Notes on Conformal Field Theory (incomplete)
by A. Beilinson, B. Feigin, B. Mazur
1991

§1. Tate's linear algebra

1.1 Crossed modules and central extensions of Lie algebras. We will need Lie and associative algebra versions of crossed modules:
1.1.1 Definition. (i) Let L be a Lie algebra. An L-crossed module is an L-module $L^{\#}$ together with a morphism $L^{\#} \xrightarrow{\partial} L$ of L-modules. For $\ell \in L$ we will denote the action of L on $L^{\#}$ as $[\ell, \cdot]$; so one has $\partial[\ell, \widetilde{\ell}]=[\ell, \partial \widetilde{\ell}], \widetilde{\ell} \in L^{\#}$.
(ii) Let R be an associative algebra. An R-crossed module is an R-bimodule $R^{\#}$ together with a morphism $R^{\# \xrightarrow{\partial}} R$ of R-bimodules.

We have canonical pairings $\{\}:, S y m^{2} L^{\#} \rightarrow L,\langle\rangle:, R^{\#} \otimes_{R} R^{\#} \rightarrow R^{\#}$ defined by formulas $\left\{m_{1}, m_{2}\right\}:=\left[\partial m_{1}, m_{2}\right]+\left[\partial m_{2}, m_{1}\right],\left\langle s_{1}, s_{2}\right\rangle:=\left(\partial s_{1}\right) s_{2}-s_{1}\left(\partial s_{2}\right)$. These are morphisms of L-modules and R-bimodules respectively; one has $\partial\{\}=$,0 , $\partial\langle\rangle=$,0 .

Crossed modules in both versions form categories in an obvious manner. For example, if $R_{1} \xrightarrow{f} R_{2}$ is a morphism of associative algebras and $R_{i}^{\#}$ are R_{i}-crossed modules, then an f-morphism of crossed modules is an f-morphism $f^{\#}: R_{1} \rightarrow R_{2}$ of bimodules such that $\partial f^{\#}=f \partial$. If R is an associative algebra, then R, considered as Lie algebra with commutator $a b-b a$, will be denoted $R^{L i e}$. If $R^{\#}$ is an R crossed module, then it has also an $R^{\text {Lie }}$-crossed module structure $R^{\# L i e}$ with $[r, \widetilde{r}]=r \widetilde{r}-\widetilde{r} r$. One has $\left\{s_{1}, s_{2}\right\}=\left\langle s_{1}, s_{2}\right\rangle+\left\langle s_{2}, s_{1}\right\rangle$ for $s_{i} \in R^{\#}=R^{\#}=R^{\# L i e}$.

Below "DG algebra" means "differential graded algebra"; so "Lie DG algebra" is the same as differential graded Lie superalgebra.
1.1.2 Lemma. (i) Let L (resp. R) be a Lie (resp. associative) $D G$ algebra such that $L^{i}=0\left(R^{i}=0\right)$ for $i>0$. Then $L^{-1} \xrightarrow{d} L^{0}\left(\right.$ resp. $\left.R^{-1} \xrightarrow{d} R^{0}\right)$ is a Lie (resp. associative) algebra crossed module. For $m_{1}, m_{2} \in L^{-1}$ (resp. $s_{1}, s_{2} \in R^{-1}$) one has $\left\{m_{1}, m_{2}\right\}=d\left[m_{1}, m_{2}\right]\left(\right.$ resp. $\left.\left\langle s_{1}, s_{2}\right\rangle=d\left(s_{1} s_{2}\right)\right)$.
(ii) Conversely, let $L^{\#} \xrightarrow{\partial} L$ (resp. $R^{\#} \xrightarrow{\partial} R$) be a crossed module, and $i: N \subset$ $L^{\#}\left(\right.$ resp. $\left.i: T \subset R^{\#}\right)$ be an L-submodule (resp. R-sub-bimodule) such that $\left\{L^{\#}, L^{\#}\right\} \subset N \subset \operatorname{ker} \partial\left(\right.$ resp. $\left\langle R^{\#}, R^{\#}\right\rangle \subset T \subset \operatorname{ker} \partial$). Then $N \xrightarrow{i} L^{\#} \xrightarrow{\partial} L$ (resp. $T \xrightarrow{i} R^{\#} \xrightarrow{\partial} R$) is a dg Lie (resp. associative) dg algebra placed in degrees $-2,-1,0$.

In other words, the lemma claims that DG algebras zero off degrees $-2,-1,0$ and acyclic off degrees $-1,0$ are in 1-1 correspondence with pairs $\left(L^{\#} \xrightarrow{\partial} L ; N\right)$, where $L^{\#} \xrightarrow{\partial} L$ is a crossed module and $N \subset L^{\#}$ is a submodule as in (ii) above. For example, one may take $N=$ image of $\{$,$\} (or image of \langle$,$\rangle in the associative$ algebra version); we will say that the corresponding DG algebra is defined by our crossed module.
1.1.3 The simplest example of a Lie algebra crossed module is a central extension $\widetilde{L} \rightarrow L$ of a Lie algebra L (the bracket on \widetilde{L} factors through an L-action); note that here $\{$,$\} vanishes. Conversely, let L$ be a DG Lie algebra. Then $L^{-1} / d L^{-2}$,
equipped with the bracket $\left[\ell_{1}, \ell_{2}\right]:=\left[d \ell_{1}, \ell_{2}\right]^{0,-1}$ is a Lie algebra, and $d: L^{-1} / d L^{-2} \rightarrow$ L^{0} is a morphism of Lie algebras such that $\left(H^{-1} \rightarrow L^{-1} / d L^{-2} \rightarrow d\left(L^{-1}\right)\right)$ is a central extension of $d L^{-1}$ by H^{-1}. Hence if $L^{\#} \xrightarrow{\partial} L$ is an L-crossed module such that ∂ is surjective, then $\operatorname{ker} \partial /\left\{L^{\#}, L^{\#}\right\} \rightarrow L^{\#} /\left\{L^{\#}, L^{\#}\right\} \rightarrow L$ is a central extension of L. If $\operatorname{tr}: \operatorname{ker} \partial /\left\{L^{\#}, L^{\#}\right\} \rightarrow \mathbb{C}$ is any linear functional, then it defines, by push-out, a central \mathbb{C}-extension $L_{t r}^{\#}$ of L.
1.1.4 The following example of a crossed module will be used below. Let L be a Lie algebra, and let $L_{+}, L_{-} \subset L$ be ideals. Then we have an L-crossed module $L_{+} \oplus L_{-} \xrightarrow{\partial} L, \partial\left(\ell_{+}, \ell_{-}\right)=\ell_{+}+\ell_{-}$. We have isomorphism $i: L_{+} \cap L_{-} \underset{\sim}{\operatorname{ker}} \partial$, $i(\ell)=(\ell,-\ell) \in L_{+} \oplus L_{-}$. Or we may take an associative algebra R equipped with 2 -sided ideals R_{+}, R_{-}, and get an R-crossed module $R_{+} \oplus R_{-} \xrightarrow{\partial} R$. Note that $\{$,$\} vanishes on L_{+}$and L_{-}(and \langle,$\rangle vanishes on R_{+}$and R_{-}) and one has $\left\{\ell_{+}, \ell_{-}\right\}=i\left(\left[\ell_{-}, \ell_{+}\right]\right),\left\langle r_{+}, r_{-}\right\rangle:=-i\left(r_{+} r_{-}\right),\left\langle r_{-}, r_{+}\right\rangle=i\left(r_{-} r_{+}\right)$.

If $L_{+}+L_{-}=L$, then we get a central extension $L_{+} \cap L_{-} /\left[L_{+}, L_{-}\right] \xrightarrow{i} \widetilde{L} \rightarrow L$ of L, where $\widetilde{L}=L_{+} \oplus L_{-} / i\left(\left[L_{+}, L_{-}\right]\right)$. This central extension is equipped with obvious splittings $s_{ \pm}: L_{ \pm} \rightarrow \widetilde{L}$ such that $s_{ \pm}\left(L_{ \pm}\right)$are ideals in \widetilde{L}; it is easy to see that \widetilde{L} is universal among all central extensions of L equipped with such splittings. Note also that the embedding $s_{+}: L_{-} \hookrightarrow \widetilde{L}$ yields an isomorphism $L_{+} /\left[L_{+}, L_{-}\right] \underset{\sim}{\sim} / s_{-}\left(L_{-}\right)$ and we have the Cartesian square

$$
\begin{array}{ccccc}
\widetilde{L} & \longrightarrow & \widetilde{L} / s_{-}\left(L_{-}\right) & \approx & L_{+} /\left[L_{+}, L_{-}\right] \\
\downarrow & & \downarrow & & \downarrow \\
L & \longrightarrow & L / L_{-} & \approx & L_{+} / L_{+} \cap L_{-}
\end{array}
$$

and the same for \pm interchanged.
1.1.5 Now let $t r: L_{+} \cap L_{-} /\left[L_{+}, L_{-}\right] \rightarrow \mathbb{C}$ be any linear functional. According to 1.1.3 it defines a central \mathbb{C}-extension $\widetilde{L}_{t r}$ of L. One has the splittings $s_{+}: L_{+} \rightarrow \widetilde{L}_{t r}$, $s_{-}: L_{-} \rightarrow \widetilde{L}_{t r}$ such that $s_{ \pm}\left(L_{ \pm}\right)$are ideals and $\left.\left(s_{+}-s_{-}\right)\right|_{L_{+} \cap L_{-}}=\operatorname{tr}$. Clearly $L_{t r}$ is the unique extension equipped with this data.
1.1.6 The above constructions are functorial with respect to $\left(L, L_{ \pm}\right)$. Hence if $L_{ \pm}^{\prime} \subset$ L are other ideals such that $L_{ \pm} \subset L_{ \pm}^{\prime}$, then we get a canonical morphism $\widetilde{L} \rightarrow \widetilde{L}^{\prime}$ between the corresponding central extensions of L. If $\operatorname{tr}: L_{+} \cap L_{-} /\left[L_{+}, L_{-}\right] \rightarrow \mathbb{C}$ extends to $\operatorname{tr}: L_{+}^{\prime} \cap L_{-}^{\prime} /\left[L_{+}^{\prime}, L_{-}^{\prime}\right] \rightarrow \mathbb{C}$, then $\widetilde{L}_{t r}=\widetilde{L}_{t r}^{\prime}$. In particular, assume that $\operatorname{tr}: L_{+} \cap L_{-} /\left[L_{+}, L_{-}\right] \rightarrow \mathbb{C}$ extends to $\operatorname{tr}: L_{-} /\left[L_{-}, L_{-}\right] \rightarrow \mathbb{C}$. Then we may take $L_{+}^{\prime}=L, L_{-}^{\prime}=L_{-}$to get the same extension $\widetilde{L}_{t r}$, hence we get the splitting $\widetilde{s}_{+}: L \rightarrow \widetilde{L}_{t r}$ that extends our old $s_{+}: L_{+} \rightarrow \widetilde{L}_{t r}$. Explicitly, $\widetilde{s}_{+}\left(\ell_{+}+\ell_{-}\right)=$ $s_{+}\left(\ell_{+}\right)+s_{-}\left(\ell_{-}\right)+$tr $\ell_{-} ;$clearly $\widetilde{s}_{+}-s_{-}=t r: L_{-} \rightarrow \mathbb{C}$. In the same way, an extension of $\operatorname{tr}: L_{+} \cap L_{-} \rightarrow \mathbb{C}$ to L_{+}determines the splitting $\widetilde{s}_{-}: L \rightarrow \widetilde{L}_{t r}$ that extends the old $s_{-}: L_{-} \rightarrow \widetilde{L}_{t r}$. If we have the trace functional on the whole L, i.e. $\operatorname{tr}: L /[L, L] \rightarrow \mathbb{C}$, then $\widetilde{s}_{+}-\widetilde{s}_{-}=\operatorname{tr}: L \rightarrow \mathbb{C}$.
1.1.7 We will often use the following notation. If \mathfrak{g} is a Lie algebra, V is a vector space, and $0 \rightarrow V \rightarrow \widetilde{\mathfrak{g}} \rightarrow \mathfrak{g} \rightarrow 0$ is a central V-extension of \mathfrak{g}, then for any $c \in \mathbb{C}$ we will denote by $\widetilde{\mathfrak{g}}_{c}$ a V-extension of \mathfrak{g} which is the c-multiple of $\mathfrak{\mathfrak { g }}$. So we have a canonical morphism $\widetilde{\mathfrak{g}} \rightarrow \widetilde{\mathfrak{g}}_{c}$ of central extensions of \mathfrak{g} that restricted to V 's is multiplication by c. For example, in situation 1.1.3 one has $\left(L_{t r}^{\#}\right)_{c}=L_{c t r}^{\#}$.
1.2 Tate's vector spaces. For subspaces V_{0}, V_{1} of a vector space V we will write $V_{0} \prec V_{1}$ if $V_{0} / V_{0} \cap V_{1}$ is of finite dimension, and $V_{0} \sim V_{1}$ (V_{i} are commensurable) if $V_{0} \prec V_{1}$ and $V_{1} \prec V_{0}$. Clearly \prec is partial order on a set of commensurability classes of subspaces.
1.2.1 A Tate's topological vector space (or, simply, Tate's space) V is a linearly topologized complete separated vector space V that admits a basis $\left\{V_{\alpha}\right\}$ of neighbourhoods of 0 with V_{α} mutually commensurable. Equivalently, V is the projective limit of a family of epimorphisms of usual vector spaces with finite dimensional kernels: $V=\underset{\alpha}{\lim _{\overleftarrow{ }}} V / V_{a}$.

Let $L \subset V$ be a vector subspace. We will say that L is bounded if for any open $U \subset V$ one has $L \prec U$, and L is discrete if for some open U one has $U \cap L=0$. Clearly simultaneously bounded and discrete subspaces are just finite dimensional ones.

A lattice $V_{+} \subset V$ is a bounded open subspace; equivalently, this is a maximal (with respect to \prec) bounded closed subspace. The lattices form a maximal basis of neighbourhoods of 0 that consists of mutually commensurable subspaces.

A colattice $V_{-} \subset V$ is a maximal discrete subspace. Equivalently, this means that for (any) lattice V_{+}one has $V_{+} \cap V_{-} \sim 0, V_{+}+V_{-} \sim V$ (or for some lattice V_{+}one has $\left.V_{+} \oplus V_{-} \xrightarrow{\sim} V\right)$.

Tate's vector spaces form an additive category $\mathcal{T V}$ with kernels and cokernels. The category $\mathcal{T} \mathcal{V}$ is self-dual: Namely, for a Tate's space V its dual V^{*} is $\operatorname{Hom}(V, \mathbb{C})$ with open subspaces in V^{*} equal to orthogonal complements to bounded subspaces in V. This V^{*} is a Tate's space, and $V^{* *}=V$. Note that $V_{+} \longmapsto V_{+}^{\perp}$ is $1-1$ correspondence between lattices in V and V^{*}; and the same for colattices.
1.2.2 Let V be a Tate's vector space. One has a canonical \mathbb{Z}-torsor Dim_{V} together with a map dim : $\{$ Set of all lattices in $V\} \rightarrow \operatorname{Dim}_{V}$ such that for a pair V_{+1}, V_{+2} of lattices one has $\operatorname{dim} V_{+1}-\operatorname{dim} V_{+2}:=\operatorname{dim}\left(V_{+1} / V_{+1} \cap V_{+2}\right)-\operatorname{dim}\left(V_{+2} / V_{+1} \cap V_{+2}\right) \in$ \mathbb{Z}. One has a natural map codim : \{ Set of all colattices in $V\} \rightarrow \operatorname{Dim}_{V}$ defined by formula $\operatorname{codim} V_{-}=\operatorname{dim} V_{+}+\operatorname{dim}\left(V / V_{+}+V_{-}\right)-\operatorname{dim}\left(V_{+} \cap V_{-}\right)$, where V_{+}is any lattice. The \mathbb{Z}-torsor $\operatorname{Dim}_{V^{*}}$ coincides with the opposite torsor to Dim_{V} : one has $\operatorname{dim} V_{+}^{\perp}=-\operatorname{dim} V_{+}$. The group Aut V acts on Dim_{V}; if V is neither bounded nor discrete, then the action is non-trivial.
1.2.3 Let V_{1}, V_{2} be Tate's vector spaces. We will say that a linear operator $f \in$ $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ is bounded if $\operatorname{Im} f$ is bounded, is discrete if $\operatorname{ker} f$ is open, and is finite if Imf is finite dimensional. Denote by $\mathrm{Hom}_{+}, \mathrm{Hom}_{-}$and Hom_{00} respectively the corresponding spaces of operators; put $\operatorname{Hom}_{0}:=\operatorname{Hom}_{+} \cap \operatorname{Hom}_{-}$. Clearly Hom $_{+}+$Hom $_{-}=$Hom, Hom? (where ? $=+,-, 0,00$) is a 2-sided ideal in Hom (i.e., if for $V_{1} \xrightarrow{f_{1}} V_{2} \xrightarrow{f_{2}} V_{3}$ either f_{1} or f_{2} is in Hom?, then $f_{2} f_{1}$ is in Hom?), and $\mathrm{Hom}_{-} \mathrm{Hom}_{+} \subset \mathrm{Hom}_{00}$.

Remark. Let $\mathcal{T} \mathcal{V}_{+}, \mathcal{T} \mathcal{V}_{-} \subset \mathcal{T V}$ be full subcategories of bounded, resp. discrete, spaces. Then $\mathcal{T} \mathcal{V}_{-}$coincides with the category of usual vector spaces, and $*$ identifies $\mathcal{T} \mathcal{V}_{+}$with the dual category $\mathcal{T} \mathcal{V}_{-}^{\circ}$; in particular these are abelian categories. Consider the quotient categories $\mathcal{T} \mathcal{V} /+, \mathcal{T} \mathcal{V} /-, \mathcal{T} \mathcal{V} / 0$, whose objects are Tate's vector spaces, and Hom's are the corresponding quotients $H o m / \pm:=H o m / H o m_{ \pm}, H o m / 0:=$ $H o m / H o m_{0}$ (clearly $\mathcal{T} \mathcal{V} / \pm$ are just the quotient categories $\mathcal{T} \mathcal{V} / \mathcal{T} \mathcal{V}_{ \pm}$). These quotient categories are abelian. In fact, the projection $\mathcal{T V} / 0 \rightarrow \mathcal{T V} /+\oplus \mathcal{T} \mathcal{V}$ - is an equivalence of categories, and embeddings $\mathcal{T} \mathcal{V}_{ \pm} \hookrightarrow \mathcal{T} \mathcal{V}$ composed with projec-
tions define equivalences $\mathcal{T} \mathcal{V}_{+} /$Vect $\underset{\sim}{\mathcal{T}} \mathcal{V} /-, \mathcal{T} \mathcal{V}_{-} /$Vect $\underset{\sim}{\mathcal{T}} \mathcal{V} /+$ (here Vect $=$ $\mathcal{T} \mathcal{V}_{+} \cap \mathcal{T} \mathcal{V}_{-}$is the category of finite dimensional vector spaces).
1.2.4 For $V \in \mathcal{T} \mathcal{V}$ consider the algebra $E n d V$ equipped with 2-sided ideals $E n d_{ \pm} \supset$ $E n d_{0} \supset E n d_{00}$. We will write $\mathfrak{g} \ell=\mathfrak{g} \ell V$ for $E n d V^{\text {Lie }}=E n d V$ considered as Lie algebra. Since $E n d_{0}^{2} \subset E n d_{00}$, we have a canonical trace functional $\operatorname{tr}: \mathfrak{g} \ell_{0} \rightarrow \mathbb{C}$ which vanishes on $\left[\mathfrak{g} \ell_{+}, \mathfrak{g} \ell_{-}\right]$

According to 1.1.4, we get an End-crossed module End ${ }_{+} \oplus E n d_{-} \rightarrow E n d$. By 1.1.5, tr defines a central \mathbb{C}-extension $\widetilde{\mathfrak{g} \ell} \rightarrow \mathfrak{g} \ell$ of $\mathfrak{g} \ell$, together with canonical Lie algebra splittings $s_{ \pm}: \mathfrak{g} \ell_{ \pm} \rightarrow \widetilde{\mathfrak{g} \ell}$ such that $s_{+}-s_{-}=\operatorname{tr}$ on $\mathfrak{g} \ell_{0}$.
1.2.5 Let $T \subset V$ be a Tate's subspace ($=$ a closed subspace with induced Tate structure), and V / T be the quotient. Denote by $P_{T} \stackrel{i}{\hookrightarrow} \mathfrak{g} \ell V$ the parabolic subalgebra of endomorphisms that preserve T; let $\pi=\left(\pi_{T}, \pi_{V / T}\right): P_{T} \rightarrow \mathfrak{g} \ell T \times \mathfrak{g} \ell V / T$ be the obvious projection. Let $\mathfrak{g l T} \widetilde{\times \mathfrak{g} \ell V} / T$ be a central \mathbb{C}-extension of $\mathfrak{g l T} \times \mathfrak{g} \ell V / T$ which is the Baer sum of $\tilde{\mathfrak{g} \ell}$ T and $\tilde{\mathfrak{g} \ell} \ell / T$; one has $\mathfrak{g} \ell T \widetilde{\times \mathfrak{g} \ell V} / T=\tilde{\mathfrak{g} \ell} \ell \times \tilde{\mathfrak{g} \ell V / T /\left\{\left(a_{1}, a_{2}\right) \in, ~\right.}$ $\left.\mathbb{C} \times \mathbb{C}: a_{1}+a_{2}=0\right\}$. Clearly $\mathfrak{g} \ell T \times \mathfrak{g} \ell V / T$ coincides with the \mathbb{C}-extension constructed by the recipe of 1.1.4, 1.1.5 using the ideals $\mathfrak{g} \ell_{+} T \times \mathfrak{g} \ell_{+} V / T, \mathfrak{g} \ell_{-} T \times \mathfrak{g} \ell_{-} V / T$ and the trace functional $t r=t r_{T}+t r_{V / T}$.

Let $\widetilde{P}_{T}=i^{*} \widetilde{\mathfrak{g} \ell} V$ be the \mathbb{C}-extension of P_{T} induced by $\widetilde{\mathfrak{g} \ell} \ell$. Since $P_{T}=P_{T+}+$ P_{T-}, where $P_{T \pm}=P_{T} \cap \mathfrak{g} \ell_{ \pm} V$, this \mathbb{C}-extension coincides with the one constructed by means of ideals $P_{T \pm}$ and the trace functional $\left.\operatorname{tr}_{V}\right|_{P_{T}}$. Note that $\pi\left(P_{T \pm}\right)=$ $\mathfrak{g} \ell_{ \pm} T \times \mathfrak{g} \ell_{ \pm} V / T$ and $\left.\operatorname{tr}_{V}\right|_{P_{T}}=\operatorname{tr} \circ \pi$. By 1.1.6 this defines a canonical morphism $\widetilde{\pi}:$ $\widetilde{P}_{T} \rightarrow \mathfrak{g} \ell T \times \mathfrak{g} \ell V / T$ of \mathbb{C}-extensions that lifts π. In other words, \widetilde{P}_{T} is canonically isomorphic to the Baer sum of \mathbb{C}-extensions induced by projections $\pi_{T}, \pi_{V / T}$ from $\widetilde{\mathfrak{g} \ell} \ell, \tilde{\mathfrak{g} \ell} \ell / T$.

Let us consider an important particular case of this situation. Assume that $T=V_{+}$is a lattice. Then we have a canonical splitting $s_{+}: \mathfrak{g} \ell V_{+}=\mathfrak{g} \ell_{+} V_{+} \rightarrow$ $\widetilde{\mathfrak{g} \ell} V_{+}, s_{-}: \mathfrak{g} \ell V / V_{+}=\mathfrak{g} \ell-V / V_{+} \rightarrow \widetilde{\mathfrak{g} \ell} V / V_{+}$, hence a canonical splitting $s_{V_{+}}=$ $s_{+} \pi_{V_{+}}+s_{-} \pi_{V / V_{+}}: P_{V_{+}} \rightarrow \tilde{\mathfrak{g} \ell} V_{V}$. Note that $s_{V_{+}}$actually depends on $V_{+}:$if V_{+}^{\prime} is another lattice, then $s_{V_{+}}-s_{V_{+}^{\prime}}: P_{V_{+}} \cap P_{V_{+}^{\prime}} \rightarrow \mathbb{C}$ is given by formula $\left(s_{V_{+}}-s_{V_{+}^{\prime}}\right)(a)=$ $t r_{V_{+} / V_{+} \cap V_{+}^{\prime}}(a)-t r_{V_{+}^{\prime} / V_{+} \cap V_{+}^{\prime}}(a)$.

Similarly, if $T=V_{-}$is a colattice, then we have the splittings $s_{-}: \mathfrak{g} \ell V_{-}=$ $\mathfrak{g} \ell_{-} V_{-} \rightarrow \tilde{\mathfrak{g} \ell} V_{-}, s_{+}: \mathfrak{g} \ell V / V_{-}=\mathfrak{g} \ell_{+} V / V_{-} \rightarrow \widetilde{\mathfrak{g} \ell} V / V_{-}$, hence the splitting $s_{V_{-}}=$ $s_{-} \pi_{V_{-}}+s_{+} \pi_{V / V_{-}}: P_{V_{-}} \rightarrow \tilde{\mathfrak{g}} \ell_{V}$. On $P_{V_{-}} \cap P_{V_{+}}$the difference $s_{V_{+}}-s_{V_{-}}: P_{V_{-}} \cap P_{V_{+}} \rightarrow$ \mathbb{C} is given by formula

$$
\left(s_{V_{+}}-s_{V_{-}}\right)(a)=t r_{V_{-} \cap V_{+}}(a)-t r_{V / V_{-}+V_{+}}(a)
$$

The following subsection 1.3 could be omitted on first reading.
1.3 Elliptic complexes. Let $\left(V^{\cdot}, d\right)$ be a finite complex of Tate's vector spaces. We will call it elliptic, if for some (or any) subcomplex $\left(V_{+}, d\right) \subset\left(V^{\cdot}, d\right)$ formed by lattices in V^{\cdot} both V_{+}and V^{\cdot} / V_{+}have finite dimensional cohomology spaces.

Clearly, elliptic complexes have finite dimensional cohomology.
Remark. V^{\cdot} is elliptic iff its image in the abelian category $\mathcal{T V} / 0$ (see 3.2.2) is acyclic.
1.3.1 Let $\left(U^{\cdot}, d\right),\left(V^{\cdot}, d\right)$ be elliptic complexes. Then $\operatorname{Hom}=\operatorname{Hom}\left(U^{\cdot}, V^{\cdot}\right):=$ $\prod \operatorname{Hom}\left(U^{i}, V^{i}\right)$ carries a bunch of subspaces. First, one has the subspaces $H o m_{ \pm}:=$ $\prod H o m_{ \pm}\left(U^{i}, V^{i}\right), \operatorname{Hom}_{0}, \operatorname{Hom}_{00}$ that have nothing to do with differential. We may enlarge those spaces as follows. Put $\operatorname{Hom}_{ \pm}^{d}:=\left\{f \in \operatorname{Hom}:[f, d] \in \operatorname{Hom}_{ \pm}\left(U^{\cdot}, V^{\cdot+1}\right)\right\}, \operatorname{Hom}_{0}^{d}:=$ $\operatorname{Hom}_{+}^{d} \cap \operatorname{Hom}_{-}^{d}, \operatorname{Hom}_{d}:=\{f \in \operatorname{Hom}:[f, d]=0\}$ ($=$ usual morphisms of complexes). Clearly $H o m_{ \pm} \subset \operatorname{Hom}_{ \pm}^{d}, \operatorname{Hom}_{0} \subset \operatorname{Hom}_{0}^{d}$, and all $H o m_{?}^{d}$ are compatible with \pm decomposition: one has $H o m_{?}^{d}=\left(\operatorname{Hom}_{?}^{d} \cap H o m_{+}\right)+\left(\right.$Hom $\left._{?}^{d} \cap H o m_{-}\right)$.

The following easy technical lemma is quite useful. Assume that we picked subcomplexes $U_{+}^{\prime} \subset U_{+} \subset U, V_{+}^{\prime} \subset V_{+} \subset V$ formed by lattices. Put $P:=\{f \in$ $\left.\operatorname{Hom}\left(U^{\cdot}, V^{\cdot}\right): f\left(U_{+}^{\prime}\right) \subset V_{+}^{\prime} \cdot, f\left(U_{+}\right) \subset V_{+}\right\}, P_{+d}:=\left\{f \in P:[f, d]\left(U^{\cdot}\right) \subset V_{+}^{+1}\right\}$, $P_{-d}:=\left\{f \in P:[f, d]\left(U_{+}^{\prime}\right)=0\right\}, P_{o d}=P_{+d} \cap P_{-d}$.
1.3.2 Lemma. One has Hom $_{ \pm}^{d}=P_{ \pm d}+$ Hom $_{00}$, Hom $_{0}^{d}=P_{0 d}+$ Hom $_{00}$.

Proof. Consider, e.g., the case of $\operatorname{Hom}_{+}^{d}$. One has $\operatorname{Hom}_{+}^{d}=\left(P \cap \operatorname{Hom}_{+}^{d}\right)+$ Hom $_{0}$. An element $f \in P \cap H o m_{+}^{d}$ induces the linear map $\bar{f}: U^{\cdot} / U_{+} \rightarrow V^{\cdot} / V_{+}$such that $\alpha=[\bar{f}, d]$ is of finite rank. One may find \bar{g} of finite rank such that $[\bar{g}, d]=\alpha$. Lift \bar{g} to an element $g \in P \cap \operatorname{Hom}_{0}$; then $f-g \in P_{+d}$, and we are done.

Now let us define the traces. Consider a single elliptic complex $\left(V^{\cdot}, d\right)$. We have a bunch of Lie subalgebras in $\mathfrak{g} \ell=\mathfrak{g} \ell V^{\cdot}=\Pi \mathfrak{g} \ell V^{i}$. Pick subcomplexes $V_{+}^{\prime} \subset V_{+} \subset V^{\cdot}$ formed by lattices; we get the corresponding parabolic subalgebra $P \subset \mathfrak{g} \ell$ and its standard subalgebras. Define the trace functional tr: $P_{0 d} \rightarrow \mathbb{C}$ by formula $\operatorname{trf}:=\Sigma(-1)^{i}\left(\operatorname{tr}_{H^{i}\left(V / V_{+}\right)}+\operatorname{tr}{V_{+}^{i} / V_{+}^{\prime}}+\operatorname{tr} r_{H^{i}\left(V_{+}^{\prime}\right)}\right)$. In particular, if V / V_{+}and V_{+}^{\prime} are acyclic, then $\operatorname{tr}=\Sigma(-1)^{i} \operatorname{tr}_{V_{+}^{i} / V_{+}^{i^{\prime}}}$. The algebra $\mathfrak{g} \ell_{00}$ also carries the trace $\operatorname{tr}=\Sigma(-1)^{i} \operatorname{tr}_{V^{i}}$. Clearly on $P_{0 d} \cap \mathfrak{g} \ell_{00}$ these traces coincide, so, by 1.3.2, they define $\operatorname{tr}: \mathfrak{g} \ell_{0}^{d} \rightarrow \mathbb{C}$.
1.3.3 Lemma. The trace functional $\operatorname{tr}: \mathfrak{g} \ell_{0}^{d} \rightarrow \mathbb{C}$ does not depend on the choice of $V_{+}^{\prime}, V_{+}^{\prime}$ and vanishes on $\left[\mathfrak{g} \ell_{0}^{d}, \mathfrak{g} \ell_{0}^{d}\right]$.

Let $\tilde{\mathfrak{g} \ell}$ be the central extension of $\mathfrak{g} \ell$ by \mathbb{C} which is the alternating Baer sum of $\widetilde{\mathfrak{g} \ell} V^{i}$. Equivalently, to get $\tilde{\mathfrak{g} \ell}$ take the ideals $\mathfrak{g} \ell_{ \pm} \subset \mathfrak{g} \ell$ and the trace functional $\operatorname{tr}=\Sigma(-1)^{i} \operatorname{tr}_{V^{i}}$ on $\mathfrak{g} \ell_{0}$, and apply constructions 1.1.4, 1.1.5. We have canonical splittings $s_{ \pm}: \mathfrak{g} \ell_{ \pm} \rightarrow \tilde{\mathfrak{g} \ell} \ell$
1.3.4 Lemma. These splittings extend to canonical splittings $s_{ \pm}: \mathfrak{g} \ell_{ \pm}^{d} \rightarrow \tilde{\mathfrak{g} \ell}$; one has $s_{+}-s_{-}=\operatorname{tr}: \mathfrak{g} \ell_{0}^{d} \rightarrow \mathbb{C}$.

Proof. Consider, say, the case of s_{+}. Let $\tilde{\mathfrak{g} \ell}{ }_{+}^{d}$ be $\tilde{\mathfrak{g} \ell}$ restricted to $\mathfrak{g} \ell_{+}^{d}$. Note that $\mathfrak{g} \ell_{+}^{d}=\mathfrak{g} \ell_{+}+\left(\mathfrak{g} \ell_{-} \cap \mathfrak{g} \ell_{+}^{d}\right)$, so $\tilde{\mathfrak{g}} \ell_{+}^{d}$ comes from constructions 1.1.4, 1.1.5 applied to $\mathfrak{g} \ell_{+}^{d}$, its ideals $\mathfrak{g} \ell_{+}$and $\mathfrak{g} \ell_{-} \cap \mathfrak{g} \ell_{+}^{d}$ and the trace functional tr. We may even replace $\mathfrak{g} \ell_{-} \cap \mathfrak{g} \ell_{+}^{d}$ by the larger ideal $\mathfrak{g} \ell_{0}^{d}$ and, since tr extends to $\mathfrak{g} \ell_{0}^{d}$ by 1.3 .3 , according to 1.1.6 we get the desired section $s_{+}: \mathfrak{g} \ell_{+}^{d} \rightarrow \tilde{\mathfrak{g} \ell}$. One treats s_{-}in a similar way; the formula $s_{+}-s_{-}=t r$ results from 1.1.6.
1.4 Clifford modules. Let W be a Tate's space, and let (,) be a non-degenerate symmetric form on W (which is the same as symmetric isomorphism $W \underset{\sim}{\sim} W^{*}$).
1.4.1 For a lattice $W_{+} \subset W$ let W_{+}^{\perp} be the orthogonal complement with respect to (,). This is also a lattice, and the parity of $\operatorname{dim} W_{+}^{\perp}-\operatorname{dim} W_{+} \in \mathbb{Z}$ does not
depend on W_{+}(and depends on $(W,()$,$) only). We will say that W$ is even or odd dimensional if $\operatorname{dim} W_{+}^{\perp}-\operatorname{dim} W_{+}$is even or odd, respectively.
1.4.2 A Clifford module M is a module over Clifford algebra $\operatorname{Cliff}(W,()$,$) such$ that W acts on M in a continuous way (in the discrete topology of M). This means that for any $m \in M$ there is a lattice W_{+}such that $W_{+} m=0$. Denote by $C \mathcal{M}_{W}$ the category of Clifford modules.

Let $W_{+} \subset W$ be a lattice such that $\left.()\right|_{,W_{+}}=0$. Then the finite-dimensional vector space W_{+}^{\perp} / W_{+}carries an induced non-degenerate form. If M is a Clifford module, then $M^{W_{+}}:=\left\{m \in M: W_{+} m=0\right\}$ is a W_{+}^{\perp}-invariant subspace of M, hence a $\operatorname{Cliff}\left(W_{+}^{\perp} / W_{+},(),\right)$-module.
1.4.3 Lemma. The functor $C \mathcal{M}_{W} \rightarrow C \mathcal{M}_{W_{+}^{\perp} / W_{+}}, M \longmapsto M^{W_{+}}$, is an equivalence of categories. The inverse functor is given by formula $N \longmapsto C l i f f(W) \bigotimes_{C l i f f\left(W_{+}^{\perp}\right)} N$.

In particular, we see that $C \mathcal{M}_{W}$ is a semisimple category. There is 1 irreducible object if W is even-dimensional, and 2 such if W is odd-dimensional.

Denote by $C \ell W$ the completion $\lim \operatorname{Cliff}(W) / \operatorname{Cliff}(W) \cdot W_{+}$, where W_{+}runs the set of all lattices in W. It is easy to see that the multiplication extends to this completion by continuity, so $C \ell W$ is an associative algebra. Clearly, it acts on any Clifford module.
1.4.4 Let $L_{+} \subset W$ be a maximal (,)-isotropic lattice (so either $L_{+}^{\perp}=L_{+}$or $\operatorname{dim} L_{+}^{\perp} / L_{+}=1$ depending on parity of dimension of W). If L_{+}^{\prime} is another such lattice, put $\lambda\left(L_{+}: L_{+}^{\prime}\right):=\operatorname{det}\left(L_{+} / L_{+} \cap L_{+}^{\prime}\right)$. One has a canonical embedding $i: \lambda\left(L_{+}: L_{+}^{\prime}\right) \hookrightarrow C \ell W / C \ell W \cdot L_{+}^{\prime}$, given by the formula $v_{1} \wedge \cdots \wedge v_{n} \longmapsto$ $\widetilde{v}_{1} \cdots \widetilde{v}_{n} \bmod C \ell W \cdot L_{+}^{\prime}$. Here $\left\{v_{i}\right\}$ is a basis of $L_{+} / L_{+} \cap L_{+}^{\prime}, \widetilde{v}_{i}$ are any liftings of v_{i} to elements of L_{+}. For a Clifford module M one has a canonical isomorphism $\lambda\left(L_{+}: L_{+}^{\prime}\right) \otimes M^{L_{+}^{\prime}} \underset{\sim}{ } M^{L_{+}}, v \otimes m \longmapsto i(v) m$.

Now let $L_{-} \subset L$ be a maximal isotropic colattice (so codim $L_{-}=\operatorname{dim} L_{+}$in case $\operatorname{dim} W$ is even, or codim $L_{-}=\operatorname{dim} L_{+}+1$ if $\operatorname{dim} W$ is odd). Put $\lambda\left(L_{+}, L_{-}\right)=$ $\operatorname{det}\left(L_{+} \cap L_{-}\right)$. For a Clifford module M put $M_{L_{-}}:=M / L_{-} M$. One has a canonical isomorphism $\lambda\left(L_{+}, L_{-}\right) \otimes M_{L_{-}} \vec{\sim} M^{L_{+}}$, defined by formula $v \otimes m \longmapsto v \tilde{m}$, where $v \in \lambda\left(L_{+}, L_{-}\right) \subset \operatorname{Cliff}(W), m \in M_{L_{-}}$, and $\widetilde{m} \in M_{L_{-}}$, and $\widetilde{m} \in M$ is any element such that $\widetilde{m} \bmod L_{-} M=m$ and $v \widetilde{m} \in M^{L_{+}}$. If M is irreducible, then $\operatorname{dim} M^{L_{+}}=\operatorname{dim} M_{L_{-}}=1$, and we may rewrite the above isomorphisms as

$$
\lambda\left(L_{+}: L_{+}^{\prime}\right)=M^{L_{+}} / M^{L_{+}^{\prime}}, \quad \lambda\left(L_{+}, L_{-}\right)=M^{L_{+}} / M_{L_{-}}
$$

1.4.5 The algebra $C \ell W$ carries a natural $\mathbb{Z} / 2$-grading such that W lies in the degree 1 component. Denote by $C \mathcal{M}_{W}^{\mathbb{Z} / 2}$ the corresponding category of $\mathbb{Z} / 2$-graded Clifford modules. This is a semisimple category. If dimW is odd, then it has a single irreducible object; if $\operatorname{dim} W$ is even, then there are two irreducible objects that differ by a shift of $\mathbb{Z} / 2$-grading.

