrightarrow \mathbb{R}, \quad g_{n}(x)=\mathbf{1}_{A_{n}}(2 x)
$$

Then

$$
g=\sum_{n=1}^{k} a_{n} g_{n}
$$

Hence

$$
\int f d m=\sum_{n=1}^{k} a_{n} \int \mathbf{1}_{A_{n}} d m \stackrel{(A)}{=} \sum_{n=1}^{k} a_{n} \int g_{n} d m=\int \sum_{n=1}^{k} a_{n} g_{n} d m=\int g d m
$$

(C) Now suppose $f \geq 0$. For each simple function $\phi: \mathbb{R} \longrightarrow \mathbb{R}$, define

$$
\widehat{\phi}: \mathbb{R} \longrightarrow \mathbb{R}, \quad \widehat{\phi}(x):=\phi(2 x) .
$$

Then

$$
\begin{gathered}
\int f d m=\sup \left\{\int \phi d m: \phi \text { simple, } 0 \leq \phi \leq f\right\} \\
\stackrel{(B)}{=} \sup \left\{2 \int \widehat{\phi} d m: \phi \text { simple, } 0 \leq \phi \leq f\right\} \\
=\sup \left\{2 \int \widehat{\phi} d m: \phi \text { simple, } 0 \leq \widehat{\phi} \leq g\right\} \\
=\sup \left\{2 \int \widehat{\phi} d m: \widehat{\phi} \text { simple, } 0 \leq \widehat{\phi} \leq g\right\} \\
=2 \int g d m .
\end{gathered}
$$

(D) Finally suppose f is integrable. Then

$$
g_{+}(x)=f_{+}(2 x), g_{-}(x)=f_{-}(2 x), \forall x \in \mathbb{R} .
$$

Hence

$$
\int f d m=\int f_{+} d m-\int f_{-} d m \stackrel{(C)}{=} 2 \int g_{+} d m-2 \int g_{-} d m=2 \int g d m .
$$

