Midterm MAT 324 10am-11:20am, October 25th 2018

Name:

ID #:

(please print)

ID	#

	1	2	3	4	5	Total
	$20 \mathrm{pt}$	$20 \mathrm{pt}$	$20 \mathrm{pt}$	20pt	$20 \mathrm{pt}$	100pts
Grade						

- You can cite theorems/examples from the lectures/textbook (unless you are told to prove them).
- If you need more paper, write your name and the problem number clearly on the top right.

Problem 1 (20 pts)

(a) Let \mathcal{F} be a σ -field on a set Ω . Write down the definition of a probability measure on \mathcal{F} .

(b) Describe all probability measures on the σ -field given by the set of all subsets of $\{0, 1\}$.

Problem 2 (20 pts)

(a) Let $N\subset \mathbb{R}$ be a null set and let $m,d\in \mathbb{R}.$ Show that the set $\{mx+d \ : \ x\in N\}$

is null.

(b) Construct a null set $A \subset \mathbb{R}$ so that $A \cap I$ is uncountable for every non-empty open interval $I \subset \mathbb{R}$.

Midterm

Let $m^*: 2^{\mathbb{R}} \longrightarrow [0, \infty]$ be the outer measure on \mathbb{R} . Define l(I) to be the length of any interval I. Define

$$\widehat{m}^* : 2^{\mathbb{R}} \longrightarrow [0, \infty],$$
$$\widehat{m}^*(A) := \inf \left\{ \sum_{k=1}^n l(I_k) : I_1, \cdots, I_n \text{ are intervals satisfying } A \subset \bigcup_{k=1}^n I_k \text{ for some } n \right\}.$$

(a) Show that $\widehat{m}^*(C) \leq m^*(C)$ for any compact subset $C \subset \mathbb{R}$.

(b) Give an example of a subset $A\subset \mathbb{R}$ satisfying $\widehat{m}^*(A)>m^*(A).$

Problem 4 (20 PTS)

Which of the following functions are Lebesgue integrable? Explain your answer. (a) $f: \mathbb{R} \longrightarrow \overline{\mathbb{R}}, \quad f(x) := \sum_{n=1}^{\infty} e^{-n^4 x^2}.$ Midterm

Problem 5 (20 pts)

Let $f:\mathbb{R}\longrightarrow\mathbb{R}$ be a Lebesgue integrable function. Define

$$g: \mathbb{R} \longrightarrow \mathbb{R}, \quad g(x) := f(2x).$$

Show that

$$\int f \ dm = 2 \int g \ dm$$

where m is the usual Lebesgue measure on \mathbb{R} (you may assume that g is Lebesgue integrable).