If $\operatorname{dim} W$ is even, then each $M \in C \mathcal{M}_{W}$ carries a natural $\mathbb{Z} / 2$-grading defined up to a shift. Precisely, consider the set of all maximal isotropic lattices. This breaks into two components: lattices L_{+}, L_{+}^{\prime} lie in the same component iff $\operatorname{dim} L_{+} / L_{+} \cap$ L_{+}^{\prime} is even. Denote the two element set of these components by $\mathbb{Z} / 2_{W}$; we will consider it as $\mathbb{Z} / 2$-torsor. Then any $M \in C \mathcal{M}_{W}$ carries a canonical $\mathbb{Z} / 2_{W}$-grading determined by the property that $M^{L_{+}} \subset M^{\alpha}$ for $L_{+} \in \alpha \in \mathbb{Z} / 2_{W}$.
1.4.6 Let $C \ell^{L i e} W$ denote the Clifford algebra considered as Lie (super)algebra (with the above $\mathbb{Z} / 2$-grading; the (super)commutator is defined by the usual formula $[a, b]=a b-(-1)^{\alpha \beta} b a$ for $\left.a \in C \ell^{L i e} W^{\alpha}, b \in C \ell^{L i e} W^{\beta}\right)$. Denote by $\mathfrak{a} W$ the normalizer of $W \subset C \ell^{L i e} W^{1}$ in $C \ell^{L i e} W$. This is a Lie subalgebra of $C \ell^{L i e} W$. As a vector space $\mathfrak{a} W$ is the completion in $C \ell W$ of the subspace of all degree ≤ 2 polynomials of elements of W. One has $\mathfrak{a} W^{1}=W$. The Lie algebra $\widetilde{O W}:=\mathfrak{a} W^{0}$ is called the spinor algebra of W. The subspace $\mathbb{C} \subset C \ell W$ coincides with center of $\mathfrak{a} W$. One has a canonical isomorphism $\mathfrak{a} W / \mathbb{C}=O W \rtimes W$. Here $O W$ is the orthogonal Lie algebra of all (,)-skew symmetric elements in $\mathfrak{g l} \ell W$; the projection $\pi: \widetilde{O W} \rightarrow \widetilde{O W} / \mathbb{C}=O W$ is given by the adjoint action on $W=\mathfrak{a} W^{1}$.

The Lie superalgebra $\mathfrak{a} W$ acts on any $M \in C \mathcal{M}_{W}^{\mathbb{Z} / 2}$ in an obvious manner. If M^{\cdot} is irreducible, this action identifies $\mathfrak{a} W$ with the normalizer of W in the Lie superalgebra $E n d_{\mathbb{C}} M$. Similarly, $\widetilde{O W}$ acts on any $M \in C \mathcal{M}_{W}$, and, in case M is irreducible, $\widetilde{O W}$ coincides with the normalizer of W in $E n d_{\mathbb{C}} M$.
1.4.7 Here is another construction of $\widetilde{O W}$. For $a \in \mathfrak{g} \ell W$ denote by ${ }^{t} a \in \mathfrak{g} \ell W$ the adjoint operator with respect to (,); for $a \in \mathfrak{g} \ell_{-} W$ one has ${ }^{t} a \in \mathfrak{g} \ell_{+} W$. Consider now the ideal $\mathfrak{g} \ell _W \subset \mathfrak{g} \ell W$ as an $O W$-module with respect to $A d$-action. Then $\mathfrak{g} \ell_{-} W$ together with the surjective morphism $\mathfrak{g} \ell_{-} W \xrightarrow{\partial} O W, a \longmapsto a-{ }^{t} a$, is an $O W$-crossed module. The pairing $\{\}:, \mathfrak{g} \ell_{-} W \times \mathfrak{g} \ell_{-} W \rightarrow \operatorname{ker} \partial$ (see 1.1.1) is given by formula $\left\{a_{1}, a_{2}\right\}=\left[a_{1},{ }^{t} a_{2}\right]+\left[a_{2},{ }^{t} a_{1}\right]$. Clearly $\operatorname{ker} \partial \subset \mathfrak{g} \ell_{0} W$. The usual trace $\operatorname{tr}(1.2 .4)$ vanishes on $\{\operatorname{ker} \partial, \operatorname{ker} \partial\} ;$ put $o \operatorname{tr}=1 / 2 t r$. By 1.1.3 we get a central C-extension $\widetilde{O W}^{\prime}=\left(\mathfrak{g} \ell_{-} W\right)_{o t r}$ of $O W$.

We define a canonical isomorphism $\alpha: \widetilde{O W}^{\prime} \Rightarrow \widetilde{O W}$ of central \mathbb{C}-extensions of $O W$ as follows. One has a canonical identification $W \otimes W \simeq \mathfrak{g} \ell_{00} W, w_{1} \otimes w_{2}$ corresponds to a linear operator $w \longmapsto\left(w_{2}, w\right) w_{1}$. This isomorphism extends by continuity to the isomorphism of completions $\lim _{\leftarrow} W \otimes\left(W / W_{+}\right) \simeq \mathfrak{g} \ell_{-} W$. Hence the $\operatorname{map} \mathfrak{g} \ell_{00} W=W \otimes W \rightarrow \operatorname{Cliff}(W,()),, a_{1} \otimes a_{2} \longmapsto a_{1} a_{2}$, extends by continuity to the map $\alpha^{\#}: \mathfrak{g} \ell _W \rightarrow C \ell W$. Clearly $\alpha^{\#} \operatorname{maps} \mathfrak{g} \ell _W$ to $\mathfrak{a} W^{0}=\widetilde{O W}$. For $a_{1}, a_{2} \in$ $\mathfrak{g} \ell-W, w \in W$ one has $\left[\alpha^{\#}(a), w\right]=\partial(a)(w),\left[\alpha^{\#}\left(a_{1}\right), \alpha^{\#}\left(a_{2}\right)\right]=\alpha^{\#}\left(\left[\partial a_{1}, a_{2}\right]\right)$. For $b \in \operatorname{ker} \partial \cap \mathfrak{g} \ell_{00} W$ one has $b=1 / 2\left(b+{ }^{t} b\right)=\Sigma\left(w_{i} \otimes w_{i}^{\prime}+w_{i}^{\prime} \otimes w_{i}\right)$, hence $\alpha^{\#}(b)=\Sigma\left(w_{i}, w_{i}^{\prime}\right)=o \operatorname{tr} b$; by continuity this holds for any $b \in$ ker ∂. This implies that $\alpha^{\#}$ yields a map $\alpha: \mathfrak{g} \ell_{-} W / \operatorname{ker} \operatorname{tr}=\widetilde{O W}^{\prime} \rightarrow \widetilde{O W}$, which is the desired isomorphism of \mathbb{C}-extensions of $O W$.
1.4.8 Let $L_{+} \subset W$ be a maximal isotropic lattice; denote by $P_{L_{+}} O \subset O W$ the "parabolic" subalgebra of operators that preserve L_{+}. One has a canonical Lie algebra splitting $s_{L_{+}}: P_{L_{+}} O \rightarrow \widetilde{O W}$ defined by formula $s_{L_{+}}(a)=\alpha^{\#}(b)$, where $b \in \mathfrak{g} \ell_{-} W$ is any operator such that $\partial(b)=a, b\left(L_{+}\right)=0,(a-b)(W) \subset L_{+}$. For any Clifford module M one has $s_{L_{+}}(a)\left(M^{L_{+}}\right)=0$ (and $s_{L_{+}}(a)$ is a unique lifting of a to $\widetilde{O W}$ with this property).

Similarly, let $L_{-} \subset W$ be a maximal isotropic colattice. The corresponding parabolic subalgebra $P_{L_{-}} O \subset O W$ also has a canonical Lie algebra splitting $s_{L_{-}}$: $P_{L_{-}} O \rightarrow \widetilde{O W}$ defined by formula $s_{L_{-}}(a)=\alpha^{\#}(b)$, where $b \in \mathfrak{g} \ell_{-} W$ is an operator such that $\partial(b)=a,\left.b\right|_{L_{-}}=\left.a\right|_{L_{-}}, b(W) \subset L_{-}$. For a Clifford module one has $s_{L_{-}}(a)\left(M_{L_{-}}\right)=0$ (i.e., $\left.s_{L_{-}}(a)(M) \subset L_{-} M\right)$.

According to 1.4.4 for $a \in P_{L_{+}} O \cap P_{L_{-}} O$ one has $\left(s_{L_{-}}-s_{L_{+}}\right)(a)=\operatorname{tr}_{L_{-} \cap L_{+}}(a) \in$
$\mathbb{C} \subset \widetilde{O W}$. If L_{+}^{\prime} is another maximal isotropic lattice, then for $a \in P_{L_{+}} O \cap P_{L_{+}^{\prime}} O$ one has $\left(s_{L_{+}^{\prime}}-s_{L_{+}}\right)(a)=t r_{L_{+} / L_{+} \cap L_{+}^{\prime}}(a)$.
1.4.9 Let V be any Tate's vector space. Then $W:=V \oplus V^{*}$, equipped with the form $\left(\left(v, v^{*}\right),\left(v^{\prime}, v^{*^{\prime}}\right)\right):=v^{*}\left(v^{\prime}\right)+v^{*^{\prime}}(v)$, is an even-dimensional space. For any lattice $V_{+} \subset V$ and a colattice $V_{-} \subset V$ a lattice $L\left(V_{+}\right)=V_{+} \oplus V_{+}^{\perp} \subset W$ and a colattice $L\left(V_{-}\right)=V_{-} \oplus V_{-}^{\perp} \subset W$ are maximal isotropic ones; clearly one has a canonical isomorphisms

$$
\begin{aligned}
& \lambda\left(L\left(V_{+}\right): L\left(V_{+}^{\prime}\right)\right)=\operatorname{det}\left(V_{+} / V_{+} \cap V_{+}^{\prime}\right) / \operatorname{det}\left(V_{+}^{\prime} / V_{+} \cap V_{+}^{\prime}\right) \\
& \lambda\left(L\left(V_{+}\right), L\left(V_{-}\right)\right)=\operatorname{det}\left(V_{+} \cap V_{-}\right) / \operatorname{det}\left(V / V_{+}+V_{-}\right)
\end{aligned}
$$

The algebra $C \ell W$ gets a natural \mathbb{Z}-grading such that the subspaces $V, V^{*}(\subset$ $W \subset C \ell W)$ lie in degrees $1,-1$, respectively. Any Clifford module M has a canonical $\operatorname{Dim}_{V^{-}}$grading such that $M^{L\left(V_{+}\right)}$lies in degree $\operatorname{dim} V_{+}$.

The embedding $i: \mathfrak{g} \ell V \hookrightarrow O W, \ell \longmapsto \ell \oplus\left(-^{t} \ell\right)$, lifts canonically to a morphism of \mathbb{C}-extensions $\widetilde{i}: \widetilde{\mathfrak{g} \ell} V \longrightarrow \widetilde{O W}$ constructed as follows. For $\ell_{+} \in \mathfrak{g} \ell_{+} V$ choose a lattice $V_{+} \supset I m \ell_{+}$. Then $i\left(\ell_{+}\right) \in P_{L\left(V_{+}\right)} O$. Put $\widetilde{i}_{+}\left(\ell_{+}\right)=s_{L\left(V_{+}\right)} i\left(\ell_{+}\right) \in \widetilde{O W}$; by 1.4.8 this element is independent of a choice of V_{+}. Similarly, for $\ell_{-} \in \mathfrak{g} \ell_{-} V$ choose a lattice $V_{+}^{\prime} \subset$ Ker ℓ_{-}; then $i\left(\ell_{-}\right) \in P_{L\left(V_{+}^{\prime}\right)} O$, and $\widetilde{i}_{-}\left(\ell_{-}\right):=s_{L\left(V_{+}^{\prime}\right)} i\left(\ell_{-}\right) \in \widetilde{O W}$ depends on ℓ_{-}only. For $\ell_{0} \in \mathfrak{g} \ell_{0} V$ one has $\left(\widetilde{i}_{-}-\widetilde{i}_{+}\right)\left(\ell_{0}\right)=\operatorname{tr}_{L\left(V_{+}\right) / L\left(V_{+}\right) \cap L\left(V_{+}^{\prime}\right)}\left(i \ell_{0}\right)=\operatorname{tr} \ell_{0}$ by 1.4.8. According to 1.2 .3 we get a canonical morphism $\widetilde{i}: \widetilde{\mathfrak{g} \ell}{ }_{-1} V \longrightarrow \widetilde{O W}$ of \mathbb{C}-extensions such that $\widetilde{i} s_{ \pm}=\widetilde{i}_{ \pm}: \mathfrak{g} \ell_{ \pm} V \longrightarrow \widetilde{O W}$ (here $\widetilde{\mathfrak{g} \ell}{ }_{-1} V=(\tilde{\mathfrak{g} \ell} V)_{-1}$, see 1.1.7).

The action of $\tilde{\mathfrak{g} \ell} V$ on M preserves the $D i m_{V}$-grading. If M is irreducible, then it is natural to denote the $\widetilde{\mathfrak{g} \ell}{ }_{-1} V$-module $M^{a}, a \in \operatorname{Dim} V$, as $\Lambda^{a} V$ ("semi-infinite wedge power"). Note that $\wedge^{a} V$ (as well as M itself) is defined up to tensorization with 1-dimensional \mathbb{C}-vector space.
1.4.10 We will need a version "with formal parameter" of the above constructions. Namely, let $\mathcal{O}=\mathbb{C}[[q]]$ be our base ring. Consider a flat complete \mathcal{O}-module V (so $\left.\lim _{\leftarrow} V / q^{n} V\right)$. A Tate structure on V is given by Tate's \mathbb{C}-vector space structure on each $V / q^{n} V$ such that each short exact sequence $0 \rightarrow V / q^{m} V \xrightarrow{q^{n}} V / q^{m+n} V \rightarrow$ $V / q^{n} V \rightarrow 0$ is strongly compatible with the Tate structures (i.e., $V / q^{m} V$ is a Tate's subspace of $V / q^{m+n} V$ and $V / q^{n} V$ is the quotient space). A lattice $V_{+} \subset V$ is an \mathcal{O}-submodule such that V / V_{+}is \mathcal{O}-flat, $V_{+}=\lim V_{+} / q^{n} V_{+}$and $V_{+} / q^{n} V_{+}$is a lattice in $V / q^{n} V$ for each n. One defines a colattice $V_{-} \subset V$ in a similar way. For a Tate \mathcal{O}_{-} module V one defines its dual V^{*} in an obvious way; one has $V^{*} / q^{n} V^{*}=\left(V / q^{n} V\right)^{*}$, $V^{* *}=V$.

Let W be Tate's \mathcal{O}-module and $():, W \times W \rightarrow \mathcal{O}$ be a non-degenerate symmetric form (i.e., a symmetric isomorphism $W \underset{\sim}{*}$). Let $\operatorname{Cliff}(W)$ be the Clifford \mathcal{O} algebra of $($,$) . A Clifford module M$ is a $\operatorname{Cliff}(W)$-module such that M is flat as \mathcal{O}-module, $M=\lim _{\leftarrow} M / q^{n} M$, and $W / q^{n} W$ acts on each $M / q^{n} M$ in a continuous way (in discrete topology of $M / q^{n} M$). Such M carries the action of completed Clifford algebra

$$
C \ell W=\underset{n}{\lim } \underset{W_{+}^{(n)}}{\lim } \operatorname{Cliff}(W) / q^{n} \operatorname{Cliff}(W)+\operatorname{Cliff}(W) W_{+}^{(n)}
$$

(where $W_{+}^{(n)}$ is a lattice in $W / q^{n} W$). Clearly $M_{0} ;=M / q M$ is Clifford module for $\left(W_{0},(,)_{0}\right):=(W / q W,(,) \bmod q)$; if M^{\prime} is another Clifford module, then $\operatorname{Hom}\left(M, M^{\prime}\right)$ is a flat \mathcal{O}-module and $\operatorname{Hom}\left(M, M^{\prime}\right) / q \operatorname{Hom}\left(M, M^{\prime}\right)=\operatorname{Hom}\left(M_{0}, M_{0}^{\prime}\right)$. In particular, if $\left(W_{0},(\right.$,$)) is even-dimensional, then there exists a Clifford module$ M, unique up to isomorphism, such that M_{0} is irreducible; one has $\operatorname{EndM}=\mathcal{O}$. All the facts 1.4.3-1.4.9 have an obvious $\mathbb{C}[[q]]$-version.

§2. Tate's Residues and Virasoro-Type extensions

2.1 Tate's construction of the local extension. Let F be a 1-dimensional local field, and $\mathcal{O}_{F} \subset F$ be the corresponding local ring. A choice of uniformization parameter $t \in \mathcal{O}_{F}$ identifies \mathcal{O}_{F} with $\mathbb{C}[[t]]$, and F with $\mathbb{C}((t))$. Let E be an F vector space of dimension $n<\infty$. Denote by $\mathcal{D} E$ the algebra of F-differential operators acting on E. A choice of a basis of E identifies $\mathcal{D} E$ with the algebra of matrix differential operators $a_{N} \partial_{t}^{N}+\cdots+a_{1} \partial_{t}+a_{0}, a_{i} \in \operatorname{Mat}_{n}(F)$.
2.1.1 The space E, considered as \mathbb{C}-vector space, is actually a Tate's vector space in a canonical way. A basis of neighbourhoods of 0 is formed by \mathcal{O}_{F}-submodules of E that generate E as F-module. We will denote by $E n d E, \mathfrak{g} \ell_{ \pm} E$, etc., the corresponding algebras of endomorphisms of E, considered as Tate's \mathbb{C}-vector space.

Clearly $\mathcal{D} E \subset E n d E$. We may restrict the central extension $\tilde{\mathfrak{g} \ell} \ell$ of $\mathfrak{g} \ell E$ to $\mathcal{D} E^{\text {Lie }}$ to get a central extension $0 \rightarrow \mathbb{C} \rightarrow \widetilde{\mathcal{D E}} \rightarrow \mathcal{D} E^{\text {Lie }} \rightarrow 0$ of the Lie algebra $\mathcal{D} E^{\text {Lie }}$.

It is easy to compute a 2 -cocycle of this extension explicitly. Namely, let us choose a parameter $t \in \mathcal{O}_{F}$ and an F-basis $\left\{v_{i}\right\}$ in E. Put $E_{+}=\sum_{i} \mathcal{O}_{F} v_{i}, E_{-}=$ $\sum_{i} t^{-1} \mathbb{C}\left[t^{-1}\right] v_{i}$: this is a lattice and a colattice in E and $E=E_{+} \oplus E_{-}$. For $\ell \in \mathfrak{g} \ell E$ define the operator $\ell_{+} \in \mathfrak{g} \ell_{+} E$ by formula $\left.\ell_{+}\right|_{E_{+}}=\left.\ell\right|_{E_{+}},\left.\ell_{+}\right|_{E_{-}}=0$. Clearly this map $\mathfrak{g} \ell E \rightarrow \mathfrak{g} \ell_{+} E, \ell \longmapsto \ell_{+}$, lifts the canonical projection $\mathfrak{g} \ell E \rightarrow$ $\mathfrak{g} \ell E / \mathfrak{g} \ell_{-} E=\mathfrak{g} \ell_{+} E / \mathfrak{g} \ell_{0} E$. Hence by 1.1.4 it defines a section $\sigma: \mathfrak{g} \ell E \rightarrow \tilde{\mathfrak{g} \ell} E$; the corresponding 2-cocycle is given by formula $\ell_{1}, \ell_{2} \longmapsto \alpha\left(\ell_{1}, \ell_{2}\right)=\left[\sigma\left(\ell_{1}\right), \sigma\left(\ell_{2}\right)\right]-$ $\sigma\left(\left[\ell_{1}, \ell_{2}\right]\right)=\operatorname{tr}\left(\left[\ell_{1+}, \ell_{2+}\right]-\left[\ell_{1}, \ell_{2}\right]_{+}\right)$. Take now $\ell_{1}=A t^{a} \frac{\partial_{t}^{b}}{b!}, \ell_{2}=A^{\prime} t^{a^{\prime}} \frac{\partial_{t}^{b_{t}^{\prime}}}{b^{\prime}}$, where $A, A^{\prime} \in \operatorname{Mat}_{n}(\mathbb{C}), a, a^{\prime} \in \mathbb{Z}, b, b^{\prime} \in \mathbb{Z}_{\geq 0}$. Clearly $\alpha\left(\ell_{1}, \ell_{2}\right)=0$ if $a-b \neq b^{\prime}-a^{\prime}$. Assume that $a-b=b^{\prime}-a^{\prime}$; since α is skew-symmetric we may assume that $n=a-b \geq 0$. Then one has

$$
\alpha\left(\ell_{1}, \ell_{2}\right)=-\operatorname{Tr}\left(A A^{\prime}\right) \sum_{i=0}^{n-1}\binom{i}{b^{\prime}}\binom{i-n}{b} .
$$

2.1.2 Let $\mathcal{A} E \subset \mathcal{D} E^{\text {Lie }}$ be a Lie subalgebra that consists of operators of order ≤ 1 with scalar symbol (i.e., the operators of type $a_{0}+a_{1} \partial_{t}, a_{0} \in \operatorname{End}_{F} E, a_{1} \in F$). Denote by \mathcal{T}_{F} the Lie algebra of vector fields on F. One has a canonical short exact sequence of Lie algebras $0 \rightarrow E n d_{F} E^{L i e} \rightarrow \mathcal{A} E \xrightarrow{\sigma} \mathcal{T}_{F} \rightarrow 0, \sigma\left(a_{0}+a_{1} \partial_{t}\right)=a_{1} \partial_{t}$. Let $\widetilde{\mathcal{A E}}$ be the \mathbb{C}-extension of $\mathcal{A} E$ induced from $\widetilde{\mathcal{D} E}$. The above formulas reduce to the following ones:
$\alpha\left(A t^{a}, B t^{b}\right)=b \delta_{a}^{-b} \operatorname{tr} A B, \alpha\left(A t^{a}, t^{b+1} \partial_{t}\right)=\frac{a-a^{2}}{2} \delta_{a}^{-b} \operatorname{tr} A, \alpha\left(t^{a+1} \partial_{t}, t^{b+1} \partial_{t}\right)=\frac{n}{6}\left(a^{3}-a\right) \delta_{a}^{-b}$.
This is the Kac-Moody-Virasoro cocycle.
2.1.3 Consider the case $E=F$. One has an obvious embedding $\mathcal{T}_{F} \subset \mathcal{A} F$ which defines the \mathbb{C}-extension \widetilde{T}_{F} of \mathcal{T}_{F} with cocycle $\alpha_{V i r}\left(t^{a+1} \partial_{t}, t^{b+1} \partial_{t}\right)=\frac{1}{6}\left(a^{3}-a\right) \delta_{a}^{-b}$. This $\widetilde{\mathcal{T}}_{F}$ is called (a local) Virasoro algebra. For any $c \in \mathbb{C}$ consider the \mathbb{C}-extension $\widetilde{\mathcal{T}}_{F c}$ (see 1.1.7). Since \mathcal{T}_{F} is perfect, $\widetilde{\mathcal{T}}_{F c}$ has no automorphisms. One knows that any central \mathbb{C}-extension of \mathcal{T}_{F} is isomorphic (canonically) to a unique $\widetilde{\mathcal{T}}_{F c}$ (one has $\left.H^{2}\left(\mathcal{T}_{F}, \mathbb{C}\right) \simeq \mathbb{C}\right)$.
2.1.4 Now consider for $j \in \mathbb{Z}$ a 1 -dimensional F-vector space $\omega_{F}^{\otimes j}$ of j-differentials (the elements of $\omega_{F}^{\otimes j}$ are tensors $f d t^{\otimes j}, f \in F$). The Lie algebra \mathcal{T}_{F} acts canonically on $\omega_{F}^{\otimes j}$ by Lie derivatives, i.e., we have a canonical embedding $\mathcal{T}_{F} \hookrightarrow \mathcal{A} \omega_{F}^{\otimes j}$. Denote by $\widetilde{\mathcal{T}}_{F}^{(j)}$ the corresponding \mathbb{C}-extensions of \mathcal{T}_{F} induced from ${\widetilde{\mathcal{A}} \omega_{F} \otimes j}^{\otimes j}$. The explicit formula for this action is $\varphi \partial_{t}\left(f d t^{\otimes j}\right)=\left(\varphi \partial_{t}(f)+j f \partial_{t}(\varphi)\right) d t^{\otimes j}$, i.e., with respect to the basis $d t^{\otimes j}$ a field $t^{a+1} \partial_{t}$ acts as $t^{a+1} \partial_{t}+j(a+1) t^{a}$. The formulas 2.1.2 immediately show that a 2-cocycle for $\widetilde{\mathcal{T}}_{F}^{(j)}$ coincides with $\left(6 j^{2}-6 j+1\right) \alpha_{V i r}$. Hence $\widetilde{\mathcal{T}}_{F}^{(j)}$ coincides with $\widetilde{\mathcal{T}}_{F\left(6 j^{2}-6 j+1\right)}$.
2.2 A geometric construction of a global extension. Let us describe the above extensions in geometric language.
2.2.1 Let C be a smooth algebraic curve (not necessary compact). Denote by $\omega=$ Ω_{C}^{1} the sheaf of 1-forms, and by $\mathcal{H}=H_{D R}^{1}=\Omega_{C}^{1} / d \mathcal{O}_{C}$ the de Rham cohomology sheaf (in the Zariski topology of C). For a vector bundle E on C let $\mathcal{D}=\mathcal{D} E$ denote the sheaf of differential operators on E, and $E^{\circ}:=\omega E^{*}$. Then E is a left \mathcal{D}-module, E° is a right \mathcal{D}-module (so one has a canonical anti-isomorphism $t: \mathcal{D} E \rightarrow \mathcal{D} E^{0}$, see, e.g., $[\mathrm{B}])$, and the pairing $E^{0} \otimes E \xrightarrow{\langle \rangle} \omega$ quotients to the pairing $E^{0} \bigotimes_{\mathcal{D} E} E \rightarrow \mathcal{H}$.

Let $\Delta: C \rightarrow C \times C$ be the diagonal; we will identify the sheaves on C with ones on $C \times C$ supported on the image of Δ. Consider the sheaf $E \boxtimes E^{0}:=$ $p_{1}^{*} E \otimes p_{2}^{*} E^{0}$ on $C \times C$. Recall that one has a canonical isomorphism $\delta: E \boxtimes$ $E^{0}(\infty \Delta) / E \boxtimes E^{0} \underset{\sim}{D}$. Explicitly, for a "kernel" $k\left(t_{1}, t_{2}\right)=e\left(t_{1}\right) e^{0}\left(t_{2}\right) f\left(t_{1}, t_{2}\right)$, $e \in E, e^{0} \in E^{0}, f\left(t_{1}, t_{2}\right) \in \mathcal{O}_{C \times C}(\infty \Delta)$, the corresponding differential operator $\delta(k)$ acts on sections of E according to formula $(\delta(k) \ell)\left(t_{1}\right)=\operatorname{Res}_{t_{2}=t_{1}}\left\langle k\left(t_{1}, t_{2}\right) \ell\left(t_{2}\right)\right\rangle=$ $e\left(t_{1}\right) \operatorname{Res}_{t_{2}=t_{1}} f\left(t_{1}, t_{2}\right)\left\langle e^{0}\left(t_{2}\right) \ell\left(t_{2}\right)\right\rangle$. Here $\ell \in E,\left\langle e^{0}\left(t_{2}\right) \ell\left(t_{2}\right)\right\rangle \in \omega,\left\langle k\left(t_{1}, t_{2}\right) \ell\left(t_{2}\right)\right\rangle \in$ $E \boxtimes \omega(\infty \Delta)$; we take the residue along the t_{2} variable. The right action of $\delta(k)$ on sections of E^{0} is given by formula $\left.(m \delta(k))\left(t_{2}\right)=\operatorname{Res}_{t_{1}=t_{2}} f\left(x, t_{2}\right)\left\langle m\left(t_{1}\right) e\left(t_{1}\right)\right\rangle\right) e^{0}\left(t_{2}\right)$.
2.2.2 Put $\mathcal{P} E_{n}:=\lim _{\leftarrow} E \boxtimes E^{0}((n+1) \Delta) / E \boxtimes E^{0}(-i \Delta), \mathcal{P} E=\cup \mathcal{P} E_{n}$, so we have an isomorphism $\delta^{i}: \mathcal{P} E / \mathcal{P} E_{-1} \underset{\sim}{\mathcal{D} E}$. Clearly $\mathcal{P} E$ is a $\mathcal{D} E$-bimodule (the left and right actions are the obvious actions along the first, resp. the second variable), and δ is a morphism of bimodules, i.e., $\mathcal{P} E$ is a $D E$-crossed module (see 1.1). Let $t: \mathcal{P} E \rightarrow \mathcal{P} E^{0}$ be minus the isomorphism "transposition of coordinates" (here minus comes since E, E^{0} have "odd" nature). Then for $k \in \mathcal{P} E$ one has ${ }^{t} \delta(k)=\delta\left({ }^{t} k\right)$, and ${ }^{t}$ is an "anti-isomorphism" between crossed modules.

The pairing $\left\rangle: \mathcal{P} E \bigotimes_{\mathcal{D} E} \mathcal{P} E \rightarrow \mathcal{P} E_{-1}\right.$ from 1.1, $\left\langle k_{1}, k_{2}\right\rangle=\delta\left(k_{1}\right) k_{2}-k_{1} \delta\left(k_{2}\right)$, is given by formula

$$
\left\langle k_{1} k_{2}\right\rangle\left(t_{1}, t_{2}\right)=\left(\operatorname{Res}_{z=t_{1}}+\operatorname{Res}_{z=t_{2}}\right)\left\langle k_{1}\left(t_{1}, z\right) k_{2}\left(z, t_{2}\right)\right\rangle=\int_{\gamma_{t_{1}, t_{2}}}\left\langle k_{1}\left(t_{1}, z\right) k_{2}\left(z, t_{2}\right)\right\rangle
$$

Here $\left\langle k_{1}\left(t_{1}, z\right) k_{2}\left(z, t_{2}\right)\right\rangle$ is the 1-form of variable z (with values in $E_{t_{1}} \otimes E_{t_{2}}^{0}$), and $\gamma_{t_{1}, t_{2}}$ is a loop round $z=t_{1}$ and $z=t_{2}$. The corresponding Lie algebra pairing $\left\}: S^{2} \mathcal{P} E \rightarrow \mathcal{P} E_{-1}\right.$ is $\left\{k_{1}, k_{2}\right\}:=\left\langle k_{1}, k_{2}\right\rangle+\left\langle k_{2}, k_{1}\right\rangle$. Let $\operatorname{tr}: \mathcal{P} E_{-1} \rightarrow \omega$ be the composition $\mathcal{P} E_{-1} \rightarrow \mathcal{P} E_{-1} / \mathcal{P} E_{-2}=E \otimes E^{0} \rightarrow \omega$. We have

$$
\operatorname{tr}\left\{k_{1}, k_{2}\right\}=\left(\operatorname{Res}_{1}-\operatorname{Res}_{2}\right)\left\langle k_{1}\left(t_{1}, t_{2}\right) k_{2}\left(t_{2}, t_{1}\right)\right\rangle
$$

Here $k_{2}\left(t_{2}, t_{1}\right)={ }^{t} k_{2} \in \mathcal{P} E^{0}$ is k_{2} with coodinates transposed, $\left\langle k_{1}\left(t_{1}, t_{2}\right) k_{2}\left(t_{2}, t_{1}\right)\right\rangle$ is a 2 -form with poles along the diagonal and $\operatorname{Res}_{1}, \operatorname{Res}_{2}: \Omega_{C \times C}^{2}(\infty \Delta) \rightarrow \omega_{C}$ are residues around the diagonal along the first and second coordinates, respectively. Clearly, $\operatorname{Res}_{1}-\operatorname{Res}_{2}$ vanishes on $\Omega_{C \times C}^{2}(\Delta)$ and has image in exact forms. In fact, there is a canonical map $\widetilde{R e s}: \Omega_{C \times C}^{2}(\infty \Delta) / \Omega_{C \times C}^{2}(\Delta) \rightarrow \mathcal{O}_{C}$ such that $d \widetilde{\text { Res }}=$ $R e s_{1}-\operatorname{Res}_{2}($ see $[\mathrm{B} \mathrm{Sch}](2.11))$. An explicit formula for $\widetilde{R e s}$ is

$$
\widetilde{\operatorname{Res}}\left(f\left(t_{1}, t_{2}\right)\left(t_{1}-t_{2}\right)^{-i-1} d t_{1} \wedge d t_{2}\right)=\left.i!^{-1} \sum_{a+b=i-1} \partial_{t_{1}}^{a} \partial_{t_{2}}^{b} f\left(t_{1}, t_{2}\right)\right|_{t_{1}=t_{2}=t} .
$$

Here $f\left(t_{1}, t_{2}\right) \in \mathcal{O}_{C \times C}$. Hence one has $\operatorname{tr}\left\{k_{1}, k\right\}=d \widetilde{\operatorname{Res}}\left\langle k_{1},{ }^{t} k_{2}\right\rangle$. Note that the symmetric pairing $\mathcal{P} E \otimes \mathcal{P} E \rightarrow \mathcal{O}_{C}, k_{1}, k_{2} \longmapsto\left\{k_{1}, k_{2}\right\}^{\sim}:=\widehat{\operatorname{Res}\left\langle k_{1},{ }^{t} k_{2}\right\rangle \text { vanishes } .}$ on $\sum_{a+b=-1} \mathcal{P} E_{a} \otimes \mathcal{P} E_{b} ;$ in particular, it induces the pairing on $\mathcal{P} E_{1} / \mathcal{P} E_{-2}$.

According to 1.1.2, 1.1.3 we get a central extension $\widetilde{D E}$ of the Lie algebra $D E^{L i e}$ by \mathcal{H} defined by a following commutative diagram:

2.2.3 Denote by $\mathcal{A} E \subset \mathcal{D} E^{\text {Lie }}$ the Lie subalgebra of differential operators of order ≤ 1 with scalar symbol. In other words, $\mathcal{A} E$ is the Lie algebra of infinitesimal symmetries of (C, E) : the elements of $\mathcal{A} E$ are pairs $(\tau, \widetilde{\tau})$, where $\tau \in \mathcal{P}_{C}$ is a vector field, and $\widetilde{\tau}$ is an action of τ on E (so $\widetilde{\tau}$ is an order 1 differential operator with symbol equal to τ).

The constructions of 2.2.2 give rise to a differential graded Lie algebra $\mathcal{A} E$ defined as follows. One has $\mathcal{A}^{0} E=\mathcal{A} E, \mathcal{A}^{-1} E$ is pre-image of $\mathcal{A} E \subset \mathcal{D} E$ by the projection $\mathcal{P} E / \operatorname{ker} \operatorname{tr} \xrightarrow{\delta} \mathcal{D}_{E}$ (so we have short exact sequence $0 \rightarrow \omega \rightarrow \mathcal{A}^{-1} E \xrightarrow{\delta} \mathcal{A} E \rightarrow 0$), and finally $\mathcal{A}^{-2} E=\mathcal{O}_{C}$; all the other components of $\mathcal{A} E$ are zero ones. The differential $d: \mathcal{A}^{-2} E=\mathcal{O}_{C} \rightarrow \omega \subset \mathcal{A}^{-1} E$ is the de Rham differential, and $\mathcal{A}^{-1} E \rightarrow$ $\mathcal{A} E$ is δ. The bracket components [$]^{i j}: \mathcal{A}^{i} E \times \mathcal{A}^{j} E \rightarrow \mathcal{A}^{i+j} E$ are the following. [$]^{00}$ is the usual bracket [$]^{0-1}$ comes from $\mathcal{D}^{\text {Lie }}$-action on $\mathcal{P} E,[]^{0,-2}$ is the action of $\mathcal{A} E$ on \mathcal{O}_{C} via $\sigma: \mathcal{A} E \rightarrow \mathcal{T}_{C}$, and []$^{-1-1}$ is $\{,\}^{\sim}$ defined above. So $\mathcal{A} \cdot E$ contains de Rham complex $\Omega_{C}[2]$ as an ideal, $\mathcal{A} \cdot E / \Omega_{C}[2]$ is acyclic and the central extension $\widetilde{\mathcal{A}} E=\mathcal{A}^{-1} E / d \mathcal{A}^{-2} E$ of $\mathcal{A} E$ by \mathcal{H} (see 1.13) coincides with restriction of $\widetilde{\mathcal{D}} E$ to $\mathcal{A} E \subset \mathcal{D} E^{\text {Lie }}$.
2.2.4 Consider the case $E=\mathcal{O}_{C}$. An obvious embedding $\mathcal{P}_{C} \hookrightarrow \mathcal{A} \mathcal{O}_{C}$ defines the central \mathcal{H}-extension $\widetilde{\mathcal{P}}_{C}$ called a global Virasoro algebra. As in 2.1.3 for $c \in \mathbb{C}$ we will denote by $\widetilde{\mathcal{P}}_{C c}$ the \mathcal{H}-extension of \mathcal{P}_{C} which is c-multiple of $\widetilde{\mathcal{P}}_{C}$. Since \mathcal{P}_{C} is perfect (see 2.5 below), the extensions $\widetilde{\mathcal{P}}_{C c}$ have no automorphisms.
2.2.5 Consider for $j \in \mathbb{Z}$ the sheaf $\omega^{\otimes j}$. The natural action of \mathcal{P}_{C} on $\omega^{\otimes j}$ by Lie derivatives defines a canonical embedding of Lie algebras $\mathcal{P}_{C} \hookrightarrow \mathcal{A} \omega^{\otimes j}$. Denote
by $\widetilde{\mathcal{P}}_{C}^{(j)}$ the induced \mathcal{H}-extension $\left.\widetilde{\mathcal{A}} \omega^{\otimes j}\right|_{\mathcal{P}_{C}}$. Given a local coordinate t, one may consider elements of $\widetilde{\mathcal{P}}_{C}^{(j)}$ as expressions

$$
\varphi_{(f, g)}^{(j)}=\left[\frac{f\left(t_{1}\right)}{\left(t_{2}-t_{1}\right)^{2}}+j \frac{\partial_{t_{1}} f\left(t_{1}\right)}{t_{2}-t_{1}}+g\left(t_{1}\right)\right] d t_{1}^{\otimes j} d t_{2}^{\otimes 1-j}
$$

where $f, g \in \mathcal{O}_{C}$, modulo the ones of type $\varphi_{\left(0, \partial_{t} h\right)}$. The map $\widetilde{\mathcal{P}}_{C}=\widetilde{\mathcal{P}}_{C}^{(0)} \rightarrow \widetilde{\mathcal{P}}_{C}^{(j)}$ defined by formula $\varphi_{(f, g)}^{(0)} \longmapsto \varphi_{\left(f,\left(6 j^{2}-6 j+1\right) g\right)}^{(j)}$ is a morphism of Lie algebras, and does not depend on a choice of a local coordinate t. Hence it defines a canonical isomorphism $\widetilde{\mathcal{P}}_{C\left(6 j^{2}-6 j+1\right)} \underset{\sim}{\sim} \widetilde{\mathcal{P}}_{C}^{(j)}$ of \mathcal{H}-extensions of C (see [B Sch]). Unfortunately, we do not know any "coordinate-free" explanation of this isomorphism.
2.3 Compatibility with Tate's construction. Let $x \in C$ be a point. We may consider the constructions of 2.2 locally at x. Namely, let \mathcal{O}_{x}^{\wedge} be the completed local ring of C at $x, \mathcal{O}_{(x, x)}^{\wedge}$ be the completed local ring of $C \times C$ at $(x, x), F_{x} \supset \mathcal{O}_{x}^{\wedge}$ the local field at x, so if t is a parameter at x then $\mathcal{O}_{(x, x)}^{\wedge}=\mathbb{C}\left[\left[t_{1}, t_{2}\right]\right]$. Denote by R the localization of $\mathcal{O}_{(x, x)}^{\wedge}$ with respect to $t_{1}^{-1}, t_{2}^{-1},\left(t_{1}-t_{2}\right)^{-1}$. Put $\omega_{(x)}:=F_{x} \otimes_{\mathcal{O}}$ $\omega, E_{(x)}:=F_{x} \otimes_{\mathcal{O}} E, \mathcal{D}_{(x)}=\mathcal{D} E_{(x)}:=F_{x} \otimes_{\mathcal{O}} \mathcal{D} E_{(x)}, \mathcal{P}_{(x)}=\mathcal{P} E_{(x)}=E \otimes_{\mathcal{O}} R \otimes_{\mathcal{O}} E^{0}:$ these are local versions of the objects in 2.2. We can manage all the constructions of 2.2 purely locally. In particular we get the central extension $\widetilde{\mathcal{D}}_{(x)}$ of $\widetilde{\mathcal{D}}_{(x)}^{L i e}$ by $\mathcal{H}_{(x)}=\omega_{(x)} / d F_{x} \xrightarrow[\sim]{\text { Res }} \mathbb{C}$.
2.3.1 By 2.1, $E_{(x)}$ is a Tate's vector space, and we have the embedding $i_{x}: \mathcal{D}_{(x)} \hookrightarrow$ $\operatorname{EndE} E_{(x)}$. For $k=k\left(t_{1}, t_{2}\right) \in \mathcal{P}_{(x)}$ let $k_{-}, k_{+} \in \operatorname{EndE} E_{(x)}$ be the linear operator defined by formulas

$$
\left[k_{-}(e)\right](t)=-\operatorname{Res}_{t_{2}=0}\left\langle k\left(t, t_{2}\right) e\left(t_{2}\right)\right\rangle,\left[k_{+}(e)\right](t)=\left(\operatorname{Res}_{t_{2}=t_{1}}+\operatorname{Res}_{t_{2}=0}\right)\left\langle k\left(t, t_{2}\right) e\left(t_{2}\right)\right\rangle .
$$

Here $e(t) \in E_{(x)},\left\langle k\left(t, t_{2}\right) e\left(t_{2}\right)\right\rangle \in E \otimes R \otimes \omega$, and the residues are taken along the second variable. According to 2.2 .1 one has $i_{x} \delta(k)=k_{-}+k_{+}$. Denote by $i_{x \pm}^{\#}: \mathcal{P}_{(x)} \rightarrow \operatorname{EndE} E_{(x)}$ the maps $i_{x \pm}^{\#}(k)=k_{ \pm}$.
2.3.2 Lemma. (i) For $k \in \mathcal{P}_{(x)}$ one has $k_{ \pm} \in E n d_{ \pm} E_{(x)}$.
(ii) The commutative diagram

is an i_{x}-morphism of crossed modules (see 1.1).
(iii) For $k \in \operatorname{ker} \delta \subset \mathcal{P}_{(x)}$ one has $\operatorname{Res}_{x} \operatorname{tr}(k)=\operatorname{tri}_{x}^{\#}(k)\left(=\operatorname{tr} k_{+}=-\operatorname{tr} k_{-}\right)$.
(iv) Let us identify $E_{(x)}^{0}$ with $E_{(x)}^{*}$ via the pairing (,): $E \times E^{0} \rightarrow \mathbb{C},\left(e, e^{0}\right)=$ $\operatorname{Res}\left\langle e, e^{0}\right\rangle$; this gives the anti-isomorphism $t: \operatorname{End} E_{(x)} \rightarrow E n d E_{(x)}^{0}$. Then the diagram

commutes.
Proof. Assume for simplicity of notation that $E=\mathcal{O}_{C}$, so $E_{(x)}=F_{x}$. The statement $k_{-} \in E n d_{-} F_{x}$ from (i) is clear, since k_{-}vanishes on the lattice $t^{N} \mathcal{O}_{x}^{\wedge} \subset F_{x}$ for N equal to the order of pole of $k\left(t_{1}, t_{2}\right)$ at divisor $t_{2}=0$. Now the fact that $k_{+} \in E n d_{+} F_{x}$ will follow from (iv). The statements (ii), (iii) are obvious. To prove (iv) let us compute the residues integrating the forms along cycles. Let $\gamma_{ \pm}(t)$ be the following loops in the t_{2}-complex plane $t_{1}=t$:

Then for any function $f \in F_{x}$ one has $\left[k_{ \pm}(f)\right](t)=\frac{1}{2 \pi i} \int_{\gamma_{ \pm}(t)} k\left(t, t_{2}\right) f\left(t_{2}\right)$.
Denote by U a small neighbourhood of zero in $\mathbb{C} \times \mathbb{C}$ with coordinate cross and diagonal removed. One has the following 2 -dimensional cycles $C_{ \pm}$in U. Fix a small real numbers $0<\epsilon<r \ll 1$. Then $C_{+}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C} \times \mathbb{C}:\left|z_{1}\right|=\epsilon,\left|z_{2}\right|=r\right\}$, $C_{-}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C} \times \mathbb{C}:\left|z_{1}\right|=r,\left|z_{2}\right|=\epsilon\right\}$; the orientation of C_{+}is a standard orientation of $S^{1} \times S^{1}$, and the one of C_{-}is minus the standard orientation.

The above formula for the action of $k_{ \pm}$implies that for a 1-form $g \in F_{x}^{0}=\omega_{(x)}$ one has $\left(g, k_{ \pm}(f)\right)=\int_{C_{ \pm}} g\left(t_{1}\right) k\left(t_{1}, t_{2}\right) f\left(t_{2}\right)$. Since the transposition of coordinates identifies C_{+}with C_{-}, this implies that $\left(g, k_{+}(f)\right)=\left(\left({ }^{t} k\right)_{-}(g), f\right)$.
2.3.3 Now the morphism $i_{x}^{\#}$ 2.3.2(ii) of crossed modules together with compatibility 2.3.2(iii) defines the morphism of the corresponding \mathbb{C}-extensions $\widetilde{i}_{x}: \widetilde{\mathcal{D}}_{(x)} \rightarrow$ $\widetilde{\mathfrak{g} \ell} E_{(x)}, \widetilde{i}_{x}(k)=s_{+}\left(k_{+}\right)+s_{-}\left(k_{-}\right)$, or, equivalently, the isomorphism of \mathbb{C}-extensions $\widetilde{D}_{(x)} \underset{\mathcal{D} E}{(x)}($ see 2.1.1).
2.3.4 Assume now that our curve C is compact. Let $X=\left\{x_{i}\right\} \subset C$ be a finite non empty set of points, and E be a vector bundle on $U=C \backslash X$. Put $E_{(X)}=$ $\Pi E_{\left(x_{i}\right)}, \mathcal{D}_{(X)}=\Pi \mathcal{D}_{\left(x_{i}\right)}$. Denote by $\widetilde{\mathcal{D}}_{(X)}$, a \mathbb{C}-extension of $\mathcal{D}_{(X)}^{L i e}$ which is the Baer sum of \mathbb{C}-extensions $\mathcal{D}_{\left(x_{i}\right)}$, so $\widetilde{\mathcal{D}}_{(X)}=\Pi \widetilde{\mathcal{D}}_{\left(x_{i}\right)} /\left\{\left(a_{i}\right) \in \mathbb{C}^{X}: \sum a_{i}=0\right\}$. Clearly $\widetilde{\mathcal{D}}_{(X)}$ coincides with the \mathbb{C}-extension $\widetilde{\mathcal{D}} E_{(X)}$ induced from $\widetilde{\mathfrak{g} \ell} E_{(X)}$ via the embedding $\mathcal{D}_{(X)} \hookrightarrow \prod$ End $E_{\left(x_{i}\right)} \hookrightarrow$ End $E_{(X)}$.

Put $\mathcal{D}_{U}:=H^{0}\left(U, \mathcal{D} E_{U}\right)$ and consider the central extension $0 \rightarrow H_{D R}^{1}(U) \rightarrow$ $\widetilde{\mathcal{D}}_{U} \rightarrow \mathcal{D}_{U} \rightarrow 0$ constructed in 2.2.2. One has the "localization around $x_{i} "$ maps $\mathcal{D}_{U} \hookrightarrow \prod \mathcal{D}_{\left(x_{i}\right)}, \widetilde{\mathcal{D}}_{U} \rightarrow \prod \widetilde{\mathcal{D}}_{\left(x_{i}\right)}$. The composition $\widetilde{\mathcal{D}}_{U} \rightarrow \prod \widetilde{\mathcal{D}}_{\left(x_{i}\right)} \rightarrow \widetilde{\mathcal{D}}_{(X)}$ vanishes on $H_{D R}^{1}(U)$ (since $\sum_{X} R e s_{x_{i}}=0$). Hence it defines a canonical morphism s_{X} : $\mathcal{D}_{U}^{\text {Lie }} \rightarrow \widetilde{\mathcal{D}}_{(X)}$ that lifts the embedding $\mathcal{D}_{U} \hookrightarrow \mathcal{D}_{(X)}$.

This morphism could be constructed by pure linear algebra means. Namely, consider the colattice $E_{U}=H^{0}(U, E) \subset E_{(X)}$. Clearly ${\underset{\sim}{\mathcal{D}}}_{U}^{L i e} \subset P_{E_{U}} \subset \mathfrak{g} \ell E_{(X)}$, hence we have the splitting $s_{E_{U} \mid \mathcal{D}_{U}}: \mathcal{D}_{U}^{L i e} \rightarrow \widetilde{\mathcal{D}} E_{(X)}=\widetilde{\mathcal{D}}_{(X)}$ (see 1.2.5).
2.3.5 Lemma. This splitting coincides with the above s_{X}.

Proof. Let $\partial \in \mathcal{D}_{U}$ be a differential operator. Choose a section $k \in H^{0}(U \times$ $\left.U, E \boxtimes E^{0}(\infty \Delta)\right)$ such that $\delta(k)=\partial$. Denote by $k_{-}=\left(k_{-}^{x_{i}}\right) \in \operatorname{Hom}\left(E_{(X)}, E_{U}\right)$ the morphism given by formula $k_{-}\left(e_{x_{i}}\right)=\Sigma k_{-}^{x_{i}}\left(e_{x_{i}}\right), k_{-}^{x_{i}}\left(e_{x_{i}}\right)=-\operatorname{Res}_{x_{i}}\left\langle k \cdot e_{x_{i}}\right\rangle \in E_{U}$. Here $e_{x_{i}} \in E_{x_{i}},\left\langle k \cdot e_{x_{i}}\right\rangle \in H^{0}\left(U \times \operatorname{SpecF}_{x_{i}}, E \boxtimes \omega(\infty \Delta)\right)$ is a section obtained by convolution of k and $e_{x_{i}}$ (where $e_{x_{i}}$ is considered as a section of $\mathcal{O}_{U} \boxtimes E_{\left(x_{i}\right)}$ independent of first variable), and $\operatorname{Res}_{x_{i}}$ is residue along the second variable at x_{i}. Clearly k_{-}is a morphism of Tate spaces (here E_{U} is a discrete space).

Let $j=\left(j_{x_{i}}\right): E_{U} \hookrightarrow E_{(X)}$ be the embedding. The residue formula implies that for $e \in E_{U}$ one has $k_{-}(j(e))=\partial(e)$. Hence $j \circ k_{-} \in P_{E_{U}} \subset \mathfrak{g} \ell E_{(X)}$, one has $j \circ k_{-} \in \mathfrak{g} \ell_{-} E_{(X)}, \partial-j \circ k_{-} \in \mathfrak{g} \ell_{+} E_{(X)}$, and, according to 1.2.5, $s_{E_{U}}(\partial)$ coincides with $s_{-}\left(j \circ k_{-}\right)+s_{+}\left(\partial-j \circ k_{-}\right)$.

Now consider $j \circ k_{-}$as a matrix $\left(j \circ k_{-}\right)_{x_{j}}^{x_{i}} \in \operatorname{Hom}\left(E_{\left(x_{i}\right)}, E_{\left(x_{j}\right)}\right)$. Let $j \circ k_{-}^{\text {diag }}=$ $\Sigma\left(j \circ k_{-}\right)_{x_{i}}^{x_{i}} \in E n d E_{(X)}$ be the diagonal part of $j \circ k_{-}$. According to 2.3.2, one has $s_{X}(\partial)=s_{-}\left(j \circ k_{-}^{\text {diag }}\right)+s_{+}\left(\partial-j \circ k_{-}^{\text {diag }}\right)$. Hence $s_{X}(\partial)-s_{E_{U}}(\partial)=\operatorname{tr}\left(j \circ k_{-}-j \circ k_{-}^{\text {diag }}\right)$. This is a trace of a matrix in $\mathfrak{g} \ell_{0} E_{(X)}$ with zero diagonal component which is zero, q.e.d.
2.3.6 We will often use the morphism s_{X} for appropriate subalgebras of $\mathcal{D}_{U}^{L i e}$, say, for $\mathcal{A} E_{U}$.
2.4 Spinors and theta-characteristics. Let W be a vector bundle on our curve C equipped with a symmetric non-degenerate pairing (,) : $W \times W \rightarrow \omega$.
2.4.1 One may consider (,) as an isomorphism $W \simeq W^{0}$, hence we have the involution ${ }^{t}: \mathcal{D} W \rightarrow \mathcal{D} W$ such that ${ }^{t}\left(\partial_{1} \partial_{2}\right)={ }^{t} \partial_{2}{ }^{t} \partial_{1}$, and ${ }^{t}$ acts on degree n symbols as multiplication by $(-1)^{n}$. Denote by $\mathcal{O D} W$ the anti-invariants of ${ }^{t}$; this is a Lie subalgebra of $\mathcal{D} W^{\text {Lie }}$.

The isomorphism $W \simeq W^{0}$ also defines an involution ${ }^{t}: \mathcal{P} W \rightarrow \mathcal{P} W$ (see 2.2.2) such that ${ }^{t} \delta=\delta^{t}$. Let $\mathcal{O P} W$ be the anti-invariants of ${ }^{t}$ in $\mathcal{P} W$; put $o \delta=\left.\delta\right|_{\mathcal{O P} W}$. The action of $\mathcal{D} W$ on $\mathcal{P} W$ defines the $\mathcal{O D} W$-action on $\mathcal{O P} W$, and of: $\mathcal{O P W} \rightarrow$ $\mathcal{O D} W$ is an $\mathcal{O D} W$-crossed module. The trace otr which is $-\frac{1}{2}$ of the composition ker $o \delta \rightarrow W \otimes W^{0} \xrightarrow{(,)} \omega \longrightarrow \mathcal{H}$ defines by 1.1.3, a canonical central \mathcal{H}-extension $\widetilde{\mathcal{O D} W}$ of $\mathcal{O D} W$. In $\mathcal{O D} W$ we have a Lie subalgebra $\mathcal{O} \mathcal{A} W=\mathcal{A} W \cap \mathcal{O D} W$ of infinitesimal symmetries of $(C, W,()$,$) : this is an extension of \mathcal{P}_{C}$ by an orthogonal Lie algebra $\mathcal{O} W \subset$ End W. Denote by $\widetilde{\mathcal{O A} W}$ the central extension $\left.\widetilde{\mathcal{O D W}}\right|_{\mathcal{O A} W}$. Note that if $r k W=1$, i.e., if $W=\omega^{\otimes 1 / 2}$ is a theta-characteristic, then $\mathcal{O} \omega^{\otimes 1 / 2}=0$, hence $\mathcal{O} \mathcal{A} \omega^{\otimes 1 / 2}=\mathcal{T}_{C}$. The formula from 2.2.5 applied to $j=1 / 2$ gives a canonical isomorphism $\widetilde{\mathcal{O} \mathcal{A} \omega^{1 / 2}}=\widetilde{\mathcal{T}}_{C-1 / 2}$.
2.4.2 If E is any vector bundle, and $W=E \oplus E^{0}$ with obvious (,), then the Lie algebras embedding $j: \mathcal{D} E \rightarrow \mathcal{O} \mathcal{D} W, \partial \longmapsto\left(\partial,-^{t} \partial\right)$, lifts to a morphism of crossed modules $j^{\#}: \mathcal{P} E \rightarrow \mathcal{O P} W, k \longmapsto\left(k,-^{t} k\right)$. For $k \in \operatorname{ker} \delta$ one has $\operatorname{otr}\left(j^{\#} k\right)=-t r k$. So we get a canonical morphism $\widetilde{j}: \widetilde{\mathcal{D E E}}_{-1} \rightarrow \mathcal{O D} W$ of \mathcal{H}-extensions (see 1.1.7 for -1 index).
2.4.3 Let us consider a local version of the above construction. Now our curve is a punctured disc SpecF_{x}, so one has the identification $\operatorname{Res}_{x}: \mathcal{H}\left(F_{x}\right) \underset{\sim}{C}$. The

Tate \mathbb{C}-vector space $W_{(x)}$ carries a non-degenerate symmetric form (,). defined by formula $\left(w_{1}, w_{2}\right)$ • $=\operatorname{Res} s_{x}\left(w_{1}, w_{2}\right)$. The action of $\mathcal{D} W_{(x)}$ on $W_{(x)}$ gives the embedding $o i_{X}: \mathcal{O D} W_{(x)} \hookrightarrow \mathcal{O} W_{(x)}$. It lifts to an $o i_{x}$-morphism $o i_{x}^{\#}: \mathcal{O} \mathcal{P} W_{(x)} \longrightarrow$ $\mathfrak{g} \ell_{-} W_{(x)}$ of crossed modules (for the latter crossed module see 1.4.7), oi $i_{x}^{\#}(k)=k_{-}$, according to 2.3 .2 (i),(ii),(iv). For $k \in \operatorname{ker} \delta$ one has $\operatorname{otr}(k)=\frac{1}{2} \operatorname{tr} k_{-}=\operatorname{otr}\left(k_{-}\right)$ by 2.3.2 (iii), 1.4.7. Hence $o i_{x}^{\#}$ defines a canonical morphism of \mathbb{C}-extensions $\widetilde{o i_{x}}$: $\widetilde{\mathcal{O D W}}(x) \hookrightarrow \widetilde{\mathcal{O} W_{(x)}}$.
2.4.4 Assume we are in a situation 2.3.4, i.e., we have a compact curve C, a finite set of points $X \subset C$, and our bundle $(W,()$,$) on U=C \backslash X$. We get a Tate vector space $W_{(X)}=\Pi W_{\left(x_{i}\right)}$ with the form $(,)_{(X)}=\sum(,)_{\left(x_{i}\right)}$, a central \mathbb{C} extension $\widetilde{\mathcal{O D} W_{(X)}} \subset \widetilde{\mathcal{O} W_{(X)}}$ of $\mathcal{O D} W_{(X)}=\Pi \mathcal{O D} W_{\left(x_{i}\right)} \subset \mathcal{O} W_{(X)}$. Just as in 2.3.4 a localization at X morphism $\mathcal{O D} W_{U}:=H^{0}(U, \mathcal{O D} W) \longrightarrow \mathcal{O D} W_{(X)}$ lifts canonically to a morphism $s_{X}: \mathcal{O D} W_{U} \longrightarrow \widetilde{\mathcal{O} W_{(X)}}$; as in 2.3.5 this s_{X} coincides with the lifting $\left.s_{W_{U}}\right|_{\mathcal{O D} W_{U}}$ from 1.4.8. Certainly s_{X} extends in an obvious manner to a morphism of Lie superalgebras $\mathcal{O D} W_{U} \ltimes W_{U} \rightarrow \mathfrak{a} W_{(X)}$ (here W_{U} has odd degree, for $\mathfrak{a} W_{(X)}$, see 1.4.6).
2.4.5 By Serre's duality W_{U} is a maximal isotropic colattice in $W_{(X)}$.
2.5 Simplicity of Lie algebra of vector fields. The following lemma will be of use:
2.5.1 Lemma. Let C be a smooth curve. Then the Lie algebra $T=H^{0}\left(C, \mathcal{T}_{C}\right)$ of vector fields on C is simple.

Proof. The case of compact C is clear, so we will assume that C is affine. Let $I \subset T$ be a non-zero ideal; we have to show that $I=T$. Let $\tau \in I$ be a non-zero vector field. Note that if $g \in \mathcal{O}(C)$ is a function such that $g \tau \in I$ and $f \in \mathcal{O}(C)$ is any function, then $\tau(f) g \tau=\frac{1}{2}([g \tau, f \tau]+[\tau, f g \tau]) \in I$. Let $A_{\tau} \subset \mathcal{O}(C)$ be the subalgebra of functions generated by all functions $\tau(f), f \in \mathcal{O}(C)$. The previous remark implies (by induction) that $A_{\tau} \tau \subset I$. One may describe A_{τ} explicitly, namely A_{τ} consists precisely of those $f \in \mathcal{O}(C)$ that take equal values at zeros of τ and $\operatorname{ord}_{x}(f-f(x)) \geq \operatorname{ord}_{x}(\tau)$ for any $x \in C$; this condition is non empty only for $x=$ zero of τ. (To see this, consider the morphism $\pi: C \rightarrow C^{\prime}=\operatorname{Spec} A_{\tau}$. Clearly A_{τ} is a curve. An easy local analysis at points at ∞ of C shows that π is finite. If $x, y \in C, x \neq y$, are not zeros of τ, then a finite jet at x, y of the functions $\tau(f), f \in \mathcal{O}(C)$, could be arbitrary ones, hence π is isomorphism on the complement of zeros of τ. An easy local analysis at zeros of τ finishes the proof). In particular, any function that vanishes at zeros of τ with large order of zero lies in A_{τ}. Hence I contains any vector field that vanishes at zeros of τ with sufficiently large order of zero (namely, twice that of τ). A trivial local analysis at zeros of τ (take brackets of elements of I with vector fields non-vanishing at zeros of τ) shows that $I=T$.
2.5.2 Corollary. If C is an affine curve, then T has no non-trivial finite dimensional representations.

§3. Localization of Representations

3.1 Harish-Chandra modules. Recall some definitions.
3.1.1 Let K be a pro-algebraic group. A K-module M is a comodule over the coalgebra $\mathcal{O}(K)$. Equivalently, M is a vector space with an algebraic $K(\mathbb{C})$-action. Here "algebraic" means that M is a union of finite dimensional $K(\mathbb{C})$-invariant subspaces M_{α} such that $K(\mathbb{C})$ acts on M_{α} via an algebraic action of a factor group K / K_{α} of finite type. Any K-module is a Lie K-module in a natural way.
3.1.2 A Harish-Chandra pair (\mathfrak{g}, K) consists of a Lie algebra \mathfrak{g} and a pro-algebraic group K together with an "adjoint" action $A d$ of $K(\mathbb{C})$ on \mathfrak{g} and a Lie algebra embedding $i:$ Lie $K \hookrightarrow \mathfrak{g}$ that satisfy the compatibilities:
(i) The embedding i commutes with adjoint actions of K.
(ii) The action $A d$ is "pro-algebraic": for any normal subgroup $K^{\prime} \subset K$ such that K / K^{\prime} has finite type the action of $K(\mathbb{C})$ on $\mathfrak{g} / i\left(\right.$ Lie $\left.^{\prime}\right)$ is algebraic.
(iii) The $a d \circ i$-action of Lie K on \mathfrak{g} coincides with the differential of the $A d$-action.
3.1.3 Let (\mathfrak{g}, K) be a Harish-Chandra pair. A (\mathfrak{g}, K)-module, or a Harish-Chandra module, is a \mathbb{C}-vector space equipped with \mathfrak{g} - and K-module structures such that
(i) For $k \in K, h \in \mathfrak{g}, m \in M$ one has $A d_{k}(h) m=k h k^{-1}(m)$.
(ii) The two Lie K-actions on M (the one that comes from \mathfrak{g}-action via i, and the differential of K-action) coincide.
We denote by (\mathfrak{g}, K)-mod the category of (\mathfrak{g}, K)-modules.
3.1.4 Let T be any K-torsor. Denote $(\mathfrak{g}, K)_{T}=\left(\mathfrak{g}_{T}, K_{T}\right)$ the T-twist of (\mathfrak{g}, K) with respect to adjoint action; this is a Harish-Chandra pair. If M is a (\mathfrak{g}, K) module, then the T-twist M_{T} is a $\left(\mathfrak{g}_{T}, K_{T}\right)$-module, and $M \longmapsto M_{T}$ is equivalence of categories (\mathfrak{g}, K)-mod $\underset{\sim}{\sim}\left(\mathfrak{g}_{T}, K_{T}\right)$-mod.
3.1.5 The following version of the above definitions is quite convenient.

A pro-algebraic groupoid \mathcal{V} is a groupoid such that for any object X the group Aut X carries a pro-algebraic structure and for any $f: X \rightarrow Y$ the map $A d_{f}$: $A u t Y \Rightarrow A u t X$ preserves the pro-algebraic structures (the objects of \mathcal{V} form a usual set with no algebraic structure). A \mathcal{V}-module is a functor $M: \mathcal{V} \rightarrow V e c t_{\mathbb{C}}$ such that for any $X \in \mathcal{V}$ the $A u t X$-action on M_{X} is algebraic.

A Harish-Chandra groupoid $(\mathfrak{g}, \mathcal{V})$ is a pro-algebraic groupoid \mathcal{V} together with a functor $X \longmapsto\left(\mathfrak{g}_{X}, K_{X}\right)$ from \mathcal{V} to the category of Harish-Chandra pairs equipped with a canonical identification of "group part" K_{X} of the functor with $A u t X$; we assume that for $g \in A u t X=K_{X}$ the "functorial" action of g on \mathfrak{g}_{X} coincides with the $A d$-action from 3.1.3.

One defines a representation of our Harish-Chandra groupoid (or simply a $(\mathfrak{g}, \mathcal{V})$ module) in the obvious manner. For any $X \in \mathcal{V}$ one has a canonical "fiber" functor $(\mathfrak{g}, \mathcal{V})-\bmod \rightarrow\left(\mathfrak{g}_{X}, K_{X}\right)-\bmod , M \longmapsto M_{X}$. If \mathcal{V} is connected, this functor is an equivalence of categories. Note that if T is a K_{X}-torsor, and $X_{T} \in \mathcal{V}$ is T-twist of X (i.e., X_{T} is an object of \mathcal{V} equipped with isomorphism of $K_{X^{-}}$ torsors $T \underset{\sim}{\operatorname{Hom}}\left(X, X_{T}\right)$, then one has a canonical isomorphism $\left(\mathfrak{g}_{X_{T}}, K_{X_{T}}\right)=$ $\left(\mathfrak{g}_{X}, K_{X}\right)_{T}, M_{X_{T}}=\left(M_{X}\right)_{T}$ (see 3.1.4).
3.1.6 We will need to consider the above objects depending on parameters.

Let S be a scheme, and K be a pro-algebraic group. A K-torsor on S is a projective limit of K / K^{\prime}-torsors in the étale topology of S; here $K^{\prime} \subset K$ is any normal subgroup such that K / K^{\prime} has finite type.

Let \mathcal{V} be a pro-algebraic groupoid. An S-object Y_{S} of \mathcal{V} is a rule that assigns to each object $X \in \mathcal{V}$ on Aut X-torsor $Y_{S}(X)=\underline{\operatorname{Hom}}\left(X, Y_{S}\right)$ on S together with canonical identifications of Aut X-torsors $Y_{S}(X)=Y_{S}\left(X^{\prime}\right)_{\operatorname{Hom}\left(X, X^{\prime}\right)}$ (the twist of $Y_{S}\left(X^{\prime}\right)$ by Aut X^{\prime}-torsor $\operatorname{Hom}\left(X, X^{\prime}\right)$) for each $X, X^{\prime} \in \mathcal{V}$; these identifications should satisfy an obvious compatibility condition for three objects $X, X^{\prime}, X^{\prime \prime} \in \mathcal{V}$. In other words, Y_{S} is a functor from \mathcal{V} to schemes over S such that the $A u t X$-action defines on $Y_{S}(X)$ the structure of Aut X-torsor, and for any connected component S^{\prime} of S the objects X for which $Y_{S^{\prime}}(X)=Y_{S}(X)_{S^{\prime}}$ is non-empty are isomorphic. If M is a \mathcal{V}-module, then an S-object Y_{S} of \mathcal{V} defines a locally free \mathcal{O}_{S}-module $M_{Y_{S}}$ on S. If $Y_{S}(X)$ for $X \in \mathcal{V}$ is non-empty then $M_{Y_{S}}$ coincides with $Y_{S}(X)$-twist of $M_{X} \otimes \mathcal{O}_{S}$.

Let now $(\mathfrak{g}, \mathcal{V})$ be a Harish-Chandra groupoid, and Y_{S} be an S-object of \mathcal{V} (considered as pro-algebraic groupoid). We get a sheaf $\mathfrak{g}_{Y_{S}}$ of \mathcal{O}_{S}-Lie algebras; $\mathfrak{g}_{Y_{S}}$ is a projective limit of locally free \mathcal{O}_{S}-modules. For any ($\mathfrak{g}, \mathcal{V}$)-module M the \mathcal{O}_{S}-module $M_{Y_{S}}$ is a $\mathfrak{g}_{Y_{S}}$-module.
3.2 Lie algebroids. Let S be a scheme.
3.2.1 A Lie algebroid on S (which is an infinitesimal version of Lie groupoid) is a sheaf \mathcal{A} of Lie algebras on S together with an \mathcal{O}_{S}-module structure on \mathcal{A} and an \mathcal{O}_{S}-linear map $\sigma: \mathcal{A} \rightarrow \mathcal{T}_{S}$ such that σ is a morphism of Lie algebras, and the formula $[a, f b]=\sigma(a)(f) b+f[a, b]$ holds for $a, b \in \mathcal{A}, f \in \mathcal{O}_{S}$. Clearly $\mathcal{A}_{(0)}=\operatorname{ker} \sigma$ is a sheaf of \mathcal{O}_{S}-Lie algebras. In the case when S is smooth we will say that \mathcal{A} is transitive if σ is surjective.

The Lie algebroids form a category $\operatorname{Lie}(S)$ with final object \mathcal{T}_{S}. This category has products: for $\mathcal{A}, \mathcal{B} \in \operatorname{Lie}(S)$ we have $\mathcal{A} \times \mathcal{B}=\mathcal{A} \times{ }_{T} \mathcal{B}$ in the obvious notations. The categories $\operatorname{Lie}(S)$ form a fibered category over the category of schemes. For a morphism $f: S^{\prime} \rightarrow S$ of schemes and $\mathcal{A} \in \operatorname{Lie}(S)$ the inverse image $f^{*} \mathcal{A} \in \operatorname{Lie}\left(S^{\prime}\right)$ is defined by the formula $f^{*} \mathcal{A}=\mathcal{T}_{S^{\prime}} \times f^{*}(\mathcal{A})$. Here $f^{*}(\mathcal{A}), f^{*}\left(\mathcal{T}_{S}\right)$ are inverse images in the categories of \mathcal{O}-modules, and the fibered product is $f^{*}\left(\mathcal{T}_{S}\right)$ taken with respect to projections $\mathcal{T}_{S^{\prime}} \xrightarrow{d f} f^{*}\left(\mathcal{T}_{S}\right) \stackrel{f^{*}(\sigma)}{\longleftrightarrow} f^{*}(\mathcal{A})$.
3.2.2 Let \mathcal{A} be a Lie algebroid. An \mathcal{A}-module is a sheaf \mathcal{F} of \mathcal{A}-modules on S together with an \mathcal{O}_{S}-module structure such that for $a \in \mathcal{A}, f \in \mathcal{O}_{S}, m \in \mathcal{F}$ one has $a(f m)=\sigma(a)(f) m+f(a m)$. We will also call such a structure an action of \mathcal{A} on \mathcal{O}_{S}-module \mathcal{F}. If \mathcal{A}, \mathcal{B} are Lie algebroids, \mathcal{F} is an \mathcal{A}-module, G is a \mathcal{B} module, then $\mathcal{F} \otimes_{\mathcal{O}_{S}} G$ is $\mathcal{A} \times \mathcal{B}$-module: for $(a, b) \in \mathcal{A} \times \mathcal{B}, m \in \mathcal{F}, n \in G$ one has $(a, b)(m \otimes n)=(a m) \otimes n+m \otimes(b n)$.
3.2.3 Let \mathcal{A} be a Lie algebroid, and \mathfrak{g} an \mathcal{O}_{S}-Lie algebra equipped with an \mathcal{A} action. An \mathcal{A}-morphism $\psi: \mathcal{A}_{(0)} \rightarrow \mathfrak{g}$ is a morphism of \mathcal{O}_{S}-Lie algebras that commutes with \mathcal{A}-action (here the \mathcal{A}-action on $\mathcal{A}_{(0)}$ is adjoint one). Note that if $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is a morphism of Lie algebroids, then \mathcal{A} acts on $\mathcal{B}_{(0)}$ by ad $\circ \varphi$, and $\varphi_{(0)}: \mathcal{A}_{(0)} \rightarrow \mathcal{B}_{(0)}$ is an \mathcal{A}-morphism. Conversely, for an \mathcal{A}-morphism ψ : $\mathcal{A}_{(0)} \rightarrow \mathfrak{g}$ let \mathcal{A}_{ψ} be the quotient of the semi-direct product $\mathcal{A} \ltimes \mathfrak{g}$ by the ideal $\mathcal{A}_{(0)} \hookrightarrow \mathcal{A} \ltimes \mathfrak{g}, a \longmapsto(a,-\psi(a))$. Then \mathcal{A}_{ψ} is a Lie algebroid, $\mathcal{A}_{\psi_{(0)}}=\mathfrak{g}$, and we have a canonical morphism $\psi: \mathcal{A} \rightarrow \mathcal{A}_{\psi}$ with $\psi_{(0)}=$ old ψ. These constructions are mutually inverse: if $\mathfrak{g}=\mathcal{B}_{(0)}, \varphi: \mathcal{A} \rightarrow \mathcal{B}$ is a morphism of Lie algebroids, and $\psi=\varphi_{(0)}$, then we have a canonical morphism $i: \mathcal{A}_{\psi} \rightarrow \mathcal{B}$ which is an isomorphism if \mathcal{A} is transitive.
3.2.4 Let \mathcal{A} be a Lie algebroid. A central extension of \mathcal{A} by \mathcal{O}_{S} is a Lie algebroid $\widetilde{\mathcal{A}}$ together with a surjective morphism $\pi: \widetilde{\mathcal{A}} \rightarrow \mathcal{A}$ and a central element $1 \in \operatorname{ker} \pi$ such that the map $\mathcal{O}_{S} \vec{\sim} \operatorname{ker} \pi, f \longmapsto f \cdot 1$, is isomorphism. Note that the adjoint action of $\tilde{\mathcal{A}}$ on $\widetilde{\mathcal{A}}_{(0)}$ quotients to an \mathcal{A}-action. We will call a central extension \mathcal{L} of \mathcal{T}_{S} by \mathcal{O}_{S} an invertible Lie algebroid (so $\mathcal{L}_{(0)}=\mathcal{O}_{S}$).
3.2.5 Remarks. (i) Let B be any Lie algebroid, and let $t r: \mathcal{B}_{(0)} \rightarrow \mathcal{O}_{S}$ be a \mathcal{B} morphism (we will call such tr a trace on \mathcal{B}). If \mathcal{B} is transitive, then $\mathcal{B}_{\text {tr }}$ is an invertible algebroid.
(ii) Let $\widetilde{\mathcal{A}} \xrightarrow{\pi} \mathcal{A}$ be a central extension of \mathcal{A} by \mathcal{O}_{S}, and $\gamma: \mathcal{A}_{(0)} \rightarrow \widetilde{\mathcal{A}}$ be an \mathcal{O}-linear section of π such that γ commutes with adjoint action of \mathcal{A}. Then $\gamma\left(\mathcal{A}_{(0)}\right)$ is ideal in $\widetilde{\mathcal{A}}$, and $\widetilde{\mathcal{A}} / \gamma\left(\mathcal{A}_{(0)}\right)$ is invertible algebroid.
3.2.6 The invertible Lie algebroids form a category $\mathcal{P} \operatorname{Lie}(S)$ which is a Picard category, and, more generally, a "C-vector space" in categories. This means that for $\alpha, \beta, \in \mathbb{C}, \mathcal{A}, \mathcal{B} \in \mathcal{P} \operatorname{Lie}(S)$ we may form the linear combination $C=\alpha \mathcal{A}+$ $\beta \mathcal{B} \in \mathcal{P} \operatorname{Lie}(S)$: by definition $C=(\mathcal{A} \times \mathcal{B})_{t r_{r_{\alpha, \beta}}}$, where $\operatorname{tr}_{\alpha, \beta}(f, g)=\alpha f+\beta g$. For $\mathcal{A} \in \mathcal{P} \operatorname{Lie}(S)$ we have $\operatorname{Aut\mathcal {A}}=\Omega_{S}^{1 c \ell}:$ for a closed 1 form ω the corresponding automorphism of \mathcal{A} is $a \longmapsto a+\langle\omega \sigma(a)\rangle \cdot 1$. The trivial invertible algebroid is $\mathcal{T}_{S O}=\mathcal{T}_{S} \ltimes \mathcal{O}_{S}$ (where $O: \mathcal{T}_{S(0)}=0 \rightarrow \mathcal{O}_{S}$ is the trivial trace map). The locally trivial invertible Lie algebroids form a full \mathbb{C}-linear subcategory canonically equivalent to the one of $\Omega^{1 c \ell}$-torsors.
3.2.7 For $\mathcal{A} \in \mathcal{P} \operatorname{Lie}(S)$ define $\mathcal{D}_{\mathcal{A}}$ to be the sheaf of associative \mathbb{C}-algebras on S together with a morphism of \mathbb{C} Lie algebras $i: \mathcal{A} \rightarrow \mathcal{D}_{\mathcal{A}}$ such that $\left.i\right|_{\mathcal{O}_{S}}$ is a morphism of associative algebras (in particular, $i(1)$ is 1 in $\mathcal{D}_{\mathcal{A}}$) and one has $i(f) i(a)=i(f a)$ for $f \in \mathcal{O}_{S}, a \in \mathcal{A}$, and universal with respect to these data. For example, if \mathcal{A} is trivial, then $\mathcal{D}_{\mathcal{A}}$ is the usual algebra of differential operators on S. For arbitrary \mathcal{A} this is a twisted differential operators ring, see, e.g. Appendix to [BK] for details. Clearly a $\mathcal{D}_{\mathcal{A}}$-module \mathcal{F} is the same as an \mathcal{A}-module such that $1 \in \mathcal{A}$ acts on \mathcal{F} as the identity operator. Since $\mathcal{D}_{\mathcal{A}}$ carries an obvious filtration with $\operatorname{gr} \mathcal{D}_{\mathcal{A}}=\operatorname{Sym} \mathcal{T}_{S}$, for a coherent $\mathcal{D}_{\mathcal{A}}$-module \mathcal{F} we have its singular support SSF which is a closed conical subset in the cotangent bundle of S. A $\mathcal{D}_{\mathcal{A}}$-module \mathcal{F} is called lisse if $S S \mathcal{F}=(0)$: this condition is equivalent to the fact that \mathcal{F} is a vector bundle (as \mathcal{O}_{S}-module).
3.2.8 The standard example of a Lie algebroid is the current (or Atiyah) algebra $\mathcal{A}(E)$ of a vector bundle E. This is the Lie algebra of infinitesimal symmetries of E. The sections of $\mathcal{A}(E)$ are pairs $(\sigma(\tau), \tau)$, where $\sigma(\tau) \in \mathcal{T}_{S}$ and τ is an action of $\sigma(\tau)$ on E, or, equivalently, a first order differential operator on E with symbol $\sigma(\tau) \cdot i d_{E}$. Clearly $\mathcal{A}(E)$ is transitive and $\mathcal{A}(E)_{(0)}=\mathfrak{g} \ell(E)$. If L is a line bundle, then $\mathcal{A}(L)$ is invertible algebroid; one has $\mathcal{A}\left(L_{1} \otimes L_{2}\right)=\mathcal{A}\left(L_{1}\right)+\mathcal{A}\left(L_{2}\right)$, i.e., \mathcal{A} : $\mathcal{P i c}(S) \rightarrow \mathcal{P} \operatorname{Lie}(S)$ is a morphism of Picard categories. The ring $\mathcal{D}_{\mathcal{A}(L)}$ coincides with the algebra \mathcal{D}_{L} of differential operators on L. If E is any vector bundle, then $\operatorname{tr}: \mathfrak{g} \ell(E) \rightarrow \mathcal{O}_{S}$ is a trace on $\mathcal{A}(E)$, and $\mathcal{A}(E)_{\text {tr }}=\mathcal{A}(\operatorname{det} E)$: this canonical isomorphism comes from a natural action of $\mathcal{A}(E)$ on $\operatorname{det} E$ given explicitly by the Leibnitz rule $a\left(e_{1} \wedge \ldots \wedge e_{n}\right)=a e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n}+\cdots+e_{1} \wedge \ldots \wedge a e_{n}$.
3.3 Localization of (\mathfrak{g}, K)-modules. Below we will explain the general pattern how to transform representations to \mathcal{D}-modules. We will start with some notations.
3.3.1 Let $(\widetilde{\mathfrak{g}}, \mathcal{V})$ be a Harish-Chandra groupoid. We will say that it is centered if for any $X \in \mathcal{V}$ there is a fixed central element $1 \in \tilde{\mathfrak{g}}_{X}, 1 \notin$ LieAut X, that depends on X in a natural way. Put $\mathfrak{g}_{X}=\widetilde{\mathfrak{g}}_{C} / \mathbb{C} 1$, so $\tilde{\mathfrak{g}}_{X}$ is a central \mathbb{C}-extension of \mathfrak{g}_{X}.

Our $(\mathfrak{g}, \mathcal{V})$ defines several Harish-Chandra groupoids with the same underlying proalgebraic groupoid \mathcal{V}. Namely, we have the groupoid $(\mathfrak{g}, \mathcal{V})$ that corresponds to \mathfrak{g}_{X}; for any $c \in \mathbb{C}$ we have the centered groupoid ($\widetilde{\mathfrak{g}}_{c}, \mathcal{V}$) with $\widetilde{\mathfrak{g}}_{c X}$ equal to c-multiple of the central extension $\widetilde{\mathfrak{g}}_{X}$ of \mathfrak{g}_{X}. Denote by $(\widetilde{\mathfrak{g}}, \mathcal{V})_{c}$-mod the category of $\left(\widetilde{\mathfrak{g}}_{c}, \mathcal{V}\right)$-modules on which $1 \in \mathbb{C} \subset \widetilde{\mathfrak{g}}_{c}$ acts as identity.
3.3.2 Let S be a smooth scheme, K be a proalgebraic group and Y_{S} be a K-torsor over S. Denote by $\mathcal{A} Y_{S}$ the Lie algebroid of infinitesimal symmetries of $\left(S, Y_{S}\right)$. Its sections are pairs ($\tau, \tau_{Y_{S}}$), where $\tau \in \tau_{Y_{S}}$ and $\mathcal{T}_{Y_{S}}$ is a lifting of τ to Y_{S} that commutes with K-action. Clearly $\mathcal{A} Y_{S(0)}=\operatorname{Lie}_{Y_{Y_{S}}}\left(=Y_{S}\right.$-twist of Lie $K \widehat{\otimes} \mathcal{O}_{S}$ with respect to the adjoint action of K); $\mathcal{A} Y_{S}$ is a transitive groupoid. If (\mathfrak{g}, K) is a Harish-Chandra pair, then we have the \mathcal{O}_{S}-Lie algebra $\mathfrak{g}_{Y_{S}}\left(=Y_{S}\right.$-twist of $\mathfrak{g} \widehat{\otimes} \mathcal{O}_{S}$ with respect to the adjoint action). The Lie algebroid $\mathcal{A} Y_{S}$ acts on $\mathfrak{g}_{Y_{S}}$ in an obvious manner, and the canonical embedding $i: \mathcal{A} Y_{S(0)}=\operatorname{Lie}_{Y_{S}} \hookrightarrow \mathfrak{g}_{Y_{S}}$ is an $\mathcal{A} Y_{S^{-}}$ morphism. According to 3.2 .3 we get the transitive Lie algebroid $\mathcal{A} \mathfrak{g}_{Y_{S}}=\mathcal{A} Y_{S i}$ with $\mathcal{A} \mathfrak{g}_{Y_{S}(0)}=\mathfrak{g}_{Y_{S}}$. If M is a (\mathfrak{g}, K)-module, then $M_{Y_{S}}\left(=Y_{S}\right.$-twist of $\left.M \otimes \mathcal{O}_{S}\right)$ is an $\mathcal{A g}_{Y_{S}}$-module.

Now let $(\mathfrak{g}, \mathcal{V})$ be a Harish-Chandra groupoid, and let Y_{S} be an S-object of \mathcal{V}. The above construction defines a transitive Lie algebroid $\mathcal{A} \mathfrak{g}_{Y_{S}}$ on S with $\mathcal{A g}_{Y_{S}(0)}=$ $\mathfrak{g}_{Y_{S}}$. If M is a $(\mathfrak{g}, \mathcal{V})$-module, then $M_{Y_{S}}$ is an $\mathcal{A g}_{Y_{S}}$-module in a natural way. Note that if $(\widetilde{\mathfrak{g}}, \mathcal{V})$ is a centered groupoid, then $\mathcal{A} \widetilde{\mathfrak{g}}_{Y_{S}}$ is a central \mathcal{O}_{S}-extension of $\mathcal{A} \mathfrak{g}_{Y_{S}}$.
3.3.3 Definition. Let S be a smooth scheme and $(\widetilde{\mathfrak{g}}, \mathcal{V})$ be a centered HarishChandra groupoid. An S-localization data ψ for $(\widetilde{\mathfrak{g}}, \mathcal{V})$ is a collection $\left(Y_{S}, N, \varphi, \widetilde{\varphi}_{(0)}\right)$ where
(i) Y_{S} is an S-object of \mathcal{V}.
(ii) N is a transitive Lie algebroid on S.
(iii) $\varphi: N \rightarrow \mathcal{A}_{Y_{S}}$ is a morphism of Lie algebroids.
(iv) $\widetilde{\varphi}_{(0)}: N_{(0)} \rightarrow \tilde{\mathfrak{g}}_{Y_{S}}$ is a lifting of $\varphi_{(0)}$ such that for $n \in N, m \in N_{(0)}$ one has $\widetilde{\varphi}_{(0)}([n, m])=\left[\varphi(n), \varphi_{(0)}(m)\right]$.
3.3.4 A localization data ψ defines an invertible Lie algebroid \mathcal{A}_{ψ} on S as follows. Consider a fiber product $\mathcal{A} \widetilde{\mathfrak{g}}_{Y_{S}} N=\mathcal{A} \widetilde{\mathfrak{g}}_{Y_{S}} \times \mathcal{A g}_{\mathfrak{g}_{S}} N$: this is a central \mathcal{O}_{S}-extension of N. This central extension splits over $N_{(0)}$ by means of the section $s: N_{(0)} \rightarrow$ $\mathcal{A g}_{Y_{S}} N_{(0)}, s(m)=\left(\widetilde{\varphi}_{(0)}(m), m\right)$. Put $\mathcal{A}_{\psi}:=\mathcal{A} \widetilde{\mathfrak{g}}_{Y_{S}} N / s\left(N_{(0)}\right)$. Let $D_{\psi}=D_{\mathcal{A}_{\psi}}$ be the corresponding algebra of twisted differential operators.
3.3.5 Let $M \in(\widetilde{g}, \mathcal{V})_{1}$-mod be a Harish-Chandra module such that 1 acts as id_{M}. Then $M_{Y_{S}}$ is an $\mathcal{A} \widetilde{\mathfrak{g}}_{Y_{S}} N$-module (via the projection $\mathcal{A} \widetilde{\mathfrak{g}}_{Y_{S}} N \rightarrow \mathcal{A} \widetilde{\mathfrak{g}}_{Y_{S}}$), and $\Delta_{\psi} M=$ $M_{Y_{S}} / s\left(N_{(0)}\right) M_{Y_{S}}$ is \mathcal{A}_{ψ}-module on which $1 \in \mathcal{A}_{\psi}$ acts as identity. Hence $\Delta_{\psi} M$ is a D_{ψ}-module. Clearly $\Delta_{\psi}:(\widetilde{\mathfrak{g}}, \mathcal{V})_{1}-\bmod \rightarrow D_{\psi}$-mod is a right exact functor; we call it the S-localization functor that corresponds to ψ. Note that for a point $s \in S$ we have a Lie algebra map $N_{(0) s} \rightarrow \widetilde{\mathfrak{g}}_{Y_{S}}\left(\right.$ where $\left.N_{(0) s}=N_{(0)} / m_{s} N_{(0)}\right)$, hence the fiber $\Delta_{\psi}(M) / m_{s} \Delta_{\psi}(M)$ coincides with coinvariants $M_{Y_{s}} / N_{(0) s} M_{Y_{S}}$.
3.3.6 The above constructions are functorial with respect to morphisms of localization data. Precisely, let $\left(\widetilde{\mathfrak{g}}^{\prime}, \mathcal{V}^{\prime}\right)$ be another centered Harish-Chandra groupoid, and $r:(\mathfrak{g}, \mathcal{V}) \rightarrow\left(\widetilde{\mathfrak{g}}^{\prime}, \mathcal{V}^{\prime}\right)$ is a morphism of centered groupoids. One defines an
r-morphism of S-localization data $r^{\#}: \psi \rightarrow \psi^{\prime}$ in an obvious manner. Such $r^{\#}$ defines the isomorphisms $r_{\mathcal{A}}^{\#}: \mathcal{A}_{\psi} \underset{\sim}{\mathcal{A}} \mathcal{A}_{\psi^{\prime}}, r_{D}^{\#}: D_{\psi} \underset{\sim}{ } D_{\psi^{\prime}}$. For $M \in(\widetilde{\mathfrak{g}}, \mathcal{V})_{1^{-}}$ $\bmod , M \in\left(\mathfrak{g}^{\prime}, \mathcal{V}^{\prime}\right)_{1}$-mod and an r-morphism $\ell: M \rightarrow M^{\prime}$ we have $r_{D}^{\#}$-morphism $r_{\Delta}^{\#}: \Delta_{\psi}(M) \rightarrow \Delta_{\psi^{\prime}}\left(M^{\prime}\right)$.

One has also functoriality with respect to base change. If $f: S^{\prime} \rightarrow S$ is a morphism of smooth schemes, and ψ is an S-localization data for $(\tilde{\mathfrak{g}}, \mathcal{V})$, then one gets an S^{\prime}-localization data $f^{*} \psi$ for $(\tilde{\mathfrak{g}}, \mathcal{V})$. One has $\mathcal{A}_{f^{*} \psi}=f^{*} \mathcal{A}_{\psi}$, and for $M \in(\tilde{\mathfrak{g}}, \mathcal{V})_{1^{-}}$ mod one has a natural isomorphism $f^{*} \Delta_{\psi}(M)=\Delta_{f^{*} \psi}(M)$ of $D_{f^{*} \psi}$-modules.
3.3.7 An S-localization data ψ for $(\tilde{\mathfrak{g}}, \mathcal{V})$ defines in an obvious way for each $c \in \mathbb{C}$ an S-localization data ψ_{c} for $\left(\tilde{\mathfrak{g}}_{c}, \mathcal{V}\right)$. One has $\mathcal{A}_{\psi_{c}}=c \mathcal{A}_{\psi}$ (see 3.2.6).
3.4 Localization along moduli of curves. This section collects some basic examples of the above localization constructions.
3.4.1 Let us describe a centered Harish-Chandra groupoid ($\widetilde{\mathcal{T}}, \mathcal{V}$) called the Virasoro groupoid. The underlying connected proalgebraic groupoid \mathcal{V} is the groupoid of one-dimensional local fields with residue field equal \mathbb{C} (the morphisms are isomorphisms of the local fields). Precisely, let $F \in \mathcal{V}$ be a local field, $\mathcal{O}_{F} \subset F$ the corresponding local ring, and $m_{F} \subset \mathcal{O}_{F}$ the maximal ideal. A choice of uniformizing parameter t identifies F with $\mathbb{C}((t))$ and \mathcal{O}_{F} with $\mathbb{C}[[t]]$. The group Aut $F=A u t \mathcal{O}_{F}$ is the projective limit of groups $A u t \mathcal{O}_{F} / m_{F}^{n}=A u t F / A u t_{n} F$. These groups are obviously algebraic groups, our $A u t F$ is a proalgebraic group, and \mathcal{V} is a proalgebraic groupoid. Note that $A u t F / A u t_{1} F=\mathbb{C}^{*}$, and $A u t_{i} F / A u t_{i+1} F$ is isomorphic to \mathbb{C} for $i \geq 1$; in particular $A_{1} t_{1} F$ is the pro-unipotent radical of $A u t F$. Explicitly, Aut $\mathbb{C}((t))$ coincides with the group of power series $a_{1} t+a_{2} t^{2}+\cdots, a_{1} \neq 0$, with multiplication law equal to composition of series.

Now for $F \in \mathcal{V}$ let \mathcal{T}_{F} be the Lie algebra of vector fields on F and $\widetilde{\mathcal{T}}_{F}$ be the Virasoro \mathbb{C}-extension of \mathcal{T}_{F} defined in 2.1.3. The Lie algebra \mathcal{T}_{F} carries a canonical filtration $\mathcal{T}_{i F}$; for $F=\mathbb{C}((t))$ one has $\mathcal{T}_{i F}=t^{i+1} \mathbb{C}[[t]] \partial_{t}$. The subalgebra $\mathcal{T}_{-1 F}$ preserves the lattice $\mathcal{O}_{F} \subset F$, hence we have a canonical splitting $s_{\mathcal{O}_{F}}: \mathcal{T}_{-1 F} \rightarrow \widetilde{\mathcal{T}}_{F}$. Clearly LieAut $F=\mathcal{T}_{0 F}$, and the embedding $s_{\mathcal{O}_{F}}:$ LieAut $F \hookrightarrow \widetilde{\mathcal{T}}_{F}$ together with the natural $A u t F$-action on $\widetilde{\mathcal{T}}_{F}$ define the Harish-Chandra pair $\left(\widetilde{\mathcal{T}}_{F}, A u t F\right)$. This defines our centered Virasoro groupoid $(\widetilde{\mathcal{T}}, \mathcal{V})$.
3.4.2 Let S be a scheme. It is easy to see that an S-object Y_{S} of \mathcal{V} is the same as a "family of formal discs" over S or, equivalently, a formal \mathcal{O}_{S}-algebra \mathcal{O}_{Y} locally isomorphic to $\mathcal{O}_{S}[[t]]$. The corresponding Lie algebroid $\mathcal{A} Y_{S}$ consists of pairs $\left(\tau, \tau_{Y_{S}}\right)$ where $\tau \in \mathcal{T}_{S}$ and $\tau_{Y_{S}} \in \operatorname{Der} \mathcal{O}_{Y_{S}}$ is a τ-derivation of $\mathcal{O}_{Y_{S}}$.
3.4.3 Now let $\pi: C_{S} \rightarrow S$ be a family of smooth projective curves and $a: S \rightarrow C_{S}$ be a section of π. These define an S-localization data $\psi=\psi\left(C_{S}, a\right)$ for $(\widetilde{\mathcal{T}}, \mathcal{V})$ as follows. Our Y_{S} is the formal completion of C_{S} along $a(S)$, and N is the Lie algebroid of pairs (τ, τ_{U}) where $\tau \in \mathcal{T}_{S}$ and τ_{U} is a lifting of τ to $U=C_{S} \backslash a(S)$. Clearly $\mathcal{A}_{Y_{S}}$ is the Lie algebroid of pairs $\left(\tau, \tau_{Y_{S \backslash(a)}}\right)$, where $\tau \in \mathcal{T}_{S}$ and $\tau_{Y_{S \backslash(a)}}$ is a lifting of τ to a meromorphic vector field on Y_{S} with possible pole at $a(S)$. Our $\varphi: N \rightarrow \mathcal{A}_{Y_{S}}$ is just the restriction of a vector field τ_{U} on $Y_{S} \backslash\{a\}=$ punctured neighbourhood of a. Now the lifting $\widetilde{\varphi}_{(0)}: N_{(0)}=\pi_{*} \mathcal{T}_{U / S} \rightarrow \widetilde{\mathcal{T}}_{Y_{S}}$ is the restriction to $\mathcal{T}_{U / S} \subset D_{U / S}$ of the morphism $s_{a}: \pi_{*} \mathcal{D}_{U / S} \rightarrow \widetilde{D}_{(a)}$ (here $D=D_{\mathcal{O}_{C / S}}$) defined
in 2.3.4 (more precisely, in 2.3.4 we considered the case of a single curve, $S=$ point; the generalization to families is immediate). These ($Y_{S}, N, \varphi, \widetilde{\varphi}_{(0)}$) is our localization data $\psi\left(C_{S}, a\right)$. According to 3.3.4, 3.3.5, 3.3.7 for any $c \in \mathbb{C}$ we have the localization functor $\Delta_{\psi_{c}\left(C_{S}, a\right)}:(\widetilde{\mathcal{T}}, \mathcal{V})_{c}-\bmod \rightarrow \mathcal{D}_{\psi_{c}\left(C_{S}, a\right)}$-mod.
3.4.4 Here is an explicit description of $\mathcal{A}_{\psi\left(C_{S}, a\right)}$ and $\Delta_{\psi\left(C_{S}, a\right)}$. Choose (locally on S) a formal parameter t at a, so $\mathcal{O}_{Y_{S}}=\mathcal{O}_{S}[t t]$. Consider the space B of triples $\left(\tau, \tau_{U}, \widetilde{\tau}_{U}^{v}\right)$, where $\tau \in \mathcal{T}_{S}, \tau_{U}$ is a lifting of τ to U, and $\widetilde{\tau}_{U}^{v}: S \rightarrow \widetilde{\mathcal{T}}_{\mathbb{C}((t))}$ is a lifting of a vertical component of $\tau_{U}, \tau_{U}^{v}=\tau_{U}(t) \partial_{t}: S \rightarrow \mathcal{T}_{\mathbb{C}((t))}$. This B is a Lie algebroid on S in an obvious manner. We have a canonical morphism $\mathcal{T}_{U / S} \rightarrow B_{(0)}$, $\nu \longmapsto\left(o, \nu, s_{a}(\nu)\right)$, see 2.3.4. One has $\mathcal{A}_{\psi\left(C_{s}, a\right)}=\mathcal{B} / \mathcal{T}_{U / S}$. Now let M be a $(\widetilde{\mathcal{T}}, \mathcal{V})_{c^{-}}$ module. One has $M_{Y_{S}}=M_{\mathbb{C}((t))} \otimes \mathcal{O}_{S}$. The algebroid \mathcal{B} acts on $M_{Y_{S}}$ by formula $\left(\tau, \tau_{U}, \widetilde{\tau}_{U}^{v}\right)(m \otimes f)=m \otimes \tau(f)+\widetilde{\tau}_{U}^{v}(m \otimes f)$. One has $\Delta_{\psi\left(C_{S}, a\right)}(M)=M_{Y_{S}} / \mathcal{T}_{U / S} M_{Y_{S}}$.
3.4.5 Variant. For any non empty finite set A we may consider the centered groupoid $\left(\widetilde{\mathcal{T}}^{A}, \mathcal{V}^{A}\right)$. Here \mathcal{V}^{A} is the A-th power of \mathcal{V} and $\widetilde{\mathcal{T}}_{\left\{F_{a}\right\}}^{A}$ is the Baer sum of \mathbb{C}-extension $\widetilde{\mathcal{T}}_{F_{a}}, a \in A$ (so $\widetilde{\mathcal{T}}_{\left\{F_{a}\right\}}^{A}$ is a \mathbb{C}-extension of $\prod_{a \in A} \mathcal{T}_{F_{a}}$). A family $\pi: C_{S} \rightarrow S$ of curves together with a disjoint set A of sections (where "disjoint" means that for $a_{i} \neq a_{j} \in A$ and any $s \in S$ one has $\left.a_{i}(s) \neq a_{j}(s) \in C_{S}\right)$ defines an S localization data $\psi\left(C_{S}, A\right)$ for $\left(\widetilde{\mathcal{T}}^{A}, \mathcal{V}^{A}\right)$ in a way similar to 3.4.2. For example, the corresponding Lie algebroid N consists of pairs $\left(\tau, \tau_{U}\right)$, where $\tau \in \mathcal{T}_{S}$ and τ_{U} is a lifting of τ to $U=C_{S} \backslash \coprod_{a \in A} a_{i}(S)$.
3.4.6 Remark. Let $B \subset A$ be a non-empty subset. The groupoids $\left(\widetilde{\mathcal{T}}^{B}, \mathcal{V}^{B}\right)$ and $\left(\widetilde{\mathcal{T}}^{A}, \mathcal{V}^{A}\right)$ are related by an obvious correspondence $\left(\widetilde{\mathcal{T}}^{B}, \mathcal{V}^{B}\right) \stackrel{\pi_{B}}{\longleftrightarrow}\left(\widetilde{\mathcal{T}}^{A, B}, \mathcal{V}^{A}\right) \xrightarrow{i_{A}}\left(\widetilde{\mathcal{T}}^{A}, \mathcal{V}^{A}\right)$, where $\widetilde{\mathcal{T}}_{\left\{F_{a}\right\}}^{A, B}=\widetilde{\mathcal{T}}_{\left\{F_{b}\right\}_{b \in B}}^{B} \times \prod_{a \in A \backslash B} \mathcal{T}_{-1 F_{a}} \hookrightarrow \widetilde{\mathcal{T}}_{\left\{F_{a}\right\}}^{A}$. Any family of curves $\pi: C_{S} \rightarrow S$ and a set A of disjoint sections defines an S-localization data $\psi\left(C_{S}, A, B\right)$ for $\left(\widetilde{\mathcal{T}}^{A, B}, \mathcal{V}^{A}\right)$ in an obvious manner together with corresponding morphisms $\psi\left(C_{S}, B\right)$ $\stackrel{\pi_{B}^{\#}}{\stackrel{(1)}{A}} \psi\left(C_{C}, A, B\right) \xrightarrow{i_{A}} \psi\left(C_{S}, A\right)$. These define the corresponding isomorphisms $D_{\psi_{c}\left(C_{s}, B\right)} \underset{\sim}{ } D_{\psi_{c}\left(C_{S}, A, B\right)} \underset{\sim}{ } D_{\psi_{c}\left(C_{s}, A\right)}$. For $M_{B} \in\left(\mathcal{T}^{B}, \mathcal{V}^{B}\right)_{c}-\bmod , M_{A} \in\left(\mathcal{T}^{A}, \mathcal{V}^{A}\right)-$ \bmod a morphism $f: M_{B} \rightarrow M_{A}$ is, by definition, an i_{A}-morphism from M_{B}, considered as $\left(\widetilde{\mathcal{T}}^{A, B}, \mathcal{V}^{A}\right)$-module via π_{B}, to M_{A}. Since $\Delta_{\psi_{c}\left(C_{S}, B\right)} M_{B}=\Delta_{\psi_{c}\left(C_{S}, A, B\right)} M_{B}$, such an f defines a morphism $\Delta(f): \Delta_{\psi_{c}\left(C_{S}, B\right)} M_{B} \rightarrow \Delta_{\psi_{c}\left(C_{S}, A\right)} M_{A}$. For example, if $M_{A}=\operatorname{Ind} \widetilde{\widetilde{T}}^{A} A, B A B\left(M_{B}\right)$ and f is the canonical embedding, then $\Delta(f)$ is isomorphism.

Note that the above canonical identification $D_{\psi_{c}\left(C_{S}, A\right)}=D_{\psi_{c}\left(C_{S}, B\right)}$ for $B \subset A$ actually provides a canonical algebra $D_{\psi_{c}\left(C_{s}\right)}$ that depends on C_{S} only together with canonical isomorphisms $D_{\psi_{c}\left(C_{s}\right)}=D_{\psi_{c}\left(C_{S}, A\right)}$ for any set A of disjoint sections. To construct $D_{\psi_{c}\left(C_{s}\right)}$ we may assume, working locally in étale topology of S, that C_{S} has many sections. To construct $D_{\psi_{c}\left(C_{s}\right)}$ it suffices to define for any two sets A, A^{\prime} of disjoint sections a canonical isomorphism $D_{\psi_{c}\left(C_{S}, A\right)}=D_{\psi_{c}\left(C_{S}, A^{\prime}\right)}$. Choose a non-empty set B of sections such that both $A \sqcup B, A^{\prime} \sqcup B$ are sets of disjoint sections. Our isomorphism is $D_{\psi_{c}\left(C_{S}, A\right)}=D_{\psi_{c}\left(C_{s}, A \sqcup B\right)}=D_{\psi_{c}\left(C_{s}, B\right)}=$ $D_{\psi_{c}\left(C_{S}, A^{\prime} \sqcup B\right)}=D_{\psi_{c}\left(C_{S}, A^{\prime}\right)}$. One verifies easily that this does not depends on the choice of B. We will compute $D_{\psi_{c}\left(C_{s}\right)}$ explicitly in 3.5.6.
3.4.7 Variant. Often the Virasoro modules are integrable only with respect to the subgroup Aut ${ }_{1} F$ (see 3.4.1). To localize them one needs to consider the groupoid $\left(\widetilde{\mathcal{T}}, \mathcal{V}_{1}\right)$. The objects of \mathcal{V}_{1} are pairs (F, ν), where F is a local field and $\nu \in m_{F} / m_{F}^{2}$, $\nu \neq 0$, is a 1-jet of a parameter. One has $\operatorname{Aut}(F, \nu)=\operatorname{Aut}_{1} F$. The Lie algebra $\widetilde{\mathcal{T}}_{(F, \nu)}$ is $\widetilde{\mathcal{T}}_{F}$. If $\pi: C_{S} \rightarrow S$ is a family of curves, $a: S \rightarrow C_{S}$ a section, and $\nu \in a^{*} \Omega_{C_{S} / S}^{1}$ a 1-jet of parameters at a, then we get an S-localization data $\psi\left(C_{S}, a, \nu\right)$ for $\left(\widetilde{\mathcal{T}}, \mathcal{V}_{1}\right)$. We may also consider many points, as in 3.4.5.

We have a "forgetting of ν " morphism $r:\left(\widetilde{\mathcal{T}}, \mathcal{V}_{1}\right) \rightarrow(\widetilde{\mathcal{T}}, \mathcal{V})$ and a corresponding r-morphism of localization data $\psi_{c}\left(C_{S}, a, \nu\right) \rightarrow \psi_{c}\left(C_{s}, a\right)$. This defines a canonical isomorphism $r_{D}: D_{\psi_{c}\left(C_{S}, a, \nu\right)} \approx D_{\psi_{c}\left(C_{S}, a\right)}$ and for any $M \in(\mathcal{T}, \mathcal{V})_{c^{-}} \bmod$ the $r_{D^{-}}$ isomorphism $r_{M}: \Delta_{\psi_{c}\left(C_{S}, a, \nu\right)} M \approx \Delta_{\psi_{c}\left(C_{S}, a\right)} M$.
3.4.7.1 Let C be a fixed curve, $a \in C$, and ν a 1 -jet of parameter at a. Consider a constant \mathbb{C}^{*}-family $C_{\mathbb{C}^{*}}=C \times \mathbb{C}^{*}$ with constant point a, and put $\nu^{\vee}(u)=u \nu$ for $u \in \mathbb{C}^{*}$. We get the corresponding \mathbb{C}^{*}-localization data $\psi=\psi\left(C_{\mathbb{C}^{*}}, a, \nu^{\vee}\right)$. One has $D_{\psi}=D_{\psi\left(C_{\mathbb{C}^{*}}, a, \nu^{\vee}\right)}=D_{\psi\left(C_{\mathbb{C}^{*}}, a\right)}=D_{\mathbb{C}^{*}}-$ the usual ring of differential operators. In particular, we have $\lambda \partial_{\lambda} \in D_{\psi_{c}}$. Let us compute the action of $u \partial_{u}$ on $\Delta_{\psi_{c}}(M)$ for $M \in\left(\mathcal{T}, \mathcal{V}_{1}\right)_{c}$-mod. Choose a parameter t_{a} at a on C such that $d t(a)=\nu$. Then $t_{a u}=u t$ is a \mathbb{C}^{*}-family of parameters which identifies our $\mathcal{O}_{Y_{\mathbb{C}^{*}}}$ with $\mathcal{O}_{\mathbb{C}^{*}}[[t]]$. We have $M_{Y_{\mathbb{C}^{*}}}=M_{\mathbb{C}((t))} \otimes \mathcal{O}_{\mathbb{C}^{*}}$, and $\Delta_{\psi_{c}}(M)$ is a quotient of $M_{Y_{\mathbb{C}^{*}}}$. For $m \in$ $M_{\mathbb{C}((t))}$ denote by \bar{m} its image in $\Delta_{\psi_{c}}(M)$. Put $L_{0}=s_{\mathbb{C}[[t]]}\left(t \partial_{t}\right) \in \widetilde{\mathcal{T}}_{\mathbb{C}((t))}$. One has $u \partial_{u}(\bar{m})=\overline{L_{0} m}$. In particular, if M is a higher weight module (see 7.3.1), then $\Delta_{\psi} M$ is smooth along \mathbb{C}^{*} with monodromy equal to the action of $T=\exp \left(2 \pi i L_{0}\right)$ (see 7.3.2).
3.4.8 Now consider the case "vector symmetries". Our "Virasoro-Kac-Moody" centered Harish-Chandra groupoid $(\widetilde{\mathcal{A}}, \mathcal{V} \mathcal{V})$ defined as follows. The objects of $\mathcal{V} \mathcal{V}$ are pairs $\left(F, E_{\mathcal{O}}\right)$ where F is a local field, and $E_{\mathcal{O}}$ is a free \mathcal{O}_{F}-module of finite rank; we put $E_{F}=F \otimes E_{\mathcal{O}}$. The morphisms are defined in an obvious manner. Clearly $\operatorname{Aut}\left(F, E_{\mathcal{O}}\right)$ is extension of Aut F by $\operatorname{GL}\left(E_{\mathcal{O}}\right)=\operatorname{Aut}_{\mathcal{O}_{F}}\left(E_{\mathcal{O}}\right)$; this is a proalgebraic group. We put $\widetilde{\mathcal{A}}\left(F, E_{\mathcal{O}}\right)=\widetilde{\mathcal{A} E}_{F}$, see 2.1.2. The canonical embedding $s_{E_{\mathcal{O}}}$: Lie Aut $\left(F, E_{\mathcal{O}}\right) \rightarrow \widetilde{\mathcal{A} E}_{F}$ defines the Harish-Chandra pair $\left(\widetilde{\mathcal{A} E}_{F}, \operatorname{Aut}\left(F, E_{\mathcal{O}}\right)\right)$. This defines our centered groupoid $(\widetilde{\mathcal{A}}, \mathcal{V} \mathcal{V})$.

Let S be a scheme. An S-object of $\mathcal{V} \mathcal{V}$ is a pair $\left(Y_{S}, E_{Y_{S}}\right)$, where Y_{S} is an S-object of \mathcal{V} (see 3.4.2) and $E_{Y_{S}}$ is a locally free $\mathcal{O}_{Y_{S}}$-module of finite rank.

Assume that S is smooth. Let $\pi: C_{S} \rightarrow S$ be a famly of smooth projective curves, $a: S \rightarrow C_{S}$ a section, and let E be a vector bundle on C_{S}. These define an S-localization data $\psi\left(C_{S}, E, a\right)$. Namely, the corresponding S-object of $\mathcal{V} \mathcal{V}$ is the completion of C_{S}, E along a. The Lie algebroid N consists of triples $\left(\tau, \tau_{U}, \tau_{E_{U}}\right)$, where $\tau \in \mathcal{T}_{S}, \tau_{U}$ is a lifting of τ to $U=C_{S} \backslash a(S)$, and $\tau_{E_{U}}$ is an action of $\tau_{E_{U}}$ on E_{U}. The morphisms $\varphi, \widetilde{\varphi}_{(0)}$, appear precisely as in 3.4.3 from 2.3.4.

As above, this localization data gives rise to a localization functor. The versions 3.4.5-3.4.7 are immediate.
3.4.9 Let us consider now the spinor or "fermionic" version. The corresponding centered Harish-Chandra groupoid $(\widetilde{\mathcal{O \mathcal { A }}, \mathcal{O V}) \text { is defined as follows. Its objects are }}$ triples $Q=\left(F, W_{\mathcal{O}},(),\right)$, where F is a local field, W is a free \mathcal{O}_{F}-module of finite rank, and $():, W_{\mathcal{O}} \times W_{\mathcal{O}} \rightarrow \omega_{\mathcal{O}_{F}}$ is a symmetric bilinear form with values in

1-forms of \mathcal{O}_{F}. We assume that (,) is maximally non-degenerate, i.e., the cokernel of the corresponding map $W_{\mathcal{O}} \rightarrow W_{\mathcal{O}}^{0}=\operatorname{Hom}_{\mathcal{O}_{F}}\left(W_{\mathcal{O}}, \omega_{\mathcal{O}_{F}}\right)$ is either trivial (such Q is called even) or a 1 -dimensional \mathbb{C}-vector space (such Q is called odd). The morphisms in $\mathcal{O V}$ are the obvious ones. For Q as above, put $W_{F}=F \otimes W_{\mathcal{O}}$; our (,) extends to non-degenerate form (,) : $W_{F} \times W_{F} \rightarrow \omega_{F}$. Note that our condition means that $W_{\mathcal{O}}$ is a maximal isotropic lattice in W_{F}. We may consider W_{F} as a Tate's \mathbb{C}-vector space with form (,) $\bullet=\operatorname{Res}(),\left(\right.$ see 2.4.3); then $W_{\mathcal{O}}$ is also a maximal isotropic (,).-lattice so Q is even iff W_{F} is even-dimensional, see 1.4.1. We put $\widetilde{\mathcal{O \mathcal { A }}}(Q)={\widetilde{\mathcal{O} \mathcal{A} W_{F}}}_{F}$ (see 2.4.1). The Lie algebra Lie Aut $Q \subset \mathcal{O} \mathcal{A} W_{F}$ preserves $W_{\mathcal{O}}$, hence we have a canonical embedding $s_{W_{\mathcal{O}}}$: Lie Aut $Q \hookrightarrow \widetilde{\mathcal{O} \mathcal{A}}(Q)$. This defines the Harish-Chandra pair $(\widetilde{\mathcal{O \mathcal { A }}}(Q)$, Aut $Q)$, and we get the groupoid $(\widetilde{\mathcal{O A}}, \mathcal{O V})$.

Remark. Clearly Q is even (resp. odd) iff ($W_{F},(,) \bullet$) is even (resp. odd) dimensional, see 1.4.1. The two objects of Q are isomorphic iff the W 's have the same rank and parity.

Now let S be a smooth scheme. Let $\pi: C_{S} \rightarrow S$ be a family of smooth projective curves, $a: S \rightarrow C_{S}$ a section, W a vector bundle on C_{S}, and $():, W \times W \rightarrow \omega_{C_{S} / S}$ a symmetric bilinear pairing. Assume that the cokernel of the corresponding map $W \rightarrow W^{0}=\operatorname{Hom}\left(W, \omega_{C_{S} / S}\right)$ is either trivial or supported on $a(S)$ and is an $\mathcal{O}_{S^{-}}$ module of rank 1. This collection $\left(C_{S}, a, W,(),\right)$ defines an S-localization data ψ for $(\widetilde{\mathcal{O A}}, \mathcal{O V})$ in a way similar to 3.4.3, 3.4.8. Namely, the formal completion of W along a defines an S-object of $\mathcal{O V}$. The Lie algebroid N consists of triples $\left(\tau, \tau_{U}, \tau_{W_{U}}\right)$, where $\tau \in \mathcal{T}_{S}, \tau_{U} \in \mathcal{T}_{U}$ is a lifting of τ to $U=C_{S} \backslash a(S)$, and $\tau_{W_{U}}$ is an action of τ_{U} on W_{U} that preserves (,). The corresponding map φ is obvious, and $\widetilde{\varphi}_{(0)}$ comes from 2.4.4.

One has immediate variants of this construction for the case of several points and points with 1-jet of a parameter (see 3.4.6, 3.4.7).
3.4.10 Note that we have a canonical morphism $r:\left(\widetilde{\mathcal{A}}_{-1}, \mathcal{V V}\right) \rightarrow(\widetilde{\mathcal{O \mathcal { A }}}, \mathcal{O V})$ of centered Harish-Chandra groupoids. It assigns to $\left(F, E_{\mathcal{O}}\right) \in \mathcal{V} \mathcal{V}$ the triple $\left(F, E_{\mathcal{O}} \oplus\right.$ $\left.E_{\mathcal{O}}^{0},(),\right)$ where (,) is the obvious pairing. The morphism $\widetilde{\mathcal{A}} E_{F} \rightarrow \widetilde{\mathcal{O} \mathcal{A}}\left(E_{F} \oplus E_{F}^{0}\right)$ was defined in 2.4.2. Now for a scheme S and a collection ($\left.C_{S}, a, E\right)$ from 3.4.8 we have $\left(C_{S}, a, E \oplus E^{0},(),\right)$ from 3.4.9. We have an obvious r-morphism of corresponding localization data $r^{\#}: \psi_{c}\left(C_{S}, a, E\right) \rightarrow \psi_{-c}\left(C_{S}, a, E \oplus E^{0},(\right.$,$)) (see$ 2.4), hence the isomorphism $r_{D}: D_{\psi_{c}\left(C_{S}, a, E\right)} \sim D_{\psi_{c}\left(C_{S}, a, E \oplus E^{0},(,)\right)}$.
3.5 Fermions and determinant bundles. In this section the rings of twisted differential operators D_{ψ} that appeared in 3.4 will be canonically identified with the rings \mathcal{D}_{L} for some natural line bundles L (see 3.2.8). Equivalently, we will construct a D_{ψ}-module L which is a line bundle (as \mathcal{O}-module). This will be done by means of Clifford modules.
3.5.1 Let us start with the situation in 3.4.9. For $Q=\left(F, W_{\mathcal{O}},(),\right) \in \mathcal{O} \mathcal{V}$ denote by M_{Q} the Clifford module (for Clifford algebra $C \ell(Q)=C \ell\left(W_{F} \cdot(,) \bullet\right)$, see 1.4) generated by a single fixed vector v with the only relation $W_{\mathcal{O}} v=0$. If Q is even, then M_{Q} is irreducible; if Q is odd, then M_{Q} is the sum of two non-isomorphic irreducible modules. Note that M_{Q} carries a canonical Aut Q-action (the only one)
that leaves v invariant. By 2.4.3 M_{Q} is an $\widetilde{\mathcal{O} \mathcal{A}} W_{F}=\widetilde{\mathcal{O} \mathcal{A}}_{Q}$-module. Clearly these actions are compatible, hence M_{Q} is an $\left(\widetilde{\mathcal{O} \mathcal{A}}_{Q}\right.$, Aut $\left.Q\right)$-module. This way we get the $(\widetilde{\mathcal{O} \mathcal{A}}, \mathcal{O V})$-module M.

Let S be a smooth scheme, and $\left(C_{S}, a, W,(),\right)$ the geometric data from 3.4.9 that defines the corresponding S-localization data ψ for $(\mathcal{O V}, \widetilde{\mathcal{O A}})$. Let $Q_{S}=$ $\left(F_{S}, W_{\mathcal{O}_{F_{S}}},(),\right)$ be the corresponding S-object of $\mathcal{O} \mathcal{V}(=$ the completion of our data along a), and $M_{Q_{S}}$ be the corresponding \mathcal{O}_{S}-module with $\widetilde{\mathcal{O}}_{Q_{S}}$ - action. Certainly, $M_{Q_{S}}$ is a Clifford module for the \mathcal{O}_{S}-Clifford algebra $C \ell\left(W_{F_{S}},(,) \bullet\right)$ generated by the section v with the only relation $W_{\mathcal{O}_{F_{S}}} v=0$. Note that $\pi_{*} W_{U}=$ $\left.\pi\right|_{U^{*}}\left(\left.W\right|_{U}\right)$ is an S-family of maximal isotropic colattices in $W_{F_{S}}$ (see 2.4.5). Put $L_{\psi}=M_{Q_{S}} / \pi_{*} W_{U} M_{Q_{S}}$. This is a line bundle on S if Q_{S} is even (which means that (,) : W $\times W \rightarrow W_{C_{S} / S}$ is non-degenerate). If Q_{S} is odd, then L_{ψ} is a twodimensional vector bundle which splits canonically as a sum of two line bundles on the 2 -sheeted covering of S that corresponds to a choice of $\gamma \in W_{\mathcal{O}_{F_{S}}}^{\perp} / W_{\mathcal{O}_{F_{S}}}$ with $(\gamma, \gamma) \bullet=1$.
3.5.2 Lemma. L_{ψ} is naturally a D_{ψ}-module: it is a D_{ψ}-module quotient of $\Delta_{\psi} M$

Proof. Consider the action of Lie algebroid $\mathcal{\mathcal { A } \widetilde { \mathcal { A } } _ { Q _ { S } }} N$ (see 3.3.4) on $M_{Q_{S}}$. Since for $(a, n) \in \mathcal{A \mathcal { O \mathcal { A } }} Q_{S} N=\mathcal{A \mathcal { O } \mathcal { A } _ { Q _ { S } }} \mathcal{A O}_{\mathcal{A}_{Q_{S}}} \pi_{*} \mathcal{O} \mathcal{A} W_{U}$ and $w \in \pi_{*} W_{U}$ one has $[(a, n), w]=n(w)$ (as operators on $\left.M_{Q_{S}}\right)$, we see that this action "quotients down" to L_{ψ}. It remains to show that L_{ψ} is actually an A_{ψ}-module. We need to prove that the \mathcal{O}_{S}-Lie subalgebra $s\left(N_{(0)}\right) \subset \widetilde{\mathcal{A O}}_{Q_{S}} N$ acts trivially on L_{ψ}. Note that $s\left(N_{(0)}\right)=\pi_{*} \mathcal{O} \mathcal{A} W_{U / S}$ acts on $L_{\psi} \mathcal{O}_{S}$-linearly, hence it suffices to consider the case when S is a point. Then $N_{(0)}=\mathcal{O} \mathcal{A} W_{U}$ is an extension of \mathcal{I}_{U} by the orthogonal Lie algebra $\mathcal{O} W_{U}$. Since both $\mathcal{O} W_{U}$ and \mathcal{T}_{U} are perfect \mathbb{C}-Lie algebras, we see that $N_{(0)}$ is perfect, hence every 1-dimensional representation of $N_{(0)}$ is trivial. Since L_{ψ} is either 1-dimensional or a sum of two 1-dimensional $N_{(0)}$-invariant subspaces, we are done.

Actually we have proven that L_{ψ} is a quotient of the D_{ψ}-module $\Delta_{\psi}(M)$. Certainly, 3.5.2 implies
3.5.3 Proposition. One has a canonical isomorphism of twisted differential operators algebras $D_{\psi}=D_{L_{\psi}}$ if Q_{S} is even, and $D_{\psi_{2}}=D_{\operatorname{det} L_{\psi}}$ if Q_{S} is odd.
3.5.4 Remarks. (i) According to 1.4 .4 the fibers $L_{\psi_{s}}, s \in S$, are canonically identified with det $H^{0}\left(C_{s}, W_{s}\right)$ if Q_{S} is even, i.e., if $(\stackrel{,}{\prime})$ is non degenerate (if Q_{S} is odd, one has det $L_{\psi_{s}}=\operatorname{det}^{\otimes 2} H^{0}\left(C_{s}, W_{s}\right)$). Hence the automorphism - id_{W} of our data acts on L_{ψ} as ± 1 depending on whether $\operatorname{dim} H^{0}\left(C_{s}, W_{s}\right)$ is even or odd. This proves the theorem of Mumford that the parity of dim does not jump.
(ii) Of course we may consider the situation with several points $a_{1}, \ldots, a_{n} \in C$. By a reason similar to 3.4 .6 one may see that the corresponding line bundle L_{ψ} actually does not depend on these points; certainly, we may delete only "even" points where $($,$) is non-degenerate.$

Now let us consider the situation 3.4.8 of vector symmetries. By 3.4.10 we have a canonical isomorphism $D_{\psi_{c}\left(C_{S}, a, E\right)}=D_{\psi_{-c}\left(C_{S}, a, E \oplus E^{0},(,)\right)}$. By 3.5.4(i) the fibers of the line bundle $L_{\psi}=L_{\psi}\left(C_{S}, a, E \oplus E^{0},(),\right)$ coincide with det $H^{0}\left(C_{s}, E\right) \otimes$
$\operatorname{det} H^{0}\left(C_{s}, E_{s}^{0}\right)=\operatorname{det} H^{0}\left(C_{s}, E\right) / \operatorname{det} H^{1}\left(C_{s}, E\right)=\operatorname{det} R \Gamma\left(C_{s}, E\right)$. It is easy to see that $L_{\psi}=\operatorname{det} R \pi_{*} E=$ the determinant line bundle of E (about determinant line bundles, see e.g. $[\mathrm{KM}]$). By 3.5.4 (ii) and a version of 3.4.6 for vector symmetries we may delete a point a above. Hence
3.5.5 Corollary. One has a canonical isomorphism $D_{\psi_{c}\left(C_{S}, E\right)}=D_{\operatorname{det}^{\otimes-c} R \pi_{*} E} . \square$

Consider finally the pure Virasoro situation. We have an obvious embedding of Harish-Chandra groupoids $r:(\mathcal{V}, \widetilde{\mathcal{T}}) \rightarrow(\mathcal{V} \mathcal{V}, \widetilde{\mathcal{A}}), F \longmapsto\left(F, \mathcal{O}_{F}\right), \widetilde{\mathcal{T}} \hookrightarrow \widetilde{\mathcal{A} F}$ (see 2.1.3). If C_{S} is an S-family of curves, a is an S-point of C_{S}, we have an obvious r-morphism of localization data $\psi_{\left(C_{S}, a\right)} \longrightarrow \psi_{\left(C_{S}, a, \mathcal{O}_{C_{S}}\right)}$ which identifies $D_{\psi_{c}\left(C_{S}, a\right)}$ with $D_{\psi_{c}\left(C_{S}, a, \mathcal{O}_{C_{S}}\right)}$. Now 3.5.5 implies
3.5.6 Corollary. One has a canonical isomorphism $D_{\psi_{c}\left(C_{S}\right)}=D_{\operatorname{det}^{\otimes-c} R \pi_{*} \mathcal{O}_{C_{S}}} . \square$
3.6 Quadratic degeneration. In this section we will describe the determinant bundle of a family of curves that degenerates quadratically. Below $S=$ Spec $\mathbb{C}[[q]]$ is a formal disc, $0 \in S$ is the special point $q=0, \eta=\operatorname{Spec} \mathbb{C}((q))$ is the generic point.
3.6.1 Lemma. There is a canonical 1-1 correspondence between the following data (i) and (ii):
(i) A proper S-family of curves, C_{S} such that C_{η} is smooth and C_{0} has exactly one singular point a which is quadratic, together with formal coordinates t_{1}, t_{2} at a such that $q=t_{1} t_{2}$.
(ii) A proper smooth S-family of curves C_{S}^{\vee} together with two disjoint points $a_{1}, a_{2} \in$ $C_{S}(S)$ and formal coordinates t_{i} at a_{i}.

Proof. Here is a construction of mutually inverse maps. Note that, according to Grothendieck, we may replace any proper S-curve B_{S} by the corresponding formal scheme $\widehat{B}_{S}=$ the completion of B_{S} along B_{0}.
(i) \longmapsto (ii). Let C_{S}, t_{1}, t_{2} be a (i)-data. The corresponding $C_{S}^{\vee}, a_{i}, t_{i}$ are the following ones. One has $C_{0}^{\vee}=$ normalization of C_{0}, so t_{i} define formal coordinates at points $a_{1}(0), a_{2}(0) \in C_{S}^{\vee}$. To define C_{S}^{\vee} as a formal scheme, we have to construct the corresponding sheaf $\widehat{\mathcal{O}}_{C_{S}^{\vee}}$ of functions on C_{0}^{\vee}. We demand that on $U=C_{S}^{\vee} \backslash\left\{a_{1}, a_{2}\right\}=C_{0} \backslash\{a\}$ our $\widehat{\mathcal{O}}_{C_{s}^{\vee}}$ coincides with $\widehat{\mathcal{O}}_{C_{S}}$. Note that any function $\varphi \in \widehat{\mathcal{O}}_{C_{S}}(V)$, where $V \subset U$, has Laurent series expansions $\varphi_{i}\left(t_{i}, q\right) \in \mathbb{C}\left(\left(t_{i}\right)\right)[[q]]$ at $a_{i}(0)$. We say that φ is regular at $a_{i}(0)$ if $\varphi_{i}\left(t_{i}, q\right) \in \mathbb{C}\left[\left[t_{i}, q\right]\right]$. This defines $\widehat{\mathcal{O}}_{C_{S}^{\vee}}$. The points a_{i} are defined by equations $t_{i}=0$.
(ii) $\longmapsto\left(\right.$ i). Let $C_{S}^{\vee}, a_{i}, t_{i}$ be (ii)-data. The zero fiber C_{0} of our curve C_{S} is C_{0}^{\vee} with points a_{1}, a_{2} glued together. The sheaf $\widehat{\mathcal{O}}_{C_{S}}$ coincides with $\widehat{\mathcal{O}}_{C_{s}^{\vee}}$ on $U=C_{0} \backslash\{0\}=$ $C_{0}^{\vee} \backslash\left\{a_{1}, a_{2}\right\}$. For a Zariski open $V \subset U$ a function $\varphi \in \widehat{\mathcal{O}}_{C_{S}}(V)$ is regular at a if the t_{i}-Laurent series expansions $\varphi_{i} \in \mathbb{C}\left(\left(t_{i}\right)\right)[[q]]$ of φ at a_{i} lie in $\mathbb{C}\left[\left[t_{1}, t_{2}\right]\right] \subset \mathbb{C}\left(\left(t_{i}\right)\right)[[q]]$ and $\varphi_{1}=\varphi_{2} \in \mathbb{C}\left[\left[t_{1}, t_{2}\right]\right]$. Here the embedding $\mathbb{C}\left[\left[t_{1}, t_{2}\right]\right] \hookrightarrow \mathbb{C}\left(\left(t_{1}\right)\right)[[q]]$ is $t_{1} \longmapsto$ $t_{1}, t_{2} \longmapsto q / t_{1}$, and the one $\mathbb{C}\left[\left[t_{1}, t_{2}\right]\right] \hookrightarrow \mathbb{C}\left(\left(t_{2}\right)\right)[[q]]$ is $t_{1} \longmapsto q / t_{2}, t_{2} \longmapsto t_{2}$. This defines $\widehat{\mathcal{O}}_{C_{s}}$.

Below we will say that a vector bundle E on a scheme X is stratified at $x \in X$ if we are given an isomorphism $E \simeq A \otimes_{\mathbb{C}} \mathcal{O}_{X}$ on a formal neighbourhood of x (here A is a vector space; $A=E_{x}$).
3.6.2 Lemma. Let C_{S} and C_{S}^{\vee} be the S-curves from 3.6.1. There is natural 1-1 correspondence between the data
(i) A vector bundle E on C_{S} together with a stratification of E at a.
(ii) A vector bundle E^{\vee} on C_{S}^{\vee} together with a stratifications of E^{\vee} at a_{1}, a_{2} and an isomorphism of fibers $E_{a_{1}}^{\vee} \simeq E_{a_{2}}^{\vee}$.
3.6.3 Proposition. $\operatorname{Let}\left(C_{S}, E\right),\left(C_{S}^{\vee}, E^{\vee}\right)$ be the related objects from 3.6.1, 3.6.2. Then there is a canonical stratification of the line bundle $\mathcal{L}=\operatorname{det} R \pi_{*} E / \operatorname{det} R \pi_{*}^{\vee} E^{\vee}$ on S.

Remark. Here "stratification" $=$ "stratification at $0 "=$ (isomorphism $\mathcal{L} \simeq \mathcal{L}_{0} \otimes$ $\left.\mathcal{O}_{S}\right)$. Note that $\mathcal{L}_{0}=\operatorname{det} R \Gamma\left(C_{0}, E_{0}\right) / \operatorname{det} R \Gamma\left(C_{0}^{\vee}, E_{0}^{\vee}\right)$ is naturally isomorphic to $\operatorname{det}^{-1} E_{a}$, so 3.6.3 is canonical isomorphism $\operatorname{det} R \pi_{*}^{\vee}\left(C^{\vee}, E^{\vee}\right)=\operatorname{det} E_{a} \operatorname{det} R \pi_{*}(C, E)$.

Proof. Construction. Let us compute our determinant bundles. Below we will use notations from the proof of 3.6.1. Put $A=E_{a}=E_{a_{1}}^{\vee}=E_{a_{2}}^{\vee}$. Our data identifies the formal completion $E_{\widehat{a}}$ of E at a with $A \otimes \mathbb{C}\left[\left[t_{1}, t_{2}\right]\right]$, and the formal completion of $E_{\widehat{a}_{i}}^{\vee}$ of E^{\vee} at a_{i} with $A \otimes \mathbb{C}\left[\left[t_{i}, q\right]\right]$. The restrictions of E and E^{\vee} to the formal scheme $\widehat{U}=\left(U, \widehat{\mathcal{O}}_{U}\right)$ coincide; put $P=H^{0}\left(U,\left.E\right|_{\widehat{U}}\right)=\lim _{\leftarrow} H^{0}\left(U, E / q^{n} E\right)$. Also put $V=A \otimes\left\{\mathbb{C}\left(\left(t_{1}\right)\right)[[q]] \oplus \mathbb{C}\left(\left(t_{2}\right)\right)[[q]]\right\}, V_{+0}=A \otimes\left\{\mathbb{C}\left[\left[t_{1}, q\right]\right] \oplus \mathbb{C}\left[\left[t_{2}, q\right]\right]\right\}, V_{+1}=$ $A \otimes\left\{\mathbb{C}\left[\left[t_{1}, t_{2}\right]\right]\right.$. We may compute $R \pi_{*} E, R \pi_{*}^{\vee} E^{\vee}$ by means of "adelic" complexes for our formal schemes. Namely, $R \pi_{*}^{\vee} E^{\vee}=\operatorname{Cone}\left(P \oplus V_{+0} \rightarrow V\right)[-1], R \pi_{*} E=$ Cone $\left(P \oplus V_{+1} \rightarrow V\right)[-1]$; here the map $P \rightarrow V$ is minus the Laurent series expansion map, the map $V_{+1} \rightarrow V$ is given by formula $a \otimes t_{1}^{m} t_{2}^{n} \longmapsto a \otimes\left\{q^{n} t_{1}^{m-n}+q^{m} t_{2}^{n-m}\right\}$ (see the proof of 3.6.1), and $V_{+0} \rightarrow V$ is the obvious embedding.

Note that V is a flat complete $\mathbb{C}[[q]]$-module with the obvious Tate structure (see 1.4.10), V_{+0}, V_{+1} are lattices in V and P is a colattice in V. So to compute our determinants we may use Clifford modules. Namely, take $W=V \oplus V^{*}$ with the standard form (,); let M be the corresponding Clifford module such that $M_{0}=$ $M / q M$ is an irreducible Clifford module for $\left(W_{0},(,)_{0}\right)$. Then $L(P)=P \oplus P^{\perp}$, $L\left(V_{i+}\right)=V_{i+} \oplus V_{i+}^{\perp}$ are maximal isotropic colattice and lattices respectively. A $\mathbb{C}[[q]]$-version of 1.4 .9 shows that coinvariants $M_{L(P)}$ and invariants $M^{L\left(V_{i+}\right)}$ are free $\mathbb{C}[[q]]$-modules of rank one, and there are canonical isomorphisms

$$
\operatorname{det} R \pi_{*}^{\vee} E^{\vee}=M^{L\left(V_{0+}\right)} / M_{L(P)}, \operatorname{det} R \pi_{*} E=M^{L\left(V_{1+}\right)} / M_{L(P)}
$$

Hence $\operatorname{det} R \pi_{*} E / \operatorname{det} R \pi_{*}^{\vee} E^{\vee}=M^{L\left(V_{1+}\right)} / M^{L\left(V_{0+}\right)}$. In this description of the ratio of determinants all the "global" data that may vary (encoded in P) disappeared; we've got the standard "local" expression for it.

It remains to fix an isomorphism $\gamma: M^{L\left(V_{0+}\right)} \rightarrow M^{L\left(V_{1+}\right)} \otimes \operatorname{det} A$; the desired stratification of the ratio of determinants then will be $\gamma(v) / v$ for a non-zero generator v (clearly it does not depend on M). Let a_{1}, \ldots, a_{ℓ} be a basis of A. Consider the vectors $e_{\alpha 1}^{k}=a_{\alpha} \otimes t_{1}^{k}, e_{\alpha 2}^{k}=a_{\alpha} \otimes t_{2}^{k}, k \in \mathbb{Z}, \alpha=1, \ldots, \ell$. This is a basis (in an obvious sense) of V; denote by $e_{\alpha i}^{k *} \in V^{*}$ the dual basis. The vectors $\left\{e_{\alpha i}^{k}\right\}, k \geq 0$, form a basis of V_{0+}, and the vectors $f_{\alpha 1}^{k}:=e_{\alpha 1}^{k}+q^{k} e_{\alpha 2}^{-k}, f_{\alpha 2}^{k}:=q^{k} e_{\alpha 1}^{-k}+e_{\alpha 2}^{k}, e_{\alpha 1}^{0}+e_{\alpha 2}^{0}$, $k \geq 1$, form a basis of V_{1+}. In a slightly informal way our γ could be defined as follows. A generator of $M^{L\left(V_{0+}\right)}$ is an infinite wedge product $\bigwedge_{k>0} e_{\alpha i}^{k}$, a generator of $k \geq 0$
α, i
$M^{L\left(V_{1+}\right)} \otimes \operatorname{det} A$ is $\bigwedge_{\substack{k \geq 1 \\ \alpha, i}} f_{\alpha i}^{k} \wedge \bigwedge_{\alpha}\left(e_{\alpha 1}^{0}+e_{\alpha 2}^{0}\right) \otimes \bigwedge_{\alpha} a_{\alpha}$, and γ just identifies these generators. To be precise, consider the elements $\gamma_{n}=\prod_{1 \leq k \leq n}\left(f_{\alpha 1}^{k} f_{\alpha 2}^{k} e_{\alpha 2}^{k *} e_{\alpha 1}^{k *}\right) \in \operatorname{Cliff}(W)$. These γ_{n} do not depend on a choice of basis $\left\{a_{\alpha}\right\}$ in A, and it is easy to see that $\gamma_{\infty}=\lim _{n} \gamma_{n} \in C \ell W$ is correctly defined. Let $V_{0++} \subset V_{0+}, V_{1++} \subset V_{1+}$ be sublattices with bases $\left\{e_{\alpha i}^{k}\right\}, k \geq 1$, and $\left\{f_{\alpha i}^{k}\right\}, k \geq 1$, respectively. It is easy to see that $\gamma_{\infty}\left(M^{L\left(V_{0++}\right)}\right)=M^{L\left(V_{1++}\right)}\left(\right.$ more precisely, $\left.\gamma_{n}\left(M^{L\left(V_{0+}\right)}\right) \equiv M^{L\left(V_{1+}\right)} \bmod q^{n+1} M\right)$. Since $M^{L\left(V_{0+}\right)}=\bigwedge_{\alpha, i} e_{\alpha i}^{0} \cdot M^{L\left(V_{0++}\right)}, M^{L\left(V_{1+}\right)}=\bigwedge_{\alpha}\left(e_{\alpha 1}^{0}+e_{\alpha 2}^{0}\right) \cdot M^{L\left(V_{1++}\right)}$, we have $\bigwedge_{\alpha}\left(e_{1}^{0 *}-e_{2}^{0 *}\right) \cdot \gamma_{\infty} M^{L\left(V_{0+}\right)}=M^{L\left(V_{1+}\right)} . \operatorname{Put} \bigwedge_{\alpha}\left(e_{1}^{0 *}-e_{2}^{0 *}\right) \cdot \gamma_{\infty} \otimes \bigwedge_{\alpha} a_{\alpha} \in C \ell W \otimes$ $\operatorname{det} A$. This γ does not depend on a choice of basis $\left\{a_{\alpha}\right\}$ of A, and the desired $M^{L\left(V_{0+}\right)} \Rightarrow M^{L\left(V_{1+}\right)} \otimes \operatorname{det} A$ is just multiplication by γ.
3.6.4 Let C^{\vee} be a curve, $a_{1}, a_{2} \in C^{\vee}, a_{1} \neq a_{2}$, a pair of points, and t_{i} a formal parameter at a_{i}. Consider the constant S-family $C_{S}^{\vee}:=C^{\vee} \times S$; let $a_{i} \in C_{S}^{\vee}(S), t_{i}$ be the "constant" points and parameters. According to 3.6 .1 these define an S curve C_{S} with quadratic singularities along zero fiber and smooth generic fiber. Consider the trivial vector bundles $\mathcal{O}_{C_{S}}, \mathcal{O}_{C_{S}^{\vee}}$; they correspond to each other by 3.6.2 correspondence. Note that $\operatorname{det} R \pi_{*}^{\vee} \mathcal{O}_{C_{S}^{\vee}}=\operatorname{det} R \Gamma\left(C^{\vee}, \mathcal{O}_{C \vee}\right) \otimes \mathcal{O}_{S}$ is obviously stratified, hence 3.6.3 defines the stratification of $\operatorname{det} R \pi_{*} \mathcal{O}_{C_{S}}$ which is a natural generator γ of the $\mathbb{C}[[q]]$-module $\operatorname{det}^{-1} R \Gamma\left(C^{\vee}, \mathcal{O}_{C^{\vee}}\right) \otimes_{\mathbb{C}}[[q]] \operatorname{det} R \pi_{*} \mathcal{O}_{C_{S}}$. Let us compute γ in a couple of simple situations.
3.6.5 Assume that C^{\vee} is a disjoint union of two copies of \mathbb{P}^{1} 's, $C^{\vee}=\mathbb{P}_{1}^{1} \coprod \mathbb{P}_{2}^{1}, a_{1} \in$ $\mathbb{P}_{1}^{1}, a_{2} \in \mathbb{P}_{2}^{1}$ are "zero" points, t_{i} are standard parameters at a_{i}. Then the S-curve C_{S} is the compactification of the family of affine curves $\mathbb{A}^{2} \rightarrow S, q=t_{2} t_{2}$. This is a genus 0 curve, hence $R \pi_{*} \mathcal{O}_{C_{S}}=\mathcal{O}_{S}$, so we have a canonical trivialization α of $\operatorname{det} R \pi_{*} \mathcal{O}_{C_{S}}$ of "global" origin. In fact, it coincides with our γ. To see this, note that (in the notations of proof of 3.6.3) in our case P is colattice with basis $\left\{e_{1}^{k}, e_{2}^{k}\right\}, k \leq$ 0 , so one has $P \oplus V_{1++}=V=P \oplus V_{0++}$. The operator $\left(e_{1}^{0}+e_{2}^{0}\right)$. identifies $M^{L\left(V_{1++}\right)}$ with $M^{L\left(V_{1+}\right)}$, hence $\operatorname{det} R \pi_{*} \mathcal{O}_{C_{S}}=M^{L\left(V_{1++}\right)} / M_{L(P)}$. The "global" trivialization α comes from the isomorphism $M^{L\left(V_{1++}\right)} \underset{\sim}{c} M_{L(P)}, m \longmapsto m \bmod L(P) M$. The trivialization γ comes from composition $M^{L\left(V_{1++}\right)} \underset{\sim}{ } M^{L\left(V_{0++}\right)} \underset{\sim}{\sim} M_{L(P)}$ where the first arrow is inverse to multiplication by γ_{∞} and the second one is projection $m \longmapsto m \bmod L(P) M$. Since $f_{i}^{k}=e_{i}^{k} \bmod P$ for $k \geq 1$, the formula for γ_{∞} shows that this composition coincides with projection $M^{L\left(V_{1++}\right)} \rightarrow M_{L(P)}$, hence $\alpha=\gamma$.
3.6.6 Assume now that $C^{\vee}=\mathbb{P}^{1}, a_{1}=0, a_{2}=\infty$ and t_{1}, t_{2} are standard parameters t and t^{-1} respectively. Then the curve C_{S} coincides with the standard Tate elliptic curve (see, e.g., $[\mathrm{DR}]$), q is a standard parameter on moduli space of elliptic curves at ∞. The Tate curve carries a canonical relative 1-form ν (that corresponds to the standard invariant form on G_{m} via Tate's uniformization). One has $R^{0} \pi_{*} \mathcal{O}_{C_{S}}=$ $\mathcal{O}_{S}, R^{1} \pi_{*} \mathcal{O}_{C_{S}}=\left(R^{0} \pi_{*} \omega_{C_{S}}\right)^{*}$ by Serre duality (here $\omega_{C_{S}}$ is relative dualizing sheaf), hence $\operatorname{det} R \pi_{*} \mathcal{O}_{C_{S}}=R^{0} \pi_{*} \omega_{C_{S}}$ and ν is a canonical trivialization of $\operatorname{det} R \pi_{*} \mathcal{O}_{C_{S}}$. Let us calculate γ. The colattice P has basis $\left\{e_{1}^{k}+e_{2}^{k}\right\}, k \in \mathbb{Z}$. One has $\mathcal{O}_{S}=$ $R^{0} \pi_{*} \mathcal{O}_{C_{S}}=\mathcal{O}_{S}\left(e_{1}^{0}+e_{2}^{0}\right)=P \cap V_{1+}, R^{1} \pi_{*} \mathcal{O}_{C_{S}}=V / P+V_{1+}=V / P+V_{1++}$. The
relative differential ν in local coordinates t_{i} is $\frac{d t_{1}}{t_{1}}=-\frac{d t_{2}}{t_{2}}$, and the Serre duality morphism is the sum of local residues at a_{i}. Hence the functional $\nu \in\left(R^{1} \pi_{*} \mathcal{O}_{C_{S}}\right)^{*}=$ $\left(V / P+V_{1+}\right)^{*} \subset V^{*}$ is $e_{1}^{0 *}-e_{2}^{0 *}$. As above, multiplication by $e_{1}^{0}+e_{2}^{0}$ identifies $M^{L\left(V_{1++}\right)}$ with $M^{L\left(V_{1}\right)}$, hence $\operatorname{det} R \pi_{*} \mathcal{O}_{C S}=M^{L\left(V_{1++}\right)} / M_{L(P)}$. The trivialization ν comes from the isomorphism $M^{L\left(V_{1++}\right)} \rightarrow M_{L(P)}, m \longmapsto\left(e_{1}^{0} m\right) \bmod L(P) M$. The trivialization γ comes from composition $M^{L\left(V_{1++}\right)} \Rightarrow M^{L\left(V_{0++}\right)} \Rightarrow M_{L(P)}$ where the first arrow is inverse to multiplication by γ_{∞} isomorphism $M^{L\left(V_{0++}\right)} \underset{\sim}{M^{L\left(V_{1++}\right)}}$ and the second arrow is $m \longmapsto\left(e_{1}^{0} m\right) \bmod L(P) M$. Since $f_{1}^{k}=\left(1-q^{k}\right) e_{1}^{k} \bmod P$, $f_{2}^{k}=\left(1-q^{k}\right) e_{2}^{k} \bmod P$ we see that $\gamma=\left[\prod_{k \geq 1}\left(1-q^{k}\right)^{2}\right] \nu$, or, in terms of Dedekind's η-function $\eta(q)=q^{1 / 24} \prod_{k \geq 1}\left(1-q^{k}\right)$, one has

$$
\gamma=q^{-1 / 12} \eta(q)^{2} \nu
$$

One may reformulate this as follows. Recall that the line bundle $\lambda=\operatorname{det} R \pi_{*} \mathcal{O}_{C}=$ $\pi_{*} \omega_{C}$ on moduli space of elliptic curves carries a canonical global integrable connection ∇ such that the discriminant Δ is a global horizontal section of $\lambda^{\otimes 12}$ (with respect to the corresponding connection on $\lambda^{\otimes 12}$). We see that our γ is a horizontal section of a connection $\nabla+\frac{1}{12} \frac{d q}{q}$.

§4. Fusion Categories

4.1 Recollections from symplectic linear algebra. Let V be a symplectic \mathbb{R}-vector space of dimension $2 g$ with symplectic form \langle,$\rangle . To (V,\langle\rangle$,$) there$ corresponds a canonical transitive groupoid \mathcal{T}_{V}. In 1.1-1.3 below we give three different constructions of \mathcal{T}_{V}. Assume first that $V \neq 0$.
4.1.1 Let $H=H_{V}$ be the Siegel upper half plane of V. A point of H is a complex Lagrangian subspace $L \subset V_{\mathbb{C}}:=V \otimes \mathbb{C}$ such that $i\langle x, \bar{x}\rangle>0$ for $x \neq 0 \in L$. Equivalently, one may consider a point of H as a complex structure ℓ on V such that the form $\left\langle\cdot, i_{\ell} \cdot\right\rangle$ is symmetric and positive definite; here $i_{\ell} \in$ End V is multiplication by $i \in \mathbb{C}$ with respect to ℓ (the $1-1$ correspondence $\ell \longleftrightarrow L$ is $\ell \longmapsto L_{\ell}:=$ the i-eigenspace of $i_{\ell}, L \longmapsto \ell_{L}:=$ the complex structure that comes from the isomorphism $\left.V \underset{\sim}{\sim} V_{\mathbb{C}} / L\right)$. The space H is a complex variety, and the L 's form a rank g holomorphic bundle \mathcal{L} on H. Put $\lambda:=\operatorname{det} \mathcal{L}:$ this is a holomorphic line bundle on H. Denote by \widetilde{H} the space of $\lambda^{\otimes 2} \backslash\{$ zero section $\}$; the projection $\widetilde{H} \rightarrow H$ is a \mathbb{C}^{*}-fibration. Let \mathcal{H} be the space of C^{∞}-sections $H \rightarrow \widetilde{H}$. One has obvious maps

$$
\begin{equation*}
\mathcal{H} \longleftarrow \mathcal{H} \times H \longrightarrow \widetilde{H}, \quad \varphi \longleftarrow(\varphi, h) \mapsto \varphi(h) \tag{4.1.1.1}
\end{equation*}
$$

Since H is contractible, these are homotopy equivalences. Note that for any $a \in \widetilde{H}$ the map $i_{a}: S^{1} \hookrightarrow \widetilde{H}, i_{a}\left(e^{i \theta}\right):=e^{i \theta} a$, is a homotopy equivalence which defines a canonical identification

$$
\begin{equation*}
\pi_{1}(\widetilde{H}, a)=\mathbb{Z} \tag{4.1.1.2}
\end{equation*}
$$

For a topological space X let $\mathcal{T}(X)$ be the fundamental groupoid of X : its objects are points of X, and its morphisms are homotopy classes of paths. Put $\mathcal{T}_{V}^{\prime}:=\mathcal{T}(\widetilde{H})$.
4.1.2 Denote by $\Lambda=\Lambda_{V}$ the grassmannian of real non-oriented Lagrangian subspaces of V; the planes form a canonical Lagrangian sub-bundle $\mathcal{L}_{\mathbb{R}}$ of $V_{\Lambda}:=V \times \Lambda$. Put $\lambda_{\mathbb{R}}:=\operatorname{det} \mathcal{L}_{\mathbb{R}}$: this is a real line sub-bundle of $\Lambda^{g} V_{\Lambda}$. Let Λ^{\prime} be the space $\lambda_{\mathbb{R}} \backslash\{$ zero section $\} / \pm 1$: the map $x \longmapsto x^{2}$ identifies Λ^{\prime} with the "positive ray" of $\lambda_{\mathbb{R}}^{\otimes 2}$. The obvious projection $\Lambda^{\prime} \longrightarrow \Lambda$ is an \mathbb{R}_{+}^{*}-torsor, hence a homotopy equivalence. One has a canonical map

$$
\begin{equation*}
v: \Lambda^{\prime} \longrightarrow \mathcal{H} \tag{4.1.2.1}
\end{equation*}
$$

defined by the formula $v\left(x^{2}\right)(h)=\lambda^{2}$, where $\lambda \in \operatorname{det} L_{h} \subset \wedge^{g} V_{\mathbb{C}}$ is the unique vector such that $\operatorname{vol}(x \wedge \lambda)=1$ (here $\operatorname{vol}=\frac{\langle,\rangle}{g!} \in \Lambda^{2 g} V^{*}$ is the canonical volume). The map v induces an isomorphism of fundamental groupoids. Put $\mathcal{T}_{V}^{\prime \prime}:=\mathcal{T}(\Lambda)$. According to $(1.1 .1), 1.2 .1)$ we have a canonical equivalence of groupoids

$$
\begin{equation*}
\alpha: \mathcal{T}_{V}^{\prime \prime} \xrightarrow{\sim} \mathcal{T}_{V}^{\prime} \tag{4.1.2.2}
\end{equation*}
$$

4.1.3 Here is the third construction of \mathcal{T}_{V}. For 3 Lagrangian planes one defines, according to Kashiwara, their Maslov index $\tau\left(L_{1}, L_{2}, L_{3}\right)$ as the signature of the quadratic form B on $L_{1} \oplus L_{2} \oplus L_{3}$ given by the formula $B\left(x_{1}, x_{2}, x_{3}\right)=\left\langle x_{1}, x_{2}\right\rangle+$
$\left\langle x_{2}, x_{3}\right\rangle+\left\langle x_{3}, x_{1}\right\rangle$ (see [LV] ()). Let $\mathcal{T}_{V}^{\prime \prime \prime}$ be the following groupoid. Its set of objects is Λ. For $L_{1}, L_{2} \in \Lambda$ we put $\operatorname{Hom}_{\mathcal{T}_{v}^{\prime \prime \prime}}\left(L_{1}, L_{2}\right)=\mathbb{Z}$, and the composition of morphisms $L_{1} \xrightarrow{n} L_{2} \xrightarrow{m} L_{3}$ is given by the formula $m \circ n:=m+n+\tau\left(L_{1}, L_{2}, L_{3}\right)$. Since τ satisfies a cocycle formula [LV] (), the composition is associative.

Let us define a canonical isomorphism

$$
\begin{equation*}
\beta: \mathcal{T}_{V}^{\prime \prime \prime} \underset{\sim}{\mathcal{T}_{V}^{\prime \prime}} \tag{4.1.3.1}
\end{equation*}
$$

which is the identity on objects. To construct β we need to choose for each pair $L_{1}, L_{2} \in \Lambda$ a canonical path $\gamma_{L_{1}, L_{2}} \in \operatorname{Hom}_{\mathcal{T}_{V}^{\prime \prime}}\left(L_{2}, L_{1}\right)$ such that

$$
\begin{equation*}
\gamma_{L_{3} L_{2}} \circ \gamma_{L_{2} L_{1}}=\gamma_{L_{3} L_{1}}+\tau\left(L_{1}, L_{2}, L_{3}\right) . \tag{4.1.3.2}
\end{equation*}
$$

Then one defines β by the formula $\beta(n)=n+\gamma_{L_{1}, L_{2}}$ for $n \in \operatorname{Hom}_{\mathcal{T}_{V} \prime \prime \prime}\left(L_{2}, L_{1}\right)=\mathbb{Z}$ (recall that $\operatorname{Hom}_{\mathcal{T}_{V}^{\prime \prime}}\left(L_{2}, L_{1}\right)$ is a \mathbb{Z}-torsor by 1.1.2).

To define $\gamma_{L_{1} L_{2}}$ consider the subset $U_{L_{1} L_{2}} \subset \Lambda$ that consists of L 's such that $L_{1}+L_{2} \supset L \supset L_{1} \cap L_{2}=L \cap L_{1}=L \cap L_{2}$. A plane $L \in U_{L_{1}, L_{2}}$ defines a quadratic form φ_{L} on $L_{1} / L_{1} \cap L_{2}$ by the formula $\varphi_{L}(a)=\langle b, a\rangle$ where $b \in L_{2}$ is a vector such that $b+a \in L$. In this way one gets a 1-1 correspondence between $U_{L_{1} L_{2}}$ and the set of all non-degenerate forms on $L_{1} / L_{1} \cap L_{2}$. Let $U_{L_{1} L_{2}}^{+} \subset U_{L_{1} L_{2}}$ be the subspace that corresponds to positive-definite forms, so $U_{L_{1} L_{2}}^{+}$is contractible. Now $\gamma_{L_{1}, L_{2}}$ is the unique homotopy path from L_{2} to L_{1} which, apart from its ends, lies in $U_{L_{1} L_{2}}^{+}$. One verifies (4.1.3.2) immediately.
4.1.4 Below we will denote by \mathcal{T}_{V} either of the groupoids $\mathcal{T}_{V}^{\prime}, \mathcal{T}_{V}^{\prime \prime}, \mathcal{T}_{V}^{\prime \prime \prime}$ identified via (4.1.2.2), (4.1.3.1). In case $V=0$, the groupoid \mathcal{T}_{V}, by definition, has a single object 0 with End $0=\mathbb{Z}$. For any V and $y \in \mathcal{T}_{V}$ we will denote by γ_{0} the generator $1 \in \mathbb{Z}=$ Aut y.
4.1.5 The groupoid \mathcal{T}_{V} has the following functorial properties. Let V be a symplectic space, $N \subset V$ a vector subspace such that $\left.\langle\quad\rangle\right|_{N}=0$, and let N^{\perp} be the \rangle orthogonal complement to N. Then N^{\perp} / N has an obvious symplectic structure. Since the pre-image of a Lagrangian plane in N^{\perp} / N is a Lagrangian plane in V, we have an embedding $\Lambda_{N^{\perp / N}} \hookrightarrow \Lambda_{V}$, which defines a canonical equivalence of groupoids $\mathcal{T}_{N^{\perp / N}}^{\prime \prime} \underset{\sim}{\mathcal{T}_{V}}$.
4.1.6 Now let V_{1}, V_{2} be symplectic spaces. One has an obvious map $\Lambda_{V_{1}} \times \Lambda_{V_{2}} \longrightarrow$ $\Lambda_{V_{1} \oplus V_{2}},\left(L_{1}, L_{2}\right) \longmapsto L_{1} \oplus L_{2}$, and a similar map $\widetilde{H}_{V_{1}} \times \widetilde{H}_{V_{2}} \longrightarrow \widetilde{H}_{V_{1} \oplus V_{2}}$, which comes from multiplication $\operatorname{det}^{\otimes 2} L_{1} \times \operatorname{det}^{\otimes 2} L_{2} \longrightarrow \operatorname{det}^{\otimes 2} L_{1} \otimes \operatorname{det}^{\otimes 2} L_{2}=\operatorname{det}^{\otimes 2}\left(L_{1} \oplus\right.$ $\left.L_{2}\right)$. These define morphisms between corresponding fundamental groupoids, compatible with the canonical equivalences (4.1.2.2). Hence we have a canonical morphism $\mathcal{T}_{V_{1}} \times \mathcal{T}_{V_{2}} \longrightarrow \mathcal{T}_{V_{1} \oplus V_{2}}$.
4.2 The Teichmüller groupoid. This groupoid appears in two equivalent versions: a "combinatorial" or "topological" version, and a "holomorphic" version.
4.2.1 An object of the "topological" Teichmüller groupoid Teich' is an oriented surface S (possibly non-connected and with boundary) together with a set of points $P_{S}=\left\{x_{\alpha}\right\}$ of the boundary ∂S such that each connected component of ∂S contains exactly one x_{α} (we will denote this component $\partial S_{x_{\alpha}}$). The morphisms are isotopy classes of diffeomorphisms.

Let us define an "enhanced" groupoid $\widetilde{\text { Teich }}$ '. For a surface S denote by $H(S)$ the image of the canonical map $H_{c}^{1}(S, \mathbb{R}) \longrightarrow H^{1}(S, \mathbb{R})$ (which is the same as cohomology of a smooth compactification of S). An orientation of S defines a symplectic structure on $H(S)$ (intersection pairing). Now an object of $\widetilde{\text { Teich }}^{\prime}$ is a triple $\left(S, P_{S}, y\right)$, where $\left(S, P_{S}\right) \in$ Teich' and $y \in \mathcal{T}_{H(S)}$. A morphism $\left(S, P_{S}, y\right) \longrightarrow$ $\left(S^{\prime}, P_{S^{\prime}}, y^{\prime}\right)$ is a pair (φ, γ), where $\varphi:\left(S, P_{S}\right) \longrightarrow\left(S^{\prime}, P_{S^{\prime}}\right)$ is a morphism in Teich ${ }^{\prime}$, and $\gamma: \varphi_{*}(y) \longrightarrow y^{\prime}$ is a morphism in $\mathcal{T}_{H\left(S^{\prime}\right)}$; the composition of morphisms is obvious.

The projection $\widetilde{\text { Teich }} \rightarrow$ Teich',$\left(S, P_{S}, y\right) \longmapsto\left(S, P_{S}\right)$, is surjective. For any $\left(S, P_{S}, y\right) \in \widetilde{\text { Teich }^{\prime}}$ the group Aut $\widetilde{\text { Teich }^{\prime}}{ }^{\prime}\left(S, P_{S}, y\right)$ is a central extension of $\operatorname{Aut}_{\text {Teich }}\left(S, P_{S}\right)$ by $\mathbb{Z}\left(=\operatorname{Aut}_{\mathcal{T}_{H(S)}}(y)\right)$. So we may say that $\widetilde{\text { Teich }}^{\prime}$ is a central extension of Teich' by \mathbb{Z}. We will denote the generator of this \mathbb{Z} by γ_{0}.

Consider the functor Teich \longrightarrow Sets, $\left(S, P_{S}\right) \longmapsto P_{S}=$ set of boundary components of S. Clearly Teich' is a fibered category over the groupoid of finite sets. For a finite set A denote by Teich $_{A}^{\prime}$ the fiber over A (the objects of this groupoid are pairs $\left(\left(S, P_{S}\right), \nu\right)$, where $\left(S, P_{S}\right) \in$ Teich', and $\nu: P_{S} \vec{\sim} A$ is a bijection). For a bijection $f: A \underset{\sim}{\sim}, X \in$ Teich $_{A}^{\prime}, Y \in \operatorname{Teich}_{B}^{\prime}$ we will denote by $\operatorname{Hom}_{f}(X, Y)$ the set of f-morphisms (i.e., the ones that induce f on the sets of boundary components). We put $\operatorname{Aut}^{0}\left(S, P_{S}\right)=\operatorname{Aut}_{i d_{P_{S}}}\left(S, P_{S}\right)$. We will use the same notations for $\widetilde{\text { Teich }}$.

For $\left(S, P_{S}\right) \in$ Teich ${ }^{\prime}$ and $x_{\alpha} \in P_{S}$ we denote by $d_{x_{\alpha}} \in \operatorname{Aut}^{0}\left(S, P_{S}\right)$ the Dehn twist around $\partial S_{x_{\alpha}}$. Since $d_{x_{\alpha}}$ acts as the identity on $H(S)$ it lifts to the element $\left(d_{x_{\alpha}}, i d_{y}\right) \in \operatorname{Aut} \widetilde{\text { Teich }^{\prime}}\left(S, P_{S}, y\right)$, which we will also denote by $d_{x_{\alpha}}$. These $d_{x_{\alpha}}$ lie in the center. In particular, we have a canonical morphism $\mathbb{Z}^{P_{S}} \longrightarrow \operatorname{Aut}^{0}\left(S, P_{S}\right)$, $\left(n_{x_{\alpha}}\right) \longmapsto \prod d_{x_{\alpha}}^{n_{x_{\alpha}}} ; \mathbb{Z} \times \mathbb{Z}^{P_{S}} \longrightarrow \operatorname{Aut}^{0}\left(S, P_{S}, y\right), \quad\left(n_{y}, n_{x_{\alpha}}\right) \longmapsto \gamma_{0}^{n_{y}} \times \prod d_{x_{\alpha}}^{n_{x_{\alpha}}}$.
4.2.2 Here is a "holomorphic" definition of the Teichmüller groupoid. An object of Teich" is a complex curve C (smooth, projective, possibly reducible) together with a finite set of points $P_{C}=\left\{y_{\alpha}\right\} \subset C$ equipped with non-zero co-tangent vectors $\nu_{\alpha} \in \Omega_{C, y_{\alpha}}^{1}$. The morphisms are 1-parameter C^{∞}-class families of such objects connecting two given ones, these families being considered up to homotopy. In other words, Teich ${ }^{\prime \prime}$ is the Poincaré groupoid of the modular stack \mathcal{M} of the above structures. In the same way, $\widetilde{\text { Teich }}^{\prime \prime}$ is the Poincaré groupoid of the modular stack $\widetilde{\mathcal{M}}$ of the data $\left(C, y_{\alpha}, \nu_{\alpha}, y\right)$, where $\left(C, y_{\alpha}, \nu_{\alpha}\right) \in \mathcal{M}$, and $y \in \operatorname{det}^{\otimes 2}\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right) \backslash$ $\{0\}$. Clearly, the second modular stack is a \mathbb{C}^{*}-fibration over the first one, hence $\widehat{\text { Teich }}^{\prime \prime}$ is a $\mathbb{Z}\left(=\pi_{1}\left(\mathbb{C}^{*}\right)\right.$)-extension of Teich ${ }^{\prime \prime}$.
4.2.3 The groupoids Teich ${ }^{\prime}$ and Teich ${ }^{\prime \prime}$, are canonically equivalent, as are $\widetilde{T e i c h}^{\prime}$ and $\widetilde{\text { Teich }}{ }^{\prime \prime}$. To define this equivalence, take $\left(S, P_{S}\right) \in$ Teich'. Consider the data $\left(\mu ;\left\{r_{\alpha}\right\}\right)$, where μ is a complex structure on S, and $r_{\alpha}: S^{1}=\{z \in \mathbb{C}$: $|z|=1\} \Rightarrow \partial S_{x_{\alpha}}$ is a parametrization such that $r_{\alpha}(1)=x_{\alpha}$ and r_{α} extends μ holomorphically to the ring $\{z \in \mathbb{C}: 1 \leq|z| \leq 1+\epsilon\}$. We may glue a collection of unit discs $D_{\alpha}=\{z \in \mathbb{C}:|z| \leq 1\}$ (with their standard complex structure) to S using r_{α}. Denote the corresponding complex curve $C=C\left(S, P_{S} ;\left(\mu, r_{\alpha}\right)\right)$. It is equipped with the set of points $y_{\alpha}=0 \in D_{\alpha}$, and the cotangent vectors $\nu_{\alpha}=d z_{0} \in \Omega_{C, O}^{1}$. Hence $C\left(S, P_{S} ;\left(\mu, r_{\alpha}\right)\right) \in T e i c h^{\prime \prime}$. It is easy to see that for given
$\left(S, P_{S}\right)$ the data $\left(\mu ;\left\{r_{\alpha}\right\}\right)$ form a contractible space. So $\left(S, P_{S}\right) \in T e i c h^{\prime}$ defines a canonical "homotopy point" in Teich". In this way we get a morphism of groupoids Teich ${ }^{\prime} \longrightarrow$ Teich ${ }^{\prime \prime}$ which is an equivalence of categories.

To lift this equivalence to $\widetilde{\text { Teich }}^{\prime} \longrightarrow \widetilde{\text { Teich }}{ }^{\prime \prime}$, note that $H(S)=H^{1}(C, \mathbb{R})$. The complex structure on C defines the Hodge subspace $H^{0}\left(C, \Omega_{C}^{1}\right) \subset H(S)_{\mathbb{C}}$, which is a point h_{C} on the corresponding Siegel half plane (see 4.1.1). Now let us interpret $\mathcal{T}_{H(S)}$ as a fundamental groupoid of the space denoted by \mathcal{H} in (4.1.1.1). For $y \in \mathcal{T}_{H(S)}$ put $y_{C}:=y\left(h_{C}\right) \in \operatorname{det}^{\otimes 2}\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right) \backslash\{0\}$. Our equivalence $\widetilde{\text { Teich }}{ }^{\prime} \longrightarrow$ $\widetilde{\text { Teich }}^{\prime \prime}$ is given by the formula $\left(S, P_{S}, y\right) \longmapsto\left(C, y_{\alpha}, \nu_{\alpha}, y_{C}\right)$.
4.2.4 The above equivalence transforms γ_{y} to the loop $\theta \longmapsto\left(C, y_{\alpha}, \nu_{\alpha}, e^{i \theta} y\right)$, and transforms the Dehn twist $d_{x_{\beta}}$ to the loop $\theta \longmapsto\left(C, y_{\alpha}, e^{i \theta} \delta_{\beta}^{\alpha} \nu_{\alpha}, y\right)$.
4.3 Operations in Teich. We will need the following ones:
(i) One has a functor "disjoint union" $\amalg:$ Teich \times Teich \rightarrow Teich. According to 1.1.6 it lifts in a canonical way to a functor $\amalg: \widetilde{\text { Teich }} \times \widetilde{\text { Teich }} \rightarrow \widetilde{\text { Teich }}$. Clearly Teich, $\widetilde{\text { Teich }}$ are strictly commutative monoidal categories, and the projection Teich \rightarrow Sets, $\left(S, P_{S}\right) \longmapsto P_{S}$, commutes with \amalg.
(ii) Deleting of a point. For a finite set A and $\alpha \in A$ one has a canonical functor del $_{\alpha}:$ Teich $_{A} \rightarrow$ Teich $_{A \backslash\{\alpha\}}, \widetilde{\text { Teich }}_{A} \longrightarrow \widetilde{\text { Teich }}_{A \backslash\{\alpha\}}$. In "holomorphic" language (4.2.2) this functor just deletes y_{α}, ν_{α}. In "topological" language (4.2.1) one should delete the component $\partial S_{\chi_{\alpha}}$ by glueing a "cup" to $\partial S_{\chi_{\alpha}}$.
(iii) Sewing. Let A be a finite set, and $\alpha, \beta \in A, \alpha \neq \beta$, two elements. One has a canonical Sewing Functor $\mathcal{S}_{\alpha, \beta}:$ Teich $_{A} \rightarrow$ Teich $_{A \backslash\{\alpha, \beta\}}, \widetilde{\text { Teich }}_{A} \rightarrow \widetilde{\text { Teich }}_{A \backslash\{\alpha, \beta\}}$. Let us define $\mathcal{S}_{\alpha, \beta}$ in combinatorial language first. For a surface $(S, A) \in$ Teich $^{\prime}$ choose a diffeomorphism $\varphi: \partial S_{x_{\alpha}} \vec{\sim} \partial S_{x_{\beta}}, \varphi\left(x_{\alpha}\right)=x_{\beta}$, reversing orientations. Our $\mathcal{S}_{\alpha, \beta}(S, A) \in$ Teich $_{A \backslash\{\alpha, \beta\}}^{\prime}$ is S with two boundary components identified by means of φ. Since the φ 's form a contractible space, this surface does not depend on the choice of φ. Note that either $H(S)=H\left(\mathcal{S}_{\alpha, \beta}(S, A)\right)$ (if α and β lie in different connected components of S), or $H(S)$ coincides with a subquotient of $H\left(\mathcal{S}_{\alpha, \beta}(S, A)\right)$ in a manner described in 4.1.5. In any case one has a canonical equivalence $\mathcal{T}_{H(S)} \vec{\sim} \mathcal{T}_{H\left(\mathcal{S}_{\alpha, \beta}(S, A)\right)}$. This defines $\mathcal{S}_{\alpha, \beta}: \widetilde{\text { Teich }}_{A}^{\prime} \rightarrow \widetilde{\text { Teich }}_{A \backslash\{\alpha, \beta\}}^{\prime}$.
4.3.1 To define $\mathcal{S}_{\alpha, \beta}$ in holomorphic language, take $\left(C, y_{\gamma}, \nu_{\gamma}\right) \in$ Teich $_{A}^{\prime \prime}$. Consider a curve $C_{\alpha, \beta}$ with a single quadratic singularity obtained from C by "clutching" y_{α} and y_{β} together. One knows that curves with a single quadratic singularity form a smooth part of the divisor of singular curves in the modular stack $\overline{\mathcal{M}}_{A \backslash\{\alpha, \beta\}}$ of curves with at most quadratic singularities. The fiber of the normal bundle N to this divisor at $C_{\alpha, \beta}$ is canonically identified with $T_{C, y_{\alpha}} \otimes T_{C, y_{\beta}}$. Hence $\nu_{\alpha}^{-1} \cdot \nu_{\beta}^{-1}$ is a non-zero vector of this normal bundle. It defines a "point at infinity" of the modular stack $\mathcal{M}_{A \backslash\{\alpha, \beta\}}$ of smooth curves (for a detailed account of "points at infinity" see [D]), which is a correctly defined (up to unique canonical isomorphism) object $\mathcal{S}_{\alpha, \beta}\left(C, y_{\gamma}, \nu_{\gamma}\right) \in$ Teich $_{A \backslash\{\alpha, \beta\}}^{\prime \prime}$. To lift $\mathcal{S}_{\alpha, \beta}$ to a functor between $\widetilde{\text { Teich }}{ }^{\prime \prime}$'s, notice that the line bundle λ over \mathcal{M} with fibers $\lambda_{C}:=\operatorname{det} H^{0}\left(C, \Omega_{C}^{1}\right)$ extends canonically to a line bundle λ over $\overline{\mathcal{M}}$: if C^{\prime} has quadratic singularities,
one has $\lambda_{C^{\prime}}:=\operatorname{det} H^{0}\left(C, \omega_{C^{\prime}}\right)$, where $\omega_{C^{\prime}}$ is the dualizing sheaf. Define the \mathbb{C}^{*} bundle $\widetilde{\mathcal{M}} \rightarrow \overline{\mathcal{M}}$ to be $\lambda^{\otimes 2} \backslash$ zero section\}. Recall that for any $C^{\prime} \in \overline{\mathcal{M}}$ one has a canonical isomorphism $\lambda_{C^{\prime}}^{\otimes 2}=\lambda_{\widetilde{C}^{\prime}}^{\otimes 2}$, where \widetilde{C}^{\prime} is the normalization of C^{\prime} (recall that $\omega_{C^{\prime}} / \omega_{\widetilde{C}^{\prime}}$ is a skyscraper sheaf, supported at singular points, trivialized canonically up to sign using residues). Hence the fibers of $\widetilde{\mathcal{M}}$ over ($C, y_{\gamma}, \nu_{\gamma}$) and $\mathcal{S}_{\alpha, \beta}\left(C, y_{\gamma}, \nu_{\alpha}\right)$ are nearby fibers of the same \mathbb{C}^{*}-fibration, and therefore one has a canonical identification of their fundamental groupoids. This defines the desired lifting $\mathcal{S}_{\alpha, \beta}: \widetilde{\text { Teich }}_{A}^{\prime \prime} \rightarrow \widetilde{\text { Teich }}_{A \backslash\{\alpha, \beta\}}^{\prime \prime}$. It is easy to verify that the equivalence 4.2.3 identifies the above "topological" and "holomorphic" constructions of $\mathcal{S}_{\alpha, \beta}$.
4.3.2 It is convenient to consider both sewing and deleting of points simultaneously. To do this, consider a category, Sets\#, whose objects are finite sets, and whose morphisms $f: A \rightarrow B$ are pairs (i_{f}, ϕ_{f}), where $i_{f}: B \hookrightarrow A$ is an embedding, and $\phi_{f}=\left\{\phi_{f \delta}\right\}$ is a collection of two-element mutually non-intersecting subsets $\phi_{f \delta}$ of $A \backslash i_{f}(B)$. The composition is obvious: if $g: B \rightarrow C$ is another morphism, then $g \circ f=\left(i_{f} \circ i_{g}, \phi_{f} \cup \phi_{g}\right)$. For f as above we put $A_{f}^{1}:=\coprod_{\delta} \phi_{f \delta}, A_{f}^{0}=A \backslash\left(i_{f}(B) \cup A_{f}^{1}\right)$, so $A=i_{f}(B) \amalg A_{f}^{0} \amalg A_{f}^{1}$.

Now for any morphism $f: A \rightarrow B$ we have a canonical functor $f_{*}:$ Teich $_{A} \rightarrow$ Teich $_{B}, \widetilde{\text { Teich }}_{A} \rightarrow \widetilde{\text { Teich }}_{B}$ that deletes points in A_{f}^{0} and sews pairwise points in all $\phi_{f \delta}$'s. One has $(g \circ f)_{*}=g_{*} \circ f_{*}$, and each f_{*} is a composition of elementary deletings of a single point, and glueing of a single pair. Clearly these f_{*} 's define a cofibered categories Teich ${ }^{\#}, \widetilde{\text { Teich }}^{\#}$ over Sets $\#$ with old fibers Teich ${ }_{A}, \widetilde{\text { Teich }}_{A}$, respectively.

Note that all these categories are strictly commutative monoidal categories with respect to "disjoint union" operation \amalg; all the functors commute with \amalg.
4.4 Representations of Teich; central charge. Let A be a finite set. Denote by \mathcal{R}_{A} the category of finite dimensional \mathbb{C}-representations of Teich $_{A}$ (i.e., the objects of \mathcal{R}_{A} are functors $L:$ Teich $_{A} \rightarrow V e c t$), and by $\widetilde{\mathcal{R}}_{A}$ the same for $\widetilde{\text { Teich }}_{A}$. More generally, if Q is a component (i.e., a strictly full subcategory) of $T e i c h_{A}$, we denote by $\mathcal{R}_{A, Q}$ the category of representations of Q, identified with the full subcategory of \mathcal{R}_{A} that consists of representations supported on Q (i.e., vanish off $Q)$. For a representation $V \in \widetilde{\mathcal{R}}_{A}$ and $X \in \widetilde{\text { Teich }}_{A}$ we denote by V_{X} the value of V at X.
4.4.1 Definition. A representation $V \in \widetilde{\mathcal{R}}_{A}$ has multiplicative central charge $a \in \mathbb{C}^{*}$ if for any $X \in \widetilde{\text { Teich }}$ the canonical element $\gamma_{0} \in A u t X$ acts on V_{X} as multiplication by a.

For any $a \in \mathbb{C}^{*}$ denote by $\mathcal{R}_{a A} \subset \widetilde{\mathcal{R}}_{A}$ the full subcategory of representations of central charge a. In particular, $\mathcal{R}_{1 A}=\mathcal{R}_{A}$.

For any morphism $f: A \rightarrow B$ in Sets ${ }^{\#}$ the functor $f_{*}: \widetilde{\text { Teich }}_{A} \rightarrow \widetilde{\text { Teich }_{B}}$ defines the corresponding functor $f^{*}: \widetilde{\mathcal{R}}_{B} \rightarrow \widetilde{\mathcal{R}}_{A}$; one has $f^{*}\left(\mathcal{R}_{a B}\right) \subset \mathcal{R}_{a A}$. The functors f^{*} define a category $\widetilde{\mathcal{R}}^{*}$ fibered over Sets\# with fibers $\widetilde{\mathcal{R}}_{A}$, together with fibered subcategories $\mathcal{R}_{a}^{\#} \subset \widetilde{\mathcal{R}}{ }^{\#}$ with fibers $\mathcal{R}_{a A}$.
4.4.2 Here is an explicit description of representations. From a combinatorial point of view a representations $V \in \widetilde{\mathcal{R}}_{A}$ assigns to each surface $(S, A) \in$ Teich $_{A}$ a local
system V_{S} on the Lagrangian Grassmannian $\Lambda_{H(S)}$ (see 4.1.2), and to each $\varphi \in$ $\operatorname{Hom}\left((S, A),\left(S^{\prime}, A\right)\right)$ a lifting of the corresponding diffeomorphism $\Lambda_{H(S)} \rightarrow \Lambda_{H\left(S^{\prime}\right)}$ to $V_{S} \Rightarrow V_{S^{\prime}}$. This V lies in $\mathcal{R}_{a A}$ if the monodromy matrix of the loop $\gamma_{0}=1 \in$ $\mathbb{Z}=\pi_{1}\left(\Lambda_{H(S)}\right)$ coincides with multiplication by a.
4.4.3 From a holomorphic point of view our V is a local system on the modular stack $\widetilde{\mathcal{M}}_{A} ; V$ lies in $\mathcal{R}_{a A}$ if the monodromy around the fiber of the projection $\pi: \widetilde{\mathcal{M}}_{A} \rightarrow \mathcal{M}_{A}$ equals multiplication by a.

Recall that \mathbb{C}-local systems on smooth algebraic manifolds can be identified with algebraic vector bundles with integrable connections (= lisse D-modules) having regular singularities at infinity (see $[\mathrm{D}],[\mathrm{Bo}]$). So our V is a lisse D - module on $\widetilde{\mathcal{M}}_{A}$ with regular singularities at ∞. Assume that $V \in \mathcal{R}_{a A}$. Choose $c \in \mathbb{Z}$ ("additive central charge") such that $\exp (2 \pi i c)=a$. Let $D_{\lambda^{c}}=\mathcal{D}_{c \mathcal{A}(\lambda)}$ be the ring of differential operators on the "line bundle" $\lambda^{\otimes c}$. This is a twisted differential operator ring on \mathcal{M}_{A} (see 3.2.6-3.2.8). Recall that $D_{\lambda^{c}-\text { modules can be identified }}$ canonically with D-modules on $\widetilde{\mathcal{M}}_{A}$, monodromic along the fibers of π with monodromy a (see, e.g., [V]). In particular, V is a lisse $D_{\lambda^{c}-\text { module on }} \mathcal{M}_{A}$ having regular singularities at ∞.
4.5 Axioms of a fusion category. We will start with preliminary data.
4.5.1 Let \mathcal{A} be an abelian \mathbb{C}-category ("category of modules"). We assume that \mathcal{A} is semisimple, for $X \in \mathcal{A}$ the \mathbb{C}-vector space $E n d X$ is finite dimensional, and there are finitely many isomorphism classes of irreducibles. Denote by $\operatorname{Irr} A$ the set of isomorphism classes of irreducible objects in \mathcal{A}.

We should also have the following data:

- a contravariant functor ("duality") $*: \mathcal{A}^{\circ} \rightarrow \mathcal{A}$ together with a natural isomorphism $* * \underset{\sim}{\sim} i d_{\mathcal{A}}$
- a distinguished irreducible object ("vacuum module") \nVdash together with an isomorphism $\nu: \nVdash \underset{\sim}{\sim} * \nVdash$ such that $*(\nu) \circ \nu=i d_{\nVdash}$.
- an automorphism d of the identity functor $i d_{\mathcal{A}}$, called the Dehn automorphism, such that $d *=* d$ and $d_{\nVdash}=1$. Clearly to give d is the same as giving a collection of numbers $d_{j}=d_{I_{j}} \in \mathbb{C}^{*}$ for $j \in \operatorname{Irr} \mathcal{A}$ (here I_{j} is an irreducible object of class j; recall that $\left.A u t I_{j}=\mathbb{C}^{*}\right)$.
4.5.2 For any finite set B we have a category $\mathcal{A}^{\otimes B}$: this is an abelian \mathbb{C}-category equipped with a polylinear functor $\otimes: \mathcal{A}^{B}=\prod_{b \in B} A_{b} \longrightarrow \mathcal{A}^{\otimes B},\left(X_{b}\right)_{b \in B} \longrightarrow$ $\bigotimes_{b \in B} X_{b}$, which is universal in an obvious sense (see [D] § for an extensive discussion in a less trivial situation). The category $\mathcal{A}^{\otimes B}$ is semisimple. Its irreducible objects are tensor products of irreducibles in \mathcal{A}, so $\operatorname{Irr} \mathcal{A}^{\otimes B}=(\operatorname{Irr} \mathcal{A})^{B}$. Any isomorphism $\varphi: B \rightarrow B^{\prime}$ induces a canonical equivalence $\mathcal{A}^{\otimes B} \rightarrow \mathcal{A}^{\otimes B^{\prime}}, \otimes X_{b} \longmapsto \otimes X_{\varphi^{-1}\left(b^{\prime}\right)}$.
4.5.3 We put $A^{\otimes \emptyset}=$ Vect. One may identify $\mathcal{A}^{\otimes\{1,2\}}=\mathcal{A}^{\otimes 2}$ with the category of \mathbb{C}-linear functors $F=\mathcal{A}^{0} \rightarrow \mathcal{A}$. Namely, to an object $X \otimes Y \in \mathcal{A}^{\otimes 2}$ there corresponds the functor $F_{X \otimes Y}$ defined by formula $F_{X \otimes Y}(Z)=\operatorname{Hom}(Z, X) \otimes Y$. We define a canonical object ("regular representation") $R \in \mathcal{A}^{\otimes 2}$ as an object that corresponds to the functor $*: \mathcal{A}^{0} \rightarrow \mathcal{A}$. Here is an explicit construction of R. For each $j \in \operatorname{Irr} \mathcal{A}$ pick an irreducible object I_{j} of class j. Then one has a canonical isomorphism $R=\bigoplus_{j \in \operatorname{Irr} \mathcal{A}} I_{j} \otimes * I_{j}$. Note that R is symmetric: for the transposition
$\sigma=\{1,2\}$ acting on $\mathcal{A}^{\otimes 2}$ one has a canonical isomorphism $\sigma(R)=R$. So for any two element set B we have a canonical object $R_{B} \in \mathcal{A}^{\otimes B}$.
4.5.4 For finite sets A, B and a morphism $f: A \rightarrow B$ in Sets ${ }^{\#}$ (see 4.3.2) we define a \mathbb{C}-linear functor $f^{*}: \mathcal{A}^{\otimes B} \rightarrow \mathcal{A}^{\otimes A}$ by the formula

$$
f^{*}\left(\bigotimes_{b \in B} X_{b}\right)=\left[\bigotimes_{a \in i_{f}(B)} X_{i_{f}^{-1}(a)}\right] \otimes\left[\bigotimes_{a \in A_{f}^{0}} i d e n t_{a}\right] \otimes\left[\bigotimes_{\phi_{f \delta} \in \phi_{f}} R_{\phi_{f \delta}}\right]
$$

Clearly $(g \circ f)^{*}=f^{*} \circ g^{*}$, so the f^{*}, s define a fibered category $\mathcal{A}^{\#}$ over Sets ${ }^{\#}$ with fibers $\mathcal{A}_{A}^{\#}=\mathcal{A}^{\otimes A}$. The tensor product functor $\left.\otimes: \mathcal{A}^{\otimes B_{1}} \times \mathcal{A}^{\otimes B_{2}} \longrightarrow \mathcal{A}^{\otimes\left(B_{1}\right.} \amalg B_{2}\right)$ defines on $\mathcal{A}^{\#}$ the structure of commutative monoidal category such that the projection $\mathcal{A}^{\#} \rightarrow$ Sets $^{\#}$ is a monoidal functor.
4.5.4 Definition. A fusion structure on \mathcal{A} is a collection of functors \rangle : $\mathcal{A}^{\otimes A} \times \widetilde{\text { Teich }}_{A} \longrightarrow$ Vect, $\quad(X, S) \longmapsto\langle X\rangle_{S}$ (here A is any finite set), together with natural isomomorphisms (i), (ii):
(i) $\langle X \otimes Y\rangle_{S \sqcup T}=\langle X\rangle_{S} \otimes\langle Y\rangle_{T}$ for $X \in \mathcal{A}^{\otimes A}, Y \in \mathcal{A}^{\otimes B}, S \in \widetilde{T e i c h}_{A}, T \in \widetilde{T e i c h}_{B}$.
(ii) $\left\langle f^{*} X\right\rangle_{T}=\langle X\rangle_{f_{*} T}$ for any morphism $f: A \rightarrow B$ in Sets $\#, X \in \mathcal{A}^{\otimes B}, T \in$ $\widetilde{\text { Teich }}_{A}$.
These isomorphisms should be compatible in an obvious sense. We also demand that:
a. For fixed $S \in \widetilde{\text { Teich }}_{A}$ the functor $\left\rangle_{S}: \mathcal{A}^{\otimes A} \longrightarrow\right.$ Vect is additive.
b. 〈 \rangle transforms Dehn automorphism to Dehn twist, i.e., for a finite set A, an element $\alpha \in A$ and a collection of objects $X_{\gamma} \in \mathcal{A}, \gamma \in A$, the automorphisms of $\left\langle\otimes X_{\gamma}\right\rangle_{S}$ induced by $\bigotimes_{\gamma \neq \alpha} i d_{X_{\gamma}} \otimes d_{X_{\gamma}} \in A u t \otimes X_{\gamma}$ and by $d_{\alpha} \in A u t S$ coincide.
c. \rangle is non degenerate in the sense that for any non-zero $X \in \mathcal{A}$ there exists $Y \in \mathcal{A}$ such that $\langle X \otimes Y\rangle_{S_{0}} \neq 0$ where S_{0} is a 2-sphere with two punctures.
We will say that $(\mathcal{A},\langle \rangle)$ is a fusion category of multiplicative central charge

4.5.5 Clearly (ii) just means that $X \longmapsto\langle X\rangle$ is a cartesian functor $\mathcal{A}^{\#} \rightarrow \widetilde{\mathcal{R}}^{\#}$ between categories fibered over Sets ${ }^{\#}$. Since any morphism in Sets\# is a successive deleting of points and sewing of couples of points, we may rewrite (ii) as two compatibilities. Namely
(ii) ${ }^{\prime}\langle X\rangle_{\operatorname{del}_{\alpha} S}=\left\langle X \otimes \text { ident }_{\alpha}\right\rangle_{S}$ for any finite set $A, \alpha \in A, X \in \mathcal{A}^{\otimes A \backslash\{\alpha\}}, S \in \widetilde{\text { Teich }}_{A}$.
(ii) ${ }^{\prime \prime}\langle X\rangle_{\mathcal{S}_{\alpha, \beta} S}=\left\langle X \otimes R_{\alpha \beta}\right\rangle_{S}$ for any finite set A, a pair of elements $\alpha, \beta \in A, \alpha \neq$ $\beta, X \in \mathcal{A}^{\otimes A \backslash\{\alpha, \beta\}}, S \in \widetilde{\text { Teich }}_{A}$.
4.5.6 Here is a reformulation of 4.5.5(ii)" in "holomorphic" language 4.4.3. For $X \in \mathcal{A}^{\otimes A \backslash\{\alpha, \beta\}}$ our $\langle X\rangle$ is a lisse $D_{\lambda^{c}}$-module with regular singularities at infinity. As was explained in 4.3 .1 we have a canonical surjective smooth map $\pi: \mathcal{M}_{A} \rightarrow$ $N \backslash\{$ zero section\}, where N is the normal bundle to the (smooth part of) the divisor at infinity of $\mathcal{M}_{A \backslash\{\alpha, \beta\}}$. We have the canonical specialization function $S p$ that assigns to a lisse $D_{\lambda^{c}-\text { module with regular singularities at infinity on }}^{\mathcal{M}_{A \backslash\{\alpha, \beta\}} \text {, }}$ the one on $N \backslash\{$ zero section $\}$. Hence we have the $D_{\lambda^{c}}$-module $\pi^{*} S p\langle X\rangle$ on \mathcal{M}_{A}, and 4.5.5 (ii) ${ }^{\prime}$ is an isomorphism $\pi^{*} S p\langle X\rangle=\left\langle X \otimes R_{\alpha \beta}\right\rangle$.
4.6 Fusion functors. Let $(\mathcal{A},\langle \rangle)$ be a fusion category. Let A, B be finite sets. Any object $S \in \widetilde{\text { Teich }}_{A \cup B}$ defines a functor $\mathcal{F}_{S}=\mathcal{F}_{S}^{A, B}: \mathcal{A}^{\otimes A} \rightarrow \mathcal{A}^{\otimes B}$ by the formula $\operatorname{Hom}\left(\mathcal{F}_{S}(X), Y\right)=\langle X \otimes * Y\rangle^{*}, X \in \mathcal{A}^{\otimes A}, Y \in \mathcal{A}^{\otimes B}$. We will call \mathcal{F}_{S} the fusion functor along S. The automorphisms of S act as automorphisms of \mathcal{F}_{S}. Note that if $B=\emptyset$ then $A^{\otimes B}=V$ ect and $\mathcal{F}_{S}=\langle \rangle_{S}$. If $A=\emptyset$, then \mathcal{F} is a functor $\widetilde{\text { Teich }}_{B} \rightarrow \mathcal{A}^{\otimes B}$, i.e., an $\mathcal{A}^{\otimes B}$-valued representation of $\widetilde{\text { Teich }}_{B}$.

Let C be a third finite set, $T \in \widetilde{\text { Teich }}_{B \sqcup C}$. We define $T \circ S \in \widetilde{\text { Teich }}_{A \cup C}$ as the surface obtained from $T \sqcup S$ by sewing the B-boundary components.
4.6.1 Lemma. There is a canonical isomorphism of functors $\mathcal{F}_{T \circ S}=\mathcal{F}_{S} \circ \mathcal{F}_{T}$: $\mathcal{A}^{\otimes A} \rightarrow \mathcal{A}^{\otimes C}$.
Proof. For $X \in \mathcal{A}^{\otimes A}, Z \in \mathcal{A}^{\otimes C}$ one has

$$
\begin{aligned}
\operatorname{Hom}\left(\mathcal{F}_{T \circ S}(X), Z\right) & =\langle X \otimes * Z\rangle_{T \circ S}^{*} \underset{4.554(i)}{\overline{\bar{u}}}\left\langle X \otimes R^{\otimes B} \otimes * Z\right\rangle_{T \cup S}^{*} \\
& =\bigoplus_{4.5 \cdot 4(i)}\left\langle X \otimes * I_{\vec{j}}\right\rangle_{S}^{*} \otimes\left\langle I_{\vec{j}} \otimes * Z\right\rangle_{T}^{*} \\
& =\bigoplus \operatorname{Hom}\left(\mathcal{F}_{S}(X), I_{\vec{j}}\right) \otimes \operatorname{Hom}\left(\mathcal{F}_{T}\left(I_{\vec{j}}\right), Z\right)=\operatorname{Hom}\left(\mathcal{F}_{T} \circ \mathcal{F}_{S}(X), Z\right) .
\end{aligned}
$$

The last equality comes since

$$
\mathcal{F}_{S}(X)=\oplus \operatorname{Hom}\left(\mathcal{F}_{S}(X), I_{\vec{j}}\right)^{*} \otimes I_{\vec{j}} .
$$

Now assume that $A=\{0\}, B=\{\infty\}$ are one point sets. Let Teich $_{\{0, \infty\}}^{\prime 0} \subset$ Teich $\left\{_{\{0, \infty\}}^{\prime}\right.$ be the full subcategory of "cylinders". So Teich $h_{\{0, \infty\}}^{0}$ is a connected groupoid; for $(S, 0, \infty) \in \operatorname{Teich}_{\{0, \infty\}}^{0}$ the group (of its automorphisms) is a free abelian group with generator $d_{0}=d_{\infty}^{-1}$. Denote by $S_{0}=\left(S_{0}, 0, \infty\right)$ the object of $\operatorname{Teich}_{\{0, \infty\}}^{0}$ such that for any $(S, 0, \infty) \in \operatorname{Teich}_{\{0, \infty\}}^{0}$ one has $\operatorname{Hom}\left(S_{0}, S\right)=\{$ set of homotopy classes of paths in S connecting 0 and $\infty\}$. This is a canonical object of Teich $_{\{0, \infty\}}^{0}$. Its "holomorphic" counterpart is $\left(\mathbb{P}^{1}, 0, \infty, d t(0), d t^{-1}(\infty)\right) \in$ Teich ${ }_{\{0, \infty\}}{ }^{0}$, where t is a standard parameter on \mathbb{P}^{1}. One identifies this point of Teich" with S_{0} canonically by drawing the path $\mathbb{R}_{\geq 0}$ from 0 to ∞. Note that since $H(S)=0$ for $S \in$ Teich $_{\{0, \infty\}}^{\prime 0}$ we have an obvious embedding Teich $_{\{0, \infty\}}^{\prime 0} \hookrightarrow$ $\widetilde{\text { Teich }}_{\{0, \infty\}}^{\prime}$; the "holomorphic" counterpart of this section comes since the line bundle λ is canonically trivialized over the "moduli space" of genus zero curves. So we will consider S_{0} as a canonical object of $\widetilde{\text { Teich }}_{\{0, \infty\}}$. Note that if A is any finite set and $T \in \widetilde{\text { Teich }}_{A \cup\{0\}}$, then one has an obvious canonical isomorphism $S_{0} \circ T=T$. According to 4.6 .1 this gives a canonical isomorphism of functors $\mathcal{F}_{S_{0}} \circ \mathcal{F}_{T}=\mathcal{F}_{T}$. In fact, one has
4.6.2 Lemma. There is a canonical identification of the functor $\mathcal{F}_{S_{0}}: \mathcal{A} \rightarrow \mathcal{A}$ with the identity functor $i d_{\mathcal{A}}$ that generates the above isomorphisms $\mathcal{F}_{S_{0}} \circ \mathcal{F}_{T}=\mathcal{F}_{T}$ for all $T \in \widetilde{\text { Teich }}_{A \sqcup\{0\}}$.

Proof. Assume that we know that $\mathcal{F}_{S_{0}}$ is an equivalence of categories. Then the desired isomorphism $\mathcal{F}_{S_{0}}=i d_{\mathcal{A}}$ would be $\mathcal{F}_{S_{0}}^{-1}\left(\mathcal{F}_{S_{0}} \circ \mathcal{F}_{S_{0}}=\mathcal{F}_{S_{0}}\right)$. Since \mathcal{A} is semisimple, to see that $\mathcal{F}_{S_{0}}$ is an equivalence it suffices to prove that $\mathcal{F}_{S_{0}}$ induces the identity map of the Grothendieck group $K(\mathcal{A})$. The irreducible I_{i} form a basis in $K(\mathcal{A})$. Put $\mathcal{F}_{S_{0}}\left(I_{i}\right)=f_{i}^{j} I_{j}$; we have to show that $f_{i}^{j}=\delta_{i}^{j}$. We know that $f_{i}^{j} \in \mathbb{Z}_{\geq 0}$. Since $f_{i}^{j}=\left\langle I_{j} \otimes * I_{i}\right\rangle_{S_{0}}^{*}$ we see, by 4.5.4c, that any row or column of the matrix f_{i}^{j} is non-zero. Since $\mathcal{F}_{S_{0}}^{2}=\mathcal{F}_{S_{0}}$, these properties imply that $\mathcal{F}_{S_{0}}=i d_{K(\mathcal{A})}$ (just note that $\mathcal{F}_{S_{0}}^{2}\left(I_{i}\right)=\mathcal{F}_{S_{0}}\left(I_{i}\right)$ implies $\mathcal{F}_{S_{0}}$ induces a transposition of the set of those I_{j} 's that $f_{i}^{j} \neq 0$; hence $\mathcal{F}_{S_{0}}$ is a surjective endomorphism of $K(\mathcal{A})$, and hence it is the identity).
4.6.3 Assume now that S is a connected surface of genus 0 and B is a one point set. Then the corresponding functors $\mathcal{F}_{S}: \mathcal{A}^{\otimes A} \longrightarrow \mathcal{A}$, together with $*$ and d from 4.5.1, define on \mathcal{A} the structure of a balanced rigid tensor category (see, e.g. $[\mathrm{K}]$). Here are some details. Denote by S_{n} the surface obtained from a unit disc by cutting out n holes with centers on the real line; the marked points lie on the real line to the right:

$$
S_{3}: \quad O^{x_{1}} \quad O^{x_{2}} \quad O^{x_{3}} \quad x_{\infty}
$$

Put $\mathcal{F}_{S_{n}}\left(X_{1} \otimes \cdots \otimes X_{n}\right)=X_{1} \widehat{\otimes} \cdots \widehat{\otimes} X_{n}$. The axiom 1.5.4 (ii)" implies immediately that the operation $\widehat{\otimes}: \mathcal{A}^{n} \rightarrow \mathcal{A}$ is strictly associative: one has $X_{1} \widehat{\otimes} X_{2} \widehat{\otimes} X_{3}=$ $\left(X_{1} \widehat{\otimes} X_{2}\right) \widehat{\otimes} X_{3}=X_{1} \widehat{\otimes}\left(X_{2} \widehat{\otimes} X_{3}\right)$. Consider the following diffeomorphism σ of S_{2} that fixes $\partial S_{2 x_{\infty}}$ and interchanges $\partial S_{2 x_{1}}$ and $\partial S_{2 x_{2}}$ (we move the holes in a way that the marked point remain on the very right of the hole):

This diffeomorphism induces a natural isomorphism $\sigma_{X_{1} X_{2}}: X_{1} \widehat{\otimes} X_{2} \underset{\sim}{\sim} X_{2} \widehat{\otimes} X_{1}$. It is easy to see that σ satisfies the braid relations, and also one has a relation $\sigma^{2}=d_{x_{\infty}} d_{x_{1}}^{-1} d_{x_{2}}^{-1}$ in Aut S_{2}. These imply the hexagon axiom for $\widehat{\otimes}$, and the axiom $\sigma_{X_{1}, X_{2}}^{2}=d_{X_{1} \widehat{\otimes} X_{2}} \circ\left(d_{X_{1}} \widehat{\otimes} d_{X_{2}}\right)^{-1}$ of balanced tensor categories.
4.7 The fusion algebra. The above tensor structure on \mathcal{A} defines a commutative ring structure on the Grothendieck group $K(\mathcal{A})$. One calls $K(\mathcal{A})$ the fusion algebra of \mathcal{A}. Note that $K(\mathcal{A})$ has a distinguished basis $\left\{I_{j}\right\}$ of irreducibles. By 4.5.5 (ii)' the base element 1 that corresponds to vacuum module is the unit in $K(\mathcal{A})$.

Now 4.6.2 implies that $\left(K(\mathcal{A}),\left\{I_{j}\right\}\right)$ is a based ring in the sense of [L] 1.1. According to $[\mathrm{L}] 1.2, K(\mathcal{A}) \otimes \mathbb{Q}$ is a semisimple algebra. Hence $K(\mathcal{A}) \otimes \mathbb{C}$ has another canonical basis - the one that consists of mutually orthogonal idempotents.

Let T be a torus (= oriented genus one surface). Choose a basis γ_{1}, γ_{2} in $H_{1}(T, \mathbb{Z})$ compatible with the orientation, so that γ_{1}, γ_{2} are cycles on T that intersect at one point a. Consider the vector space $\langle\nVdash\rangle_{T}$. Note that if we cut T along γ_{1}, then γ_{2} will become a path that connects two copies of a on the components of the boundary,
hence it identifies this surface with the surface S_{0} of 4.6.2. According to 4.5 .5 (ii) ${ }^{\prime \prime}$, 4.6.2, the corresponding decomposition $4.5 .5(\mathrm{ii})^{\prime \prime}$ gives the basis in $\langle\nVdash\rangle_{T}$ numbered by irreducibles in \mathcal{A}, i.e., we have the isomorphism $i_{\gamma_{1}, \gamma_{2}}: K(\mathcal{A}) \otimes \mathbb{C} \rightarrow\langle\nVdash\rangle_{T}$ that transforms I_{j} 's to this basis. Interchanging γ_{1} and γ_{2} we get the isomorphism $i_{\gamma_{2},-\gamma_{1}}: K(\mathcal{A}) \otimes \mathbb{C} \underset{\sim}{\sim}\langle K\rangle_{T}$. The composition $i_{\gamma_{2,-\gamma_{1}}}^{-1} \circ i_{\gamma_{1}, \gamma_{2}} \in \operatorname{AutK}(\mathcal{A}) \otimes \mathbb{C}$ is called the Fourier transform. According to the Verlinde conjecture, proved by Moore-Zeiberg, the Fourier transform maps a canonical basis $\left\{I_{j}\right\}$ of irreducibles to a basis proportional to the one given by the idempotents.

§6. Algebraic field theories

6.1 Axioms. Let $c \in \mathbb{C}$ be any complex number. An algebraic rational field theory (in dimension 1) of central charge c consists of data (i) - (iv) subject to axioms a-g below:
6.1.1
(i) A fusion category \mathcal{A} of multiplicative central charge $\exp (2 \pi i c)$ (see 4.5.4)
(ii) An additive "realization" functor $r: \mathcal{A} \rightarrow\left(\widetilde{\mathcal{T}}, \mathcal{V}_{1}\right)_{c}-\bmod$ (see 3.4.7).

We assume that for any $X \in \mathcal{A}$
a. $r(X)$ is a higher weight module, i.e., the "coordinate module" $r(X)_{\mathbb{C}((t)), d t(o)}$ is a (direct) sum of generalized eigenspaces $r(X)_{\mathbb{C}((t)), \lambda}=\left\{m \in r(X)_{\mathbb{C}((t))}\right.$: $\left(L_{0}-\lambda\right)^{N} m=0$ for $\left.N \gg 0\right\}$ for the operator L_{0} (see 3.4.7, 7.3.1). Each $r(X)_{\mathbb{C}((t)) \lambda}, \lambda \in \mathbb{C}$, is a finite dimensional vector space.
b. $r\left(d_{X}\right)=T_{r(X)}$, where d_{X} is the Dehn automorphism (see 4.5.1) and T is the monodromy automorphism (see 7.3.2).
Note that these axioms imply that $r(\nVdash)$ is actually a $(\widetilde{\mathcal{T}}, \mathcal{V})_{c}$-module (since $T_{r(\nVdash)}=i d_{r(\nVdash)}$.
(iii) A fixed "vacuum" vector $1 \in \operatorname{Hom}_{\mathcal{V}}(\mathbb{C}, r(\nVdash))$.

We assume that
c. 1 is a non-zero vector invariant with respect to the action of $s_{\mathcal{O}_{F}}\left(\mathcal{T}_{-1 F}\right) \subset \widetilde{\mathcal{T}}_{F}$ (see 3.4.1).
6.1.2. Now let S be a smooth scheme, $\pi: C_{S} \rightarrow S$ a family of smooth projective curves, $A \subset C_{S}(S)$ a finite disjoint set of sections, and $\left\{\nu_{a}\right\}_{a \in A}$ 1-jets of parameters at points in A. This collection defines S-localization data ψ_{c} for $\left(\widetilde{\mathcal{T}}_{c}^{A}, \mathcal{V}_{1}^{A}\right)$ (see 3.4.7, 3.4.5). The corresponding algebra of twisted differential operators $D_{\psi_{c}}$ coincides with $D_{\lambda^{c}}$ (see 3.5.6). Hence, by 3.3.5, we have the S-localization functor $\Delta_{\psi_{c}} \circ r^{\otimes A}$: $\mathcal{A}^{\otimes A} \longrightarrow D_{\lambda^{c}-\bmod }$. On the other hand, by 4.5.4, 4.4.3, the fusion structure on \mathcal{A} defines the functor $\left\rangle_{C_{S}}: \mathcal{A}^{\otimes A} \longrightarrow D_{\lambda^{c}-\bmod }\right.$ such that for any $\otimes X_{a} \in \mathcal{A}^{\otimes A}$ the corresponding $D_{\lambda^{c} \text {-module }}\left\langle\otimes X_{a}\right\rangle_{C_{S}}$ is lisse with regular singularities at infinity. Our next piece of data is
(iv) A morphism of functors $\gamma: \Delta_{\psi_{c}} \circ r^{\otimes A} \longrightarrow\langle \rangle_{C_{S}}$.

For $X \in \mathcal{A}^{\otimes A}$ denote by $r(X)_{A, C_{S}}=r(X)_{A, \nu_{A}, C_{S}}$ the \mathcal{O}_{S}-module that corresponds to the S-object "formal completion of C_{S} at A with 1-jet of parameters $\nu_{A} "$ of \mathcal{V}_{1}^{A} (see 3.4.3, 3.4.6, 3.4.7). If $X=\otimes X_{a}$, then $r(X)_{A, C_{S}}=\otimes_{\mathcal{O}_{S}} r\left(X_{a}\right)_{a, C_{S}}$. Recall that $\Delta_{\psi_{c}} \circ r^{\otimes A}(X)$, considered as an \mathcal{O}_{S}-module, is a quotient of $r(X)_{A, C_{S}}$. For any section φ of $r(X)_{A, C_{S}}$ put $\langle\varphi\rangle_{C_{S}}=\gamma(\varphi) \in\langle X\rangle_{C_{S}}$. This is the "correlator of the field φ along C_{S} ".

The following axioms should hold:
d. γ commutes with base change, i.e., γ is a morphism of $D_{\lambda^{c}-m o d u l e s ~ o n ~ t h e ~}^{\text {mo }}$ modular stack \mathcal{M}_{A}.
e. For $a \in A$, objects $X \in \mathcal{A}^{\otimes A \backslash\{a\}}$ and a section $\varphi \in r\left(S, r(X)_{A, C_{S}}\right)$ one has $\langle\varphi\rangle_{C_{S}}=\left\langle\varphi \otimes 1_{a}\right\rangle_{C_{S}}$. Here $\langle\varphi\rangle_{C_{S}}$ is a section of $\langle X\rangle_{C_{S}}$ (we forget about the point a), and $\left\langle\varphi \otimes 1_{a}\right\rangle_{C_{S}}$ is a section of $\left\langle X \otimes \nVdash_{a}\right\rangle_{C_{S}}$; the two $D_{\lambda_{c}}$-modules are identified via 4.5 .5 (ii) ${ }^{\prime}$.
6.1.3 Now consider the two pointed curve $C_{0}=\left(\mathbb{P}^{1}, 0, \infty, d t(0), d t^{-1}(\infty)\right)$. We have coordinates t at 0 and t^{-1} at ∞. For any object $X \in \mathcal{A}$ consider the pairing

$$
\left\rangle_{C_{0}}: r(* X)_{\mathbb{C}((t))} \otimes r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}=r(* X)_{C_{0 \hat{0}}} \otimes r(X)_{C_{0} \hat{\infty}} \longrightarrow\langle * X \otimes X\rangle_{C_{0}}=\overline{\overline{6} .2} \text { End } X\right.
$$

Here we write simply $\mathbb{C}((t))$ for $(\mathbb{C}((t)), d t(0)) \in \mathcal{V}_{1}$. This pairing is a morphism of End X-bimodules, hence it defines a linear map

$$
i: r(* X)_{\mathbb{C}((t))} \longrightarrow \operatorname{Hom}_{\operatorname{End} X}\left(r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}, \text { End } X\right)=: r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}^{*}
$$

Note that $r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}^{*}$ is a $\widetilde{\mathcal{T}}_{\mathbb{C}\left(\left(t^{-1}\right)\right)^{-} \text {module in an obvious manner. Denote by }}$ $* r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)} \subset r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}^{*}$ the sum of generalized eigenspaces of the operator $L_{0} \in \widetilde{\mathcal{T}}_{\mathbb{C}((t))}$. The pairing $\left\rangle_{C_{0}}\right.$ is $\mathcal{T}\left(\mathbb{P}^{1} \backslash\{0, \infty\}\right.$)-invariant (by definition of Δ_{ψ}, see 3.4.4), hence i commutes with the the L_{0}-action. By axiom a above we see that $i\left(r(* X)_{\mathbb{C}((t))} \subset * r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}\right.$. Our next axiom is
f . The map $i: r(* X)_{\mathbb{C}((t))} \longrightarrow * r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}$ is an isomorphism of vector spaces.
It suffices to verify f for irreducible X 's only.
6.1.4 Our final axiom g ("factorization at infinity") describes the asymptotic expansion of correlators near the boundary of the moduli space. So consider the following situation.

Let $\pi: C_{S} \rightarrow S=\operatorname{Spec} \mathbb{C}[[q]]$ be a proper flat family of curves such that the generic fiber C_{η} is smooth and the special fiber C_{0} has exactly one singular point which is quadratic. Let $B=\left\{b_{i}\right\}$ be a finite non-empty set of sections of π such that the points $b_{i}(0) \in C_{0}$ are pairwise different, and let $\nu_{i} \in b_{i}^{*} \omega_{C_{S} / S}$ be a 1-jet of coordinates at the b_{i} 's. Then $\mathcal{C}=\left(C_{\eta}, b_{i}, \nu_{i}\right)$ is a $\mathbb{C}((q))$-point of \mathcal{M}_{B}.

Let t_{1}, t_{2} be formal coordinates at a such that $t_{1} t_{2}=q$. According to 3.6.1 we get a smooth S-curve C_{S}^{\vee} with points $a_{1}, a_{2} \in C_{S}^{\vee}(S)$ and formal coordinates t_{i} at a_{i}. Put $A=B \bigsqcup\left\{a_{1}, a_{2}\right\}$. Then $\mathcal{C}^{\vee}=\left(C_{\eta}^{\vee}, b_{i}, a_{1}, a_{2} ; \nu_{i} ; q^{-1} d t_{1}\left(a_{1}\right), d t_{2}\left(a_{2}\right)\right)$ is a $\mathbb{C}((q))$-point of \mathcal{M}_{A}.

The S-curves C_{S} and C_{S}^{\vee} define the corresponding determinant line bundles on S. According to 3.6.3 their ratio is canonically stratified, hence the corresponding rings of differential operators are canonically identified; we denote this algebra $D_{\lambda^{c}}$.
 on η with regular singularities at $q=0$. According to 4.5 .6 we have a canonical isomorphism between their specializations to $q=0$ (these are D-modules on the punctured tangent line at $q=0$). Since Sp_{0} is an equivalence of categories, we have a canonical isomorphism of $D_{\lambda^{c}-\text { modules }}\langle X\rangle_{\mathcal{C}}=\langle X \otimes R\rangle_{\mathcal{C}^{\vee}}$.

To formulate axiom g we need to consider a special vector in $r(R)$. Recall that $R=\bigoplus_{I_{j} \in \operatorname{Irr} A} I_{j} \otimes * I_{j}$. Choose a basis $\left\{e_{j}^{K}\right\}$ in each $r\left(I_{j}\right)_{\mathbb{C}((t))}$ compatible with grading by generalized eigenspaces of L_{0}. Here, as above, we write simply $\mathbb{C}((t))$ for $(\mathbb{C}((t)), d t(0)) \in \mathcal{V}_{1}$.

Below we will use the following notation: if $F \in \mathcal{V}$ is any local field, t_{F} a parameter in $F, X \in \mathcal{A}$ and $e \in r(X)_{\mathbb{C}((t))}$, then $e_{\left(F, t_{F}\right)} \in r(X)_{F, d t_{F}(0)}$ is a vector that corresponds to e via the isomorphism $(\mathbb{C}((t)), d t(0)) \vec{\sim}\left(F, d t_{F}(0)\right), t \longmapsto t_{F}$.

According to axiom f . above, we get the dual basis $\left\{* e_{j}^{K}\right\}$ of $r\left(* I_{j}\right)_{\mathbb{C}((t))}$, namely $* e_{j}^{K}=i^{-1} e_{j}^{K *}$, where $e_{j}^{K *} \in * r\left(I_{j}\right)_{\left(\mathbb{C}\left(\left(t^{-1}\right)\right), t^{-1}\right)}$ is the dual basis to $e_{j\left(\mathbb{C}\left(\left(t^{-1}\right)\right), t^{-1}\right)}^{K}$.

Now let $\varphi=\varphi(q)$ be any section of $r(X)_{B, \nu_{B}, C}=r(X)_{B, \nu_{B}, C^{\vee}}$ over S. Consider the correlator $a_{j}^{K}=\left\langle\varphi \otimes e_{j\left(\mathbb{C}\left(\left(t_{1}\right)\right), q^{-1} t_{1}\right)}^{K} \otimes * e_{j\left(\mathbb{C}\left(\left(t_{2}\right)\right), t_{2}\right)}^{K}\right\rangle_{\mathcal{C} \vee}$: this is a section of $\left\langle X \otimes I_{j} \otimes * I_{j}\right\rangle_{\mathcal{C}^{\vee}}$. Note that $\left\langle X \otimes I_{j} \otimes * I_{j}\right\rangle_{\mathcal{C}^{\vee}}$ is a finite dimensional $\mathbb{C}((q))$-vector space. One has
6.1.5 Lemma. The series $\sum_{K} a_{j}^{K}$ converges; its limit $\left\langle\varphi \otimes c_{j}\right\rangle_{\mathcal{C}^{\vee}} \in\left\langle X \otimes I_{j} \otimes * I_{j}\right\rangle_{\mathcal{C}^{\vee}}$ does not depend on a particular choice of basis $\left\{e_{j}^{K}\right\}$.

Assuming the lemma, our final axiom is
g. One has $\langle\varphi\rangle_{\mathcal{C}}=\left\langle\varphi \otimes \sum_{j} C_{j}\right\rangle_{\mathcal{C}} \vee \sum_{j}\left\langle\varphi \otimes C_{j}\right\rangle_{\mathcal{C}} \vee$ via the above canonical isomorphism

$$
\langle x\rangle_{\mathcal{C}}=\langle X \otimes R\rangle_{\mathcal{C}^{v}}=\oplus\left\langle X \otimes I_{j} \otimes * I_{j}\right\rangle_{\mathcal{C}^{v}}
$$

Proof of 6.1.5. The independence of a choice of basis is straightforward. To prove that our series converges it is convenient to add a parameter u, and consider a base scheme $\widetilde{S}=\operatorname{Spec}\left(\mathbb{C}\left[u, u^{-1}\right]\right) \times S$ together with an \widetilde{S}-point of \mathcal{M}_{A} defined by the family $\mathcal{C}_{u}^{\vee}=\left(C_{\widetilde{S}}^{\vee}, b_{i}, a_{1}, a_{2} ; \nu_{i}, u d t_{1}, d t_{2}\right)$. We get the lisse $D_{\lambda^{c}}$-module $\langle X \otimes$ $\left.I_{j} \otimes * I_{j}\right\rangle_{\mathcal{C}_{u}^{\vee}}$ on \widetilde{S}, and a collection of sections $a_{j}^{K}(u, q)=\left\langle\varphi(q) \otimes e_{j\left(\mathbb{C}\left(\left(t_{1}\right)\right), u t_{1}\right)}^{K} \otimes\right.$ $\left.* e_{j\left(\mathbb{C}\left(\left(t_{2}\right)\right), t_{2}\right)}^{K}\right\rangle_{C_{u}^{v}} \in \Gamma\left(\widetilde{S},\left\langle X \otimes I_{j} \otimes * I_{j}\right\rangle_{\mathcal{C}^{\vee}}\right)$. The old picture is just the restriction of this one to the diagonal $u=q^{-1}$. Our D-module has regular singularities along the divisor $u=\infty$, so we may extend it to a vector bundle V to $\widetilde{S}^{-}=\operatorname{Spec}\left(\mathbb{C}\left[u^{-1}\right]\right) \times S$ invariant with respect to operator $u \partial_{u}$. Our lemma would follow if we show that for any $N \gg 0$ one has $a_{j}^{K}(u, q) \in u^{-N} V$ for all but finitely many K 's. The action of the operator $u \partial_{u}$ on $a_{j}^{K}(u, q)$ was computed in 3.4.7.1. Namely, we have $u \partial_{u}\left(a_{j}^{K}(u, q)\right)=\left\langle\varphi(q) \otimes L_{0}\left(e_{j}^{K}\right)_{\left(\mathbb{C}\left(\left(t_{1}\right)\right), u t_{1}\right)} \otimes * e_{j}^{K}\right\rangle_{\mathcal{C}_{u}^{\vee}}$, hence $a_{j}^{K}(u, q)$ is a generalized eigenvector of $u \partial_{u}$ with eigenvalue equal to an eigenvalue of L_{0} at e_{j}^{K}. Axiom a. above implies that for any $\bar{\mu} \in \mathbb{C} / \mathbb{Z}$ and $c \in \mathbb{R}$ the space $\bigoplus_{\substack{\mu=\bar{\mu} \bmod \mathbb{Z} \\ \operatorname{Re} \mu>c}} r\left(I_{j}\right)_{\mathbb{C}(t) \mu} \subset$ $r\left(I_{j}\right)_{\mathbb{C}((t))}$ is finite dimensional. On the other hand, since $\left\langle X \otimes I_{j} \otimes * I_{j}\right\rangle_{\mathcal{C}_{u}^{v}}$ is a lisse module, there are only finitely many $\bar{u} \in \mathbb{C} / \mathbb{Z}$ such that one has a section which is a generalized eigenvector of $u \partial_{u}$ with eigenvalue $\bmod \mathbb{Z}$ equal to \bar{u}. This implies that for any $c \in \mathbb{R}$ all but finitely many a_{j}^{K} 's are generalized eigenvectors of $u \partial_{u}$ with Re (eigenvalue) $<c$. This implies that all but finitely many of them lie in $u^{-N} V$.
6.1.6 Remark. We may consider the situation when a smooth curve degenerates to a curve with several quadratic singular points. One trivially reformulates axiom g for this situation; it is easy to see that this generalized version follows from axiom g. above (the case of one singular point).
6.1.7 Here is an example of how axiom g works. Let C be a fixed curve, $A \subset$ C a finite set, $\left\{\nu_{a}\right\}, a \in A$, 1-jets of coordinates at a 's, $X \in \mathcal{A}^{\otimes A}$, and $\varphi \in$ $r(X)_{a, C}$. Let $x \in C \backslash A$ be a point, t_{x} a parameter at x and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ distinct complex numbers. Let $x_{i}(q)$ be $\mathbb{C}[[q]]$ points of C defined by the formula $x_{i}(o)=x, t_{x}\left(x_{i}(q)\right)=\lambda_{i} q$. Put $t_{i}=t_{x / q}-\lambda_{i}$: these are parameters at x_{i} 's for $q \neq 0$. Let Y_{1}, \ldots, Y_{n} be objects in $\mathcal{A}, \psi_{i} \in r\left(Y_{i}\right)_{\mathbb{C}(t))}$. We would like to compute $\left\langle\varphi \in \psi_{1\left(\mathbb{C}\left(\left(t_{1}\right)\right), t_{1}\right)} \otimes \cdots \otimes \psi_{n\left(\mathbb{C}\left(\left(t_{n}\right)\right), t_{n}\right)}\right\rangle_{C} \in\left\langle X \otimes Y_{1} \otimes \cdots \otimes Y_{n}\right\rangle_{\left(C, A,\left\{x_{i}\right\}, \nu_{A}, d t_{i}\left(x_{i}\right)\right.}$. To do it one should blow up the point $(x, 0) \in C_{S}=C \times S$; denote this curve C_{S}^{\prime}. Clearly $A,\left\{x_{i}\right\}$ are S-points of C_{S}^{\prime}, and we have parameters $t_{x}, q / t_{x}$ at the (only) singular point of C_{0}^{\prime}. The corresponding S-curve $C_{S}^{\prime \vee}$ is constant: one has $C_{S}^{\prime \vee}=C_{S} \amalg \mathbb{P}_{S}^{1}$; the formal parameters at $a_{1}=x \in C_{S}, a_{2}=\infty \in \mathbb{P}_{S}^{1}$ are t_{x}, t^{-1}, respectively. We see that C_{S}^{\prime} comes from $\left(C \amalg \mathbb{P}^{1} ; x, \infty ; t_{s}, t^{-1}\right)$ via the construction 3.6.4. The points $A,\left\{x_{i}\right\}$ on $C_{S}^{\prime \vee}$ are also constant, as well as coordinates t_{i} : one
has $x_{i}=\lambda_{i} \in \mathbb{P}^{1}, t_{i}=t-\lambda_{i}$. Hence

$$
\begin{aligned}
& \left\langle X \otimes Y_{1} \otimes \cdots \otimes Y_{n}\right\rangle_{\left(C ; A,\left\{x_{i}\right\} ; \nu_{A}, d t_{i}\left(x_{i}\right)\right)}=\bigoplus_{j}\left\langle Y_{1} \otimes \cdots \otimes Y_{n} \otimes I_{j}\right\rangle_{\left(\mathbb{P}^{1} ; \lambda_{i}, \infty ; d t\left(\lambda_{i}\right), q^{-1} d t^{-1}(\infty)\right)} \\
& \quad \otimes\left\langle * I_{j} \otimes X\right\rangle_{\left(C ; x, A ; d t_{x}(x), \nu_{A}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\left\langle\varphi \otimes \psi_{1\left(\mathbb{C}\left(\left(t_{1}\right)\right), t_{1}\right)}^{\left.\otimes \cdots \otimes \psi_{n\left(\mathbb{C}\left(\left(t_{n}\right)\right), t_{n}\right)}\right\rangle_{C}=\left\langle\psi_{1}\left(\mathbb{C}\left(\left(t-\lambda_{1}\right)\right), t-\lambda_{1}\right) \otimes \cdots \otimes \psi_{n\left(\mathbb{C}\left(\left(t-\lambda_{n}\right)\right), t-\lambda_{n}\right)}\right.} \begin{array}{l}
\left.\otimes e_{j}^{K}\left(\mathbb{C}\left(\left(t^{-1}\right)\right), q^{-1} t^{-1}\right)\right\rangle_{\mathbb{P}^{1}} \otimes\left\langle * e_{j}^{K}(\mathbb{C}((t x)), t x)\right.
\end{array}\right) \varphi\right\rangle_{C} .
\end{aligned}
$$

6.2 Global vertex operators. Assume we have an algebraic field theory as in 6.1. Let C be a smooth compact curve, $A \subset C$ a finite set of points and $\nu_{a}, a \in A$, a 1-jet of parameters at a 's.
6.2.1 For an object $X \in \mathcal{A}^{\otimes A}$ we have a finite dimensional vector space $\langle X\rangle_{C}$ and a linear map $\left\rangle_{C}: r(X)_{A_{C}} \longrightarrow\langle X\rangle_{C}\right.$. Also for any n-tuple of points $x_{1}, \cdots, x_{n} \in$ $C \backslash A, x_{i} \neq x_{j}$ for $i \neq j$, we have a linear map $\left\rangle_{C}: r(X)_{A, C} \otimes r(\nVdash)_{x_{1}, C} \otimes \ldots \otimes\right.$ $r(\nVdash)_{x_{n}, C}=$
$r(X \otimes \nVdash \otimes \cdots \otimes \nVdash)_{A \cup\left\{x_{1}, \cdots, x_{n}\right\}, C} \longrightarrow\langle X \otimes \nVdash \otimes \cdots \otimes \nVdash\rangle_{C}=\langle X\rangle_{C}$, where the last equality is 4.5 .5 (ii)'. Note that we need not fix here 1 -jets of parameters at x_{i} 's since $r(\nVdash)$ is a $(\widetilde{\mathcal{T}}, \mathcal{V})_{c}$-module (see axiom b). We may rewrite this as a linear map

$$
V_{x_{1}, \cdots, x_{n}}^{A}: \otimes r(\nVdash)_{x_{i}, C} \longrightarrow r(X)_{A, C}^{*} \otimes\langle X\rangle_{C} .
$$

This construction may be rearranged in several ways:
6.2.2 Let the points x_{1}, \cdots, x_{n} vary. On C^{n} we have a locally free $\mathcal{O}_{C^{n}}$-module $r(\nVdash)_{C^{n}}^{\otimes n}$ with fibers $r(\nVdash)_{C^{n}\left(x_{1}, \cdots, x_{n}\right)}^{\otimes n}=\otimes r(\nVdash)_{x_{i}, C}$. On $U=(C \backslash A)^{n} \backslash\{$ diagonals $\}$ we have a morphism $\left.V^{A}: r \nVdash\right)_{U}^{\otimes n} \longrightarrow \operatorname{Hom}_{\mathbb{C}}\left(r(X)_{A, C},\langle X\rangle_{C} \otimes \mathcal{O}_{U}\right)$ of \mathcal{O}_{U}-modules such that the value of V^{A} at $\left(x_{1}, \cdots, x_{n}\right)$ coincides with $V_{x_{1}, \cdots, x_{n}}^{A}$. For any open set $W \subset U$ we get a map

$$
V_{H}^{A}: \Gamma\left(W, r(\nVdash)_{W}^{\otimes n} \otimes \Omega_{W}^{n}\right) \longrightarrow r(X)_{A, C}^{*} \otimes\langle X\rangle_{C} \otimes H_{D R}^{n}(W)
$$

which is a composition of $V \otimes i d_{\Omega_{W}^{n}}$ and the canonical projection $\Gamma\left(W, \Omega_{W}^{n}\right) \rightarrow$ $H_{D R}^{n}(W)$.
6.2.3 Assume that $A=A_{1} \sqcup A_{2}$ and $X=X_{1} \otimes X_{2}, X_{i} \in \mathcal{A}^{\otimes A_{i}}$. Then $r(X)_{A, C}=$ $\left.r\left(X_{1}\right)_{A_{1}, C} \otimes r\left(X_{2}\right)_{A_{2}, C}\right), \quad r(X)_{A, C}^{*}=\operatorname{Hom}\left(r\left(X_{1}\right)_{A_{1}, C}, r\left(X_{2}\right)_{A_{2}, C}^{*}\right)$. Let us fix a formal parameter t_{a} at α such that $d t_{a}(a)=\nu_{a}$. These identify $r\left(X_{i}\right)_{A_{i}, C}$ with "coordinate modules" $r\left(X_{i}\right)_{\mathbb{C}\left(\left(t_{A_{i}}\right)\right)}$ and $r\left(X_{2}\right)_{A_{i}, C}^{*}$ with a completion $r\left(* X_{2}\right)_{\mathbb{C}\left(\left(t_{A_{2}}\right)\right)}$ of $r\left(* X_{2}\right)_{\mathbb{C}\left(\left(t_{A_{2}}\right)\right)}$. So we may rewrite the above $V_{x_{1}, \cdots, x_{n}}$ as

$$
V_{x_{1}, \cdots, x_{n}}^{A_{1}, A_{2}}: \otimes r(\nVdash)_{x_{i}, C} \otimes\left\langle X_{1} \otimes X_{2}\right\rangle_{C}^{*} \longrightarrow \operatorname{Hom}\left(r\left(X_{1}\right)_{\mathbb{C}\left(\left(t_{A_{1}}\right)\right)}, r\left(* X_{2}\right)_{\mathbb{C}\left(\left(t_{A_{2}}\right)\right)}^{\wedge}\right) .
$$

The linear operators in the image of this map are called vertex operators. 6.2.4 Now assume that $X_{1}=Y, X_{2}=* \mathcal{F}_{C}^{A_{1}, A_{2}}(Y)$, where $\mathcal{F}_{C}^{A_{1}, A_{2}}: \mathcal{A}^{\otimes A_{1}} \rightarrow \mathcal{A}^{\otimes A_{2}}$ is the fusion functor from 4.6. Then $\left\langle X_{1} \otimes X_{2}\right\rangle_{C}^{*}=\operatorname{Hom}\left(\mathcal{F}_{C}^{A_{1}, A_{2}}\left(X_{1}\right), * X_{2}\right)$ has a canonical element $\mathrm{id}_{* X_{2}}$; hence we get

$$
V_{x_{1}, \ldots, x_{n}}^{A_{1}, A_{2}}: \otimes r(\nVdash)_{x_{i}, C} \longrightarrow \operatorname{Hom}\left(r(Y)_{\mathbb{C}\left(\left(t_{A_{1}}\right)\right)}, r\left(\mathcal{F}_{C}^{A_{1}, A_{2}}(Y)\right)_{\left.\mathbb{C}\left(\left(t_{A_{2}}\right)\right)\right)}\right)
$$

Here are the first properties of vertex operators in this setting, that follow directly from the axioms.
6.2.5 For $j \in\{1, \ldots, n\}$ and $\varphi \in \bigotimes_{i \neq j} r(\nVdash)_{x_{i}, C}$ one has $V_{x_{1}, \ldots, \widehat{x}_{j}, \ldots, x_{n}}^{A_{1}, A_{2}}(\varphi)=$ $V_{x_{1}, \ldots, x_{n}}^{A_{1}, A_{2}}\left(\varphi \otimes 1_{x_{j}}\right)$.
6.2.6 Put $\mathcal{T}\left(C \backslash A, x_{1}, \ldots, x_{n}\right)=\left\{\tau \in \mathcal{T}(C \backslash A): \tau\left(x_{i}\right)=0\right\} \subset \mathcal{T}(C \backslash A)$. Then the linear map $V_{x_{1}, \ldots, x_{n}}^{A_{1}, A_{2}}$ commutes with the $\mathcal{T}\left(C \backslash A, x_{1}, \ldots, x_{n}\right)$-action. Here $\mathcal{T}(C \backslash$ $\left.A, x_{1}, \ldots, x_{n}\right)$ acts on the left hand side via $\mathcal{T}\left(C \backslash A, x_{1}, \ldots, x_{n}\right) \rightarrow \mathcal{T}_{\left(x_{i}\right) o} \subset \widetilde{\mathcal{T}}_{\left(x_{i}\right)}$ $\left(=\right.$ Virasoro algebra at $\left.x_{i}\right)$ and on the right hand side via the map $\mathcal{T}(C \backslash A) \rightarrow \widetilde{\mathcal{T}}_{(A)}$ from 2.3.4. In particular, any vertex operator F transforms via a finite dimensional representation of $\mathcal{T}\left(C \backslash A, x_{1}, \ldots, x_{n}\right)$ and F is fixed by a Lie subalgebra of $\mathcal{T}(C \backslash A)$ that consists of fields vanishing to sufficiently high order at the x_{i} 's.
6.2.7 Let C^{\prime} be another curve, $A^{\prime}=A_{2} \sqcup A_{3} \subset C^{\prime}$ a finite set of points, $t_{a^{\prime}}$ formal parameters at $a^{\prime} \in A^{\prime}$, and $\left\{x_{1}^{\prime}, \cdots, x_{m}^{\prime}\right\} \subset C^{\prime} \backslash A^{\prime}$. Let $\left(C \circ C^{\prime}\right)_{q}$ be the $\mathbb{C}[[q]]$-curve with zero fiber obtained from $C \sqcup C^{\prime}$ by clutching together the points of A_{2} in C, C^{\prime}, and where the q-deformation comes from using parameters $t_{a_{2}}, t_{a_{2}^{\prime}}$ according to 3.6.4. Then $A_{1} \sqcup A_{3} \sqcup\left\{x_{1}, \ldots, x_{n}\right\} \sqcup\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$ is a finite set of $\mathbb{C}[[q]]$-points of $\left(C \circ C^{\prime}\right)_{q}$, and hence we have our vertex operators map $V_{x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}}^{A_{1}, A_{3}}: \otimes r(\nVdash)_{x_{i}, C} \otimes r(\nVdash)_{x_{j}^{\prime}, C^{\prime}} \longrightarrow \operatorname{Hom}\left(r(Y)_{\mathbb{C}\left(\left(t_{A_{1}}\right)\right)}\right.$,
$r\left(\mathcal{F}_{\left(C \circ C^{\prime}\right)_{q}}^{A_{1}, A_{3}}(Y)_{\mathbb{C}\left(\left(t_{A_{3}}\right)\right)}^{\wedge}\right)$. On the other hand, it is easy to see that "topologically" $\left(C \circ C^{\prime}\right)_{q}$ coincides with "topological" composition $C_{q} \circ C^{\prime}$ from 4.6.1, where

$$
C_{q}=\left(C, d t_{a_{1}}\left(a_{1}\right), q^{-1} d t_{a_{2}}\left(a_{2}\right)\right) \in \mathcal{M}_{A}, a_{1} \in A_{1}, a_{2} \in A_{2}
$$

Hence, by 4.6.1, one has $\mathcal{F}_{\left(C \circ C^{\prime}\right)_{q}}^{A_{1}, A_{3}}=\mathcal{F}_{C^{\prime}}^{A_{2}, A_{3}} \circ \mathcal{F}_{C_{q}}^{A_{1}, A_{2}}$.
Our next property, that follows directly from axiom g , is:
for any $\varphi \in \otimes r(\nVdash)_{x_{i}, C}, \varphi^{\prime} \in \otimes r(\nVdash)_{x_{j}^{\prime}, C^{\prime}}$ one has

$$
V_{x_{1}, \cdots, x_{n}, x_{1}^{\prime}, \cdots, x_{m}^{\prime}}^{A_{1}, A_{3}}\left(\varphi \otimes \varphi^{\prime}\right)=V_{x_{1}^{\prime}, \cdots, x_{m}^{\prime}}^{A_{2}, A_{3}}\left(\varphi^{\prime}\right) \circ V_{x_{1}, \cdots, x_{n}}^{A_{1}, A_{2}},
$$

where composition of "infinite matrixes" is understood in a way similar to 6.1.5.
6.3 Local vertex operators. Assume we have a field theory as in 6.1.
6.3.1 Let C be a smooth curve. Denote by \widetilde{C} the cotangent bundle of C with zero section removed; so a point of \widetilde{C} is a pair $\left(x, \nu_{x}\right), x \in C, \nu_{x}$ is a 1-jet of coordinates at x. Any object $X \in \mathcal{A}$ defines a locally free $\mathcal{O}_{\widetilde{C}}$-module $r(X)_{\widetilde{C}}$ with fibers $r(X)_{\left(x, \nu_{x}\right)}=r(X)_{x, \nu_{x}, C}$. A choice of a family of local parameters defines a trivialization of $r(X)_{\widetilde{C}}$. More precisely, let t be a function on a formal neighbourhood of the diagonal $\Delta: \widetilde{C} \hookrightarrow \widetilde{C} \times C, \Delta\left(x, \nu_{x}\right)=\left(x, \nu_{x}, x\right)$, such that $\left.t\right|_{\Delta}=0, d_{x_{2}} t\left(x, \nu_{x}, x\right)=\nu_{x}\left(\right.$ so $t_{\left(x, \nu_{x}\right)}=t\left(x, \nu_{x}, \cdot\right)$ is a formal parameter at $\left.x\right)$; such a t defines a trivialization $\left.s^{t}: r(X)_{\widetilde{C}}\right) \vec{\sim}(X)_{\mathbb{C}((t))} \otimes \mathcal{O}_{\widetilde{C}}$.

This $r(X)_{\widetilde{C}}$ is a $D_{\widetilde{C}}$-module in a canonical way; the D-module structure comes from the $\mathcal{T}_{\mathbb{C}((t))^{-1} \text {-action on }} r(X)_{\mathbb{C}((t))}$. Explicitly, a vector field $\tau \in \mathcal{T}_{\widetilde{C}} \subset D_{\widetilde{C}}$ acts on $r(X)_{\widetilde{C}}$ as follows. Choose (locally) a family t of local parameters as above. Let ∇_{0} be the flat connection that corresponds to the trivialization S^{t}. Let $\widetilde{\tau}^{t} \in$ $\widetilde{\mathcal{T}}_{\mathbb{C}((t))} \otimes \mathcal{O}_{\widetilde{C}}$ be the section defined by formula $\widetilde{\tau}^{t}=\mathcal{S}_{\mathbb{C}[[t]]}\left(\mathcal{T}_{\left(x_{1}, \nu_{x_{1}}\right)}(t) \partial_{t}\right)$: here $\mathcal{T}_{\left(x_{1}, \nu_{x_{1}}\right)}$ is a vector field on $\widetilde{C} \times C$ equal to τ in the \widetilde{C}-directions and to 0 in the C
directions (hence $\mathcal{T}_{\left(x_{1}, \nu_{x_{1}}\right)}(t)$ is a function on the formal neighbourhood of Δ), and $\mathcal{S}_{\mathbb{C}[t]]}: \mathcal{T}_{\mathbb{C}[t]]} \rightarrow \widetilde{\mathcal{T}}_{\mathbb{C}((t))}$ was defined in 3.4.1. Now for a section φ of $r(X)_{\widetilde{C}}$ one has $\tau(\varphi)=\nabla_{0}(\tau)(\varphi)-\widetilde{\tau}^{t}(\varphi)$, where $\widetilde{\tau}^{t}(\varphi)$ is the $\widetilde{\mathcal{T}}_{\mathbb{C}((t))}$-action on $r(X)_{\mathbb{C}((t))}$.
6.3.2 Remarks. (i) One may explain the $D_{\widetilde{C}}$-module structure on $r(X)_{\widetilde{C}}$ as follows. We have two natural actions of the Lie algebra \mathcal{T}_{C} on $r(X)_{\tilde{C}}$. The first one - "Lie derivative" - comes since $r(X)_{\widetilde{C}}$ is a natural sheaf, hence symmetries of C (and infinitesimal ones also) act on it. The second is an \mathcal{O}-linear action that comes because the fibers of $r(X)_{\widetilde{C}}$ are Virasoro modules (using the splitting $\mathcal{S}_{\mathcal{O}_{\hat{x}}}$). Now the D-module action of vector fields is the difference of these two actions.
(ii) For any étale map $f: C^{\prime} \rightarrow C$ one has a canonical isomorphism $f_{r}^{*}(X)_{\widetilde{C}}=$ $r(X)_{\widetilde{C}^{\prime}}$ of $D_{\widetilde{C}^{\prime}}$-modules.
(iii) If $d_{X}=i d_{X}$ (see 4.5), e.g., if $X=\nVdash$, then $r(X)$ is actually a $(\widetilde{\mathcal{T}}, \mathcal{V})$-module, hence $r(X)_{\widetilde{C}}$ comes from a canonical D-module $r(X)_{C}$ on C.
6.3.3 For $X_{1}, \cdots, X_{n} \in \mathcal{A}$ consider the D-module $\boxtimes_{i} r\left(X_{i}\right)_{\widetilde{C}}=r\left(X_{1}\right)_{\widetilde{C}} \boxtimes \ldots \boxtimes$ $r\left(X_{n}\right)_{\widetilde{C}}$ on \widetilde{C}^{n}. If C is compact, we also have a lisse D-module $\left\langle X_{1} \otimes \cdots \otimes X_{n}\right\rangle_{\widetilde{C}}$ on $\widetilde{C} \backslash\{$ diagonals $\}$ with regular singularities along the diagonals; the fiber of $\left\langle X_{1} \otimes\right.$ $\left.\cdots \otimes X_{n}\right\rangle_{\widetilde{C}}$ over $\left(x_{1}, \nu_{1}, \cdots, x_{n}, \nu_{n}\right)$ is $\left\langle X_{1} \otimes \cdots \otimes X_{n}\right\rangle_{\left(C,\left\{x_{i}\right\},\left\{\nu_{i}\right\}\right)}$. By 6.1.2 we have a canonical morphism of $D_{\widetilde{C}^{n}}$-modules $\left\rangle_{\widetilde{C}}: \boxtimes r\left(X_{i}\right)_{\widetilde{C}} \rightarrow j_{*}\left\langle\otimes X_{i}\right\rangle_{\widetilde{C}}\right.$, where $j: \widetilde{C}^{n} \backslash\{$ diagonals $\} \hookrightarrow \widetilde{C}$.
6.3.4 For a moment let us drop the compactness assumption on C; we will work locally. For $X \in \mathcal{A}$ let $r(X)^{\wedge} \mathcal{C}, C^{n}$ be the completion of $r(X)_{\widetilde{C}} \boxtimes \mathcal{O}_{C^{n}}$ around the diagonal $\Delta: \widetilde{C} \rightarrow \widetilde{C} \times C^{n}, \Delta\left(x, \nu_{x}\right)=\left(x, \nu_{x} ; x, \cdots, x\right)$. A choice of a family of local parameters $t=\left(t_{x, \nu_{x}}\right)$ identifies sections of $r(X)_{\widetilde{C}, C^{n}}^{\wedge}$ with formal power series $\Sigma m_{i_{1}, \cdots, i_{n}} t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}$, where $m_{i_{1}, \ldots, i_{n}}$ are sections of $r(X)_{\widetilde{C}}$ and $t_{i}\left(x_{0}, \nu_{x_{0}}, x_{1}, \cdots, x_{n}\right)=t_{\left(x_{0}, \nu_{x_{0}}\right)}\left(x_{i}\right)$. Then $\left.r(X)\right)_{\widetilde{C}, C^{n}}^{i_{n}}$ is a (non quasicoherent) $D_{\widetilde{C} \times C^{n}}$-module in an obvious manner. Let $\mathcal{O}_{\widetilde{C} \times C^{n}}^{\#} \supset \mathcal{O}_{\widetilde{C} \times C^{n}}$ denote the sheaf of functions having (meromorphic) singularities at diagonals $x_{i}=x_{j}, i, j \geq 0$. Put $r(X)_{\widetilde{C}, C^{n}}^{\#}:=\mathcal{O}_{\tilde{C} \times C^{n}}^{\#} \otimes_{\mathcal{O}_{\tilde{C} \times C^{n}}} r(X)_{\widetilde{C}, C^{n}}$: this is also a $D_{\widetilde{C} \times C^{n}}$-module. A section of $r(X)_{\tilde{C} \times C^{n}}^{\#}$ is a formal series

$$
\prod\left(t_{i}-t_{j}\right)^{-a_{i j}}\left(\Sigma m_{i_{1} \cdots i_{n}} t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}\right), a_{i j} \geq 0
$$

Now let us define the "local" vertex operators:
6.3.5 Lemma. There is a canonical morphism of $D_{\widetilde{C} \times C^{n}}$-modules

$$
\mu: r(\nVdash)_{C} \boxtimes \cdots \boxtimes r(\nVdash)_{C} \boxtimes r(X)_{\widetilde{C}} \longrightarrow r(X)_{\widetilde{C}, C^{n}}^{\#}
$$

such that (assuming C is compact) for any $\left(x, \nu_{x} ; y_{1}, \nu_{y_{1}} ; \cdots ; y_{m}, \nu_{y_{m}}\right) \in \widetilde{C} \times \widetilde{C}^{m}$, $x \neq y_{i}, y_{i} \neq y_{j}$ for $i \neq j$, objects $Y_{i} \in \mathcal{A}$, an element $\psi_{x} \in r(X)_{x, \nu_{x}}, \psi_{y_{i}} \in r\left(Y_{i}\right)_{y_{i}, \nu_{y_{i}}}$ and a section $\varphi_{1}, \cdots, \varphi_{n}$ of $r(\nVdash)_{C}$ in a neighbourhood of x one has
$\left\langle\varphi_{1} \otimes \cdots \otimes \varphi_{n} \otimes \psi_{x} \otimes \cdots \otimes \psi_{y_{m}}\right\rangle_{\widetilde{C}}=\left\langle\mu\left(\varphi_{1} \otimes \cdots \otimes \varphi_{n} \otimes \psi_{x}\right) \otimes \psi_{y_{1}} \otimes \cdots \otimes \psi_{y_{n}}\right\rangle_{\widetilde{C}}$
(as meromorphic functions on a formal neighbourhood of $(x, \ldots, x) \in C^{n}$ with values in $\left\langle X \otimes Y_{1} \otimes \cdots \otimes Y_{m}\right\rangle_{\left(C,\left\{x, y_{i}\right\},\left\{\nu_{x}, \nu_{y_{i}}\right\}\right)}$ identified with $\langle\nVdash \otimes \cdots \otimes \nVdash \otimes \otimes \otimes$ $\left.Y_{1} \otimes \cdots \otimes Y_{m}\right\rangle$ via $\left.4.5 .5(i i)^{\prime}\right)$.

Proof - construction. We will write an explicit formula for μ. To do this consider first \mathbb{P}^{1} with the standard parameter t. So t defines a family of local parameters $t_{x}=$ $t-x$ on $\mathbb{P}^{1} \backslash\{\infty\}$, and hence we have a trivialization $s^{t}: r\left(\nVdash_{\mathbb{P}^{1} \backslash\{\infty\}}=r(\nVdash)_{\mathbb{C}((t))} \otimes\right.$ $\mathcal{O}_{\mathbb{P}^{1} \backslash\{\infty\}}$. For $\varphi \in r(\nVdash)_{\mathbb{C}((t))}$ we denote by φ^{t} the corresponding "constant" section of $r(\nVdash)_{\mathbb{P}^{1} \backslash\{\infty\}}$.

Now for $\varphi_{1}, \cdots, \varphi_{n} \in r(\nVdash)_{\mathbb{C}(t))}$ and $x_{1}, \ldots, x_{n} \in \mathbb{P}^{1} \backslash\{\infty\}, x_{i} \neq x_{j}$ for $i \neq j$, consider the vertex operator $V_{x_{1}, \cdots, x_{n}}^{0, \infty}\left(\varphi_{1}^{t} \otimes \cdots \otimes \varphi_{n}^{t}\right): r(X)_{\mathbb{C}((t))} \longrightarrow r(X)_{\mathbb{C}((t))}^{\wedge} k$ from 6.2.4 (here we identified the module $r(X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}$ at ∞ with $r(X)_{\mathbb{C}((t))}$ via $\left.t^{-1} \longmapsto t\right)$. In fact, this operator lies in End $r(X)$.
[Proof. For any $a \in \mathbb{C}^{*}$ one has $t_{a x}=a(t-x)$; hence the automorphism $x \longmapsto a x$ of \mathbb{P}^{1} acts on $r(\nVdash)_{\mathbb{P}^{1}}$ (according to 6.3.2) by the formula $\varphi^{t} \longmapsto\left(a^{L_{0}} \varphi\right)^{t}$. This implies immediately that if $L_{0} \varphi_{i}=n_{i} \varphi_{i}$, then $V_{x_{1}, \ldots, x_{n}}^{0, \infty}\left(\otimes \varphi_{i}^{t}\right)\left(L_{0} e\right)=\left(L_{0}+n_{1}+\right.$ $\left.\cdots+n_{n}\right) V_{x_{1}, \cdots, x_{n}}^{0, \infty}(e)$. Hence $V_{x_{1}, \cdots, x_{n}}^{0, \infty}\left(\otimes \varphi_{i}^{t}\right)$ maps L_{0}-generalized eigenspaces in $r(X)_{\mathbb{C}((t))}$ to ones in $r(X)_{\mathbb{C}((t))}$; since the sum of these equals $r(X)_{\mathbb{C}((t))}$, we see that $V_{x_{1}, \cdots, x_{n}}^{0, \infty}\left(\otimes \varphi_{i}^{t}\right)$ maps $r(X)_{\mathbb{C}((t))}$ to $r(X)_{\mathbb{C}(t))}$.]

Clearly, $V_{x_{1}, \cdots, x_{n}}^{0, \infty}\left(\varphi_{1}^{t} \otimes \cdots \otimes \varphi_{n}^{t}\right)$ is a meromorphic function on $\left(\mathbb{P}^{1} \backslash\{0, \infty\}\right)^{n} \backslash$ \{diagonals\} with values in $\operatorname{End} r(X)_{\mathbb{C}((t))}$. Put $\mu\left(\varphi_{1}^{t} \otimes \cdots \otimes \varphi_{n}^{t} \otimes \psi_{0}\right)=V_{x_{1}, \cdots, x_{n}}^{0, \infty}\left(\varphi_{1}^{t} \otimes\right.$ $\left.\cdots \otimes \varphi_{n}^{t}\right)\left(\psi_{0}\right)$ for $\psi_{0} \in r(X)_{\mathbb{C}((t))}$: we will consider $\mu(\quad)$ as a formal power series in variables $t_{1}, \cdots, t_{n}, t_{i}=t\left(x_{i}\right)$, with poles along diagonals $t_{i}=t_{j}$, with values in $r(X)_{\mathbb{C}((t))}$.

Now consider our curve \widetilde{C}. Choose a family of parameters t. It defines a trivialization $r(\nVdash)_{C} \boxtimes \cdots \boxtimes r(\nVdash)_{C} \boxtimes r(X)_{\widetilde{C}} \xrightarrow{\sim} r(\nVdash)_{\mathbb{C}(t))}^{\otimes n} \otimes r(X)_{\mathbb{C}((t))} \otimes \mathcal{O}_{\widetilde{C} \times C^{n}}$ in a formal neighbourhood of the diagonal. We put $\mu\left(\varphi_{1}^{t} \otimes \cdots \otimes \varphi_{n}^{t} \otimes \psi_{x, t}\right)=$ $\mu\left(\varphi_{1}^{t} \otimes \cdots \otimes \varphi_{n}^{t} \otimes \psi_{\mathbb{C}((t)) t}\right)_{x, t}$ in obvious notations (so we write down the above μ on our curve in the coordinates t_{x} for each $x \in C$). It is easy to see that μ, so defined, is independent of choice of the family of parameters and is a morphism of D-modules.

To prove the correlators formula in 6.3.5 one proceeds as in 6.1.7: we should consider the curve C_{c}^{\prime} as in 6.1.7 over $\mathbb{C}[[q]]$ and apply axiom g .

We will often write $\mu\left(\varphi_{1} \otimes \cdots \otimes \varphi_{n} \otimes \psi\right)=\varphi_{1}\left(x_{1}\right) \cdots \varphi_{n}\left(x_{n}\right) \psi(x) \in \prod_{i, j}\left(x_{i}-\right.$ $\left.x_{j}\right)^{-N} \mathbb{C}\left[\left[x_{1}-x, \cdots, x_{n}-x\right]\right] \otimes r(X)_{x}$. The composition property 6.2.7 for global vertex operators implies this associativity property of μ :
6.3.6 One has

$$
\begin{aligned}
& \varphi_{1}\left(x_{1}\right) \cdots \varphi_{n}\left(x_{n}\right) \psi(x)= \\
& \varphi_{1}\left(x_{1}\right)\left(\varphi _ { 2 } (x _ { 2 }) (\cdots (\varphi _ { n } (x _ { n }) \psi (x)) \cdots) \in \mathbb { C } \left(\left(x_{1}-x\left(\left(\cdots\left(\left(x_{n}-x\right)\right) \cdots\right)\right)\right) \otimes r(X)_{x} .\right.\right.
\end{aligned}
$$

Also if one of the φ_{i} 's is equal to 1 , we may delete it.
6.4 Chiral algebra. Consider the three step complex $\mathcal{L}_{C} \bullet=\left(\mathcal{L}_{2} \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{L}_{0}\right)$ of sheaves for the Zariski or étale topology of C. Here $\mathcal{L}_{2}=r(\nVdash)_{C}, \mathcal{L}_{1}=\omega \otimes \mathcal{O}_{C} r(\nVdash)_{C}$, the differential $d: \mathcal{L}_{2} \rightarrow \mathcal{L}_{1}$ is the de Rham differential, and $\mathcal{L}_{0}=\mathcal{L}_{1} / d \mathcal{L}_{2}=$ $\mathcal{H}_{D R}^{1}\left(r(\nVdash)_{C}\right)$ is the sheaf of de Rham cohomology with coefficients in the $D_{C^{-}}$ module $r(\nVdash)_{C}$, and $d: \mathcal{L}_{1} \rightarrow \mathcal{L}_{0}$ is the projection.
6.4.1 For sections γ_{1}, γ_{2} of \mathcal{L}_{1} we define a section $\gamma_{1} * \gamma_{2}$ of \mathcal{L}_{1} by the formula $\gamma_{1} * \gamma_{2}=\operatorname{Res} s_{1} \mu\left(\gamma_{1} \otimes \gamma_{2}\right)$, and a section $\left\{\gamma_{1}, \gamma_{2}\right\} \in \mathcal{L}_{2}$ by the formula $\left\{\gamma_{1}, \gamma_{2}\right\}=$
$\widetilde{\operatorname{Res}} \mu\left(\gamma_{1} \otimes \gamma_{2}\right)$. Here $\gamma_{1} \otimes \gamma_{2}$ is a section of $\mathcal{L}_{1} \boxtimes \mathcal{L}_{1}=\Omega_{C \times C}^{2} \otimes \mathcal{O}_{C \times C}\left(r(\nVdash)_{C} \boxtimes r(\nVdash)_{C}\right)$, $\mu\left(\gamma_{1} \otimes \gamma_{2}\right)$ is a section of $\omega_{C} \boxtimes \mathcal{L}_{1}=\Omega_{C \times C}^{2} \otimes p_{2}^{*} r(\nVdash)_{C}$ with poles along the diagonal, Res $_{1}$ is residue around the diagonal along the first variable, and $\widetilde{R e s}$ was defined in 2.2.4. Now the lemma 6.3.5 implies immediately that $d\left(\left\{\gamma_{1}, \gamma_{2}\right\}\right)=\gamma_{1} * \gamma_{2}+\gamma_{2} * \gamma_{1}$ and for $\varphi \in \mathcal{L}_{2}$ one has $(d \varphi) * \gamma=0$. Define the bracket $[]:, \mathcal{L} \mathbf{\bullet} \otimes \mathcal{L}, \rightarrow \mathcal{L} \mathbf{\bullet}$ by the formula $\left[d \gamma_{1}, d \gamma_{2}\right]_{0,0}=d\left(\gamma_{1} * \gamma_{2}\right),\left[d \gamma_{1}, \gamma_{2}\right]_{0,1}=-\left[\gamma_{2}, d \gamma_{1}\right]_{1,0}=\gamma_{1} * \gamma_{2}$, $\left[\gamma_{1}, \gamma_{2}\right]_{1,1}=\left\{\gamma_{1}, \gamma_{2}\right\}$ for $\gamma_{i} \in \mathcal{L}_{1}$. The associativity property 6.3 .6 implies
6.4.2 Lemma. This bracket provides \mathcal{L} with the structure of $D G$ Lie algebra.

This DG Lie algebra (or rather its zero component \mathcal{L}_{0}) is called the chiral Lie algebra of our field theory.
6.4.3 Consider a canonical embedding $i: \mathcal{O}_{C} \rightarrow r(\nVdash)_{C}$ of D_{C}-modules, $i(f)=f \cdot 1$.

Denote by C. the three step complex $C_{2}=\mathcal{O}_{C} \xrightarrow{d} C_{1}=\omega_{C} \rightarrow C_{0}=\mathcal{H}$; here $\mathcal{H}=\mathcal{H}_{D R}^{1}$ and the differential $C_{1} \rightarrow C_{0}$ is the canonical projection. We get a canonical morphism $i: C_{\bullet} \rightarrow \mathcal{L}$. of complexes, $i(f)=f \cdot 1$. One may see that i is actually an embedding (for i_{0} this will follow from 6.4.6), and obviously $i\left(C_{\bullet}\right)$ lies in the center of the chiral algebra.
6.4.4 For any $x \in \mathcal{A}$ consider the $D_{\widetilde{C}}$-module $r(X)_{\widetilde{C}}$. The formula $\gamma(m)=$ $\operatorname{Res} s_{1} \mu(\gamma \otimes m)$ for $\gamma \in \mathcal{L}_{0}, m \in r(X)_{\widetilde{C}}$ defines a canonical action of \mathcal{L}_{0} on $r(X)_{\widetilde{C}}$ that commutes with the $D_{\widetilde{C}}$-action.
6.4.5 For any local field F we may consider the "local" version \mathcal{L}_{F} • of the above $\mathcal{L}_{C} \cdot$. This is a differential graded Lie algebra constructed in a way similar to 6.4.1. If $F=F_{x}$ is a local field at a point $x \in C$, then $\mathcal{L}_{F_{x}^{2}}=F_{x} \otimes_{\mathcal{O}_{C}} \mathcal{L}_{C^{2}}$, $\mathcal{L}_{F_{x}^{1}}=F_{x} \otimes \mathcal{O}_{C} \mathcal{L}_{C^{1}}, \mathcal{L}_{F_{x}^{0}}=H_{D R}^{1}\left(F_{x}, r(\nVdash)_{C}\right)=\mathcal{L}_{F_{x}^{1}} / d \mathcal{L}_{F_{x}^{2}}$. For any $X \in \mathcal{A}$ we have a canonical map $\mathcal{L}_{F^{0}} \otimes r(X)_{F} \rightarrow r(X)_{F}, \gamma \otimes m \longmapsto \gamma(m)=\operatorname{Res} s_{0} \mu(\gamma \otimes m)$. Here $\mu(\gamma \otimes m) \in H_{D R}^{1}(F) \otimes r(X)_{F}$ and one has (cf. 6.4.4):
6.4.6 Lemma. This map defines a representation of the Lie algebra $\mathcal{L}_{F^{0}}$ on $r(X)_{F}$. The central subalgebra $\mathbb{C} \stackrel{i}{\hookrightarrow} \mathcal{L}_{F^{0}}, i(a)=a \frac{d t}{t}$, (see 6.4.3) acts on $r(X)_{F}$ by the formula $i(a)(m)=a m$.

In particular, $i(\mathbb{C}) \neq 0$; this implies, by degeneration arguments, that $i: C_{0} \rightarrow \mathcal{L}_{0}$ is an embedding in the "global" situation.

Now assume that C is compact, $x_{1}, \cdots, x_{n} \in C, x_{i} \neq x_{j}, \nu_{i}$ are 1 -jets of parameters at x_{i} 's, and $X_{1}, \cdots, X_{n} \in \mathcal{A}$. Put $U=C \backslash\left\{x_{1}, \cdots, x_{n}\right\}$. Consider the pairing $\left\rangle_{C}: r\left(X_{1}\right)_{x, \nu_{1}, C} \otimes \cdots \otimes r\left(X_{n}\right)_{x_{n}, \nu_{n}, C} \longrightarrow\left\langle X_{1} \otimes \cdots \otimes X_{n}\right\rangle_{C, x_{i}, \nu_{i}}\right.$. We have an obvious "localization" morphism $\mathcal{L}_{0}(U) \rightarrow \mathcal{L}_{0}\left(F_{x_{i}}\right)$, hence a natural action of $\mathcal{L}_{0}(U)$ on $\otimes r\left(X_{i}\right)_{x_{i}, \nu_{i}, C}$.
6.4.7 Lemma. The morphism $\left\rangle_{C}\right.$ is $\mathcal{L}_{0}(U)$-invariant.

Proof. Stokes formula: we rewrite for $\ell \in \mathcal{L}_{0}(U)=\Omega^{1} \otimes r(\nVdash)_{U}$ the sum
$\Sigma\left\langle\varphi_{1} \cdots \ell\left(\varphi_{i}\right) \cdots \varphi_{n}\right\rangle$ as $\Sigma \operatorname{Res}_{x=x_{i}}\left\langle\ell(x) \varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right\rangle$.

6.5 Stress-energy tensor. TO BE REWRITTEN! POSSIBLE MISTAKES!

For any local field F consider the linear map $\mathcal{T}_{F-2} / \mathcal{T}_{F-1} \rightarrow r(\nVdash)_{F} / \mathbb{C} \cdot 1, \tau \longmapsto$ $\tau(1)$ (see 3.4.1; recall that 1 is fixed by \mathcal{T}_{F-1} by axiom c). The one-dimensional space $\mathcal{T}_{F-2} / \mathcal{T}_{F-1}$ canonically coincides with the fiber at 0 of $\mathcal{T}^{\otimes 2}$. Tensoring this map with the dual line, we get for any curve C a canonical section T of $\omega_{C}^{\otimes 2} \otimes$
$\mathcal{O}_{C}\left(r(\nVdash)_{C} / \mathcal{O}_{C}\right)$. This section is called the stress-energy tensor. Multiplication by T defines a canonical map $\mathcal{T}_{C} \rightarrow \omega_{C} \otimes \mathcal{O}_{C}\left(r(\nVdash)_{C} / \mathcal{O}_{C}\right)=\mathcal{L}_{1} / C_{1} \xrightarrow{d} \mathcal{L}_{0} / C_{0}$ (see 6.4.3).
6.5.1 Lemma. (i) The composition $\mathcal{T} \rightarrow \mathcal{L}_{0} / C_{0}$ is a morphism of Lie algebras. (ii) The corresponding "local" projective action (see 6.4.5, 6.4.6) of $\mathcal{T}_{F} \subset \mathcal{L}_{0 F} / \mathbb{C}$ on $r(X)_{F}$ coincides with the canonical Virasoro action.

Remark. One should have a canonical isomorphism between the induced extension of \mathcal{T} by $C_{0}=\mathcal{H}$ and the Virasoro extension from $\S 2$, but we do not know how to establish it at a moment.

Proof. Let us sketch a proof of (ii); one proves (i) in a similar way. We may assume that $F=\mathbb{C}((t))$. Let us compute the action of the operator $L_{K}:=t^{K+1} \partial_{t} \cdot T \subset$ $\mathcal{L}_{\mathbb{C}((t))^{\circ}} / \mathbb{C}$ on $r(X)_{\mathbb{C}((t))}$. Take $e \in r(X)_{\mathbb{C}((t))}, e^{*} \in r(* X)_{\mathbb{C}\left(\left(t^{-1}\right)\right)}$. Consider the function $\nu(z)=\left\langle\frac{1}{t-z} \partial_{t-z}\left(1_{z}\right) \cdot e \cdot e^{*}\right\rangle_{\mathbb{P}^{1}} ;$ here $z \in \mathbb{P}^{1} \backslash\{0, \infty\},\langle\quad\rangle_{\mathbb{P}^{1}}$ is the correlator for fields $\frac{1}{t-z} \partial_{t-z}\left(1_{z}\right) \in r(\nVdash)_{\mathbb{C}((t-z)), t-z}, e, e^{*}$ at points $z, 0, \infty$. By definition, the matrix coefficient $\left\langle L_{K}(e), e^{*}\right\rangle$ is equal to $\operatorname{Res}_{z=0} z^{K+1} \nu(z) d z$. We have the invariance property $\left\langle\frac{1}{t-z} \partial_{t-z}\left(1_{z}\right) \cdot e \cdot e^{*}\right\rangle+\left\langle\left(1_{z}\right) \cdot \frac{1}{t-z} \partial_{t} e \cdot e^{*}\right\rangle+\left\langle\left(1_{z}\right) \cdot e \cdot \frac{1}{t-z} \partial_{t} e^{*}\right\rangle=0$. Deleting 1_{z} by $a x \cdot e$, we get $\left\langle L_{K}(e), e^{*}\right\rangle=-\operatorname{Res}_{z=0}\left(\left\langle\frac{1}{t-z} \partial_{t} e \cdot e^{*}\right\rangle+\left\langle e \cdot \frac{1}{t-z} \partial_{t} e^{*}\right\rangle\right) \cdot Z^{K+1} d z$. To compute $\frac{1}{t-z} \partial_{t} e$ one should expand $\frac{1}{t-z}$ around $t=0$, and to compute $\frac{1}{t-z} \partial_{t} e^{*}$ one should expand $\frac{1}{t-z}$ at $t=\infty$.

Hence
$\left\langle L_{K} e, e^{*}\right\rangle=-\operatorname{Res}_{z=0} z^{K+1}\left(-\left\langle\sum_{n \geq 0} z^{-n-1} t^{n} \partial_{t} e, e^{*}\right\rangle+\left\langle e, \sum_{n \geq 0} z^{n} t^{-n-1} \partial_{t} e^{*}\right\rangle\right) d z=\left\langle t^{K+1} \partial_{t} e, e^{*}\right\rangle$,
since $\left\langle t^{a} \partial_{t} e, e^{*}\right\rangle+\left\langle e, t^{a} \partial_{t} e^{*}\right\rangle=0$. We see that $L_{K}=t^{K+1} \partial_{t}$, q.e.d.
6.6 Theta functions. Consider the vector spaces $\langle\nVdash\rangle_{C}$, where C is a smooth connected compact curve (with empty set of distinguished points). They are fibers of a lisse λ^{c}-twisted D-module $\langle\nVdash\rangle$ on the moduli space of smooth curves. For a point $x \in C$ we have $\langle\nVdash\rangle_{C}=\langle\nVdash\rangle_{C, x}$, hence one has a canonical map γ_{x} : $r(\nVdash)_{x, C} \rightarrow\langle\nVdash\rangle_{C}$. The image $\gamma_{C}=\gamma_{x}\left(\frac{1}{x}\right)$ is independent of the choice of x (since $\left.\partial_{x}\left(\gamma_{x}\left(1_{x}\right)\right)=0\right)$. As C varies, the γ_{C} form a holomorphic section of $\langle\nVdash\rangle$.

Here is an explicit formula for γ on the moduli space of elliptic curves. Consider the usual uniformization of the moduli space by the upper half plane H with parameter z; then $q=\exp (2 \pi i z)$ is the standard parameter at infinity. The family of elliptic curves degenerates when $q \rightarrow 0$ in the standard way described in 3.6.6. Hence on H we get a canonical trivialization $\langle\nVdash\rangle_{H}=\oplus \mathbb{C}_{I_{j}}$, horizontal with respect to the trivialization of λ^{c} described in 3.6.6. In this trivialization we have $\gamma(q)=\sum \gamma_{I_{j}}^{\vee}(q)$, where $\left.\gamma_{I_{j}}^{\vee}(q)=\operatorname{tr}_{I_{j \subset(t))}}\right)^{-L_{0}}$ by axiom g. The "global" trivialization of λ^{c} given by $\eta(q)^{c}$ differs from the above trivialization by $q^{c / 24}$ (see 3.6.6). In this global η-trivialization the components of γ are $\gamma_{I_{j}}(q)=q^{c / 24} \operatorname{tr}_{I_{j \subset((t))}} q^{-L_{0}}$. We see that these are holomorphic functions on H and for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ the function $\gamma_{I_{j}}\left(\frac{a z+b}{c z+d}\right)$ is a linear combination with constant coefficients of other $\gamma_{I_{i}}$'s.

§7. Lisse Representations

7.1 Singular support, lisse modules. Let \mathfrak{g} be a Lie algebra, and $U=U(\mathfrak{g})$ its universal enveloping algebra. Then U is a filtered algebra $\left(U_{0}=\mathbb{C}, U_{1}=\mathbb{C}+\right.$ $\mathfrak{g}, U_{i}=U_{1}^{i}$ for $\left.i>0\right), g r U=\oplus_{i} U_{i} / U_{i-1}=S^{\bullet}(\mathfrak{g})$. For $\varphi \in U_{i}$ its symbol $\sigma_{i}(\varphi)$ is $\varphi \bmod U_{i-1} \in S^{i} \mathfrak{g} ;$ if $\varphi \in U_{i} \backslash U_{i-1}$ we will write $\sigma(\varphi)=\sigma_{i}(\varphi)$.
7.1.1 Let M be a finitely generated \mathfrak{g}-module. Recall that a good filtration M_{\bullet} on M is a U_{\bullet}-filtration such that $M=\cup M_{i}, \cap M_{i}=0$ and $g r M_{\bullet}$ is a finitely generated $S^{\bullet}(\mathfrak{g})$-module. For example, if $M_{0} \subset M$ is a finite dimensional vector subspace that generates M, then $M_{i}=U_{i} M_{0}$ is a good filtration. Any two good filtrations $M_{\bullet}, M_{\bullet}^{\prime}$ on M are comparable, i.e., for some a one has $M_{\bullet-a} \subset M_{\bullet}^{\prime} \subset M_{\bullet+a}$.

Define the singular support $S S M$ of M to be the support of the $S^{\bullet}(\mathfrak{g})$-module $\operatorname{gr} M_{\bullet}$, where M_{\bullet} is a good filtration on M. This is a Zariski closed canonical subset of $\operatorname{Spec} S^{\bullet}(\mathfrak{g})=\mathfrak{g}^{*}$; it does not depend on the choice of a good filtration M_{\bullet}. If η is a generic point of $S S M$, then the length of the $S^{\bullet}(\mathfrak{g})$-module $\left(\operatorname{gr} M_{\bullet}\right)_{\eta}$ only depends on M; denote it $\ell_{\eta}(M)$. We will say that M is finite at η if $\ell_{\eta}(M)<\infty$: this means that $\left(\operatorname{gr} M_{\bullet}\right)_{\eta}$ is killed by an ideal of finite codimension in $S^{\bullet}(\mathfrak{g})_{\eta}$.
7.1.2 Remarks. (i) If M is generated by a single vector, $M \simeq U / I$, then $S S(M)$ is the zero set of symbols of elements of I.
(ii) A more precise way to speak about this subject needs the microlocalization language, see e.g. [La], Appendix.

The algebra $g r U=S^{\bullet}(\mathfrak{g})$ carries a Poisson bracket defined by the formula $\left\{f_{i}, g_{j}\right\}=\widetilde{f}_{i} \widetilde{g}_{j}-\widetilde{g}_{j} \widetilde{f}_{i} \bmod U_{i+j-2} ;$ here $f_{i} \in S^{i}(\mathfrak{g}), \widetilde{f}_{i} \in U_{i}, f_{i}=\widetilde{f}_{i} \bmod U_{i-1}$, and the same for $g_{j},\left\{f_{i}, g_{j}\right\} \in S^{i+j-1}(\mathfrak{g})$. One has the following integrability theorem, due to O. Gabber [Ga]:
7.1.3 Theorem. Let M be a finitely generated U-module finite at any generic point of $S S M$. Then $S S M$ is involutive, i.e., if $f, g \in S^{\bullet}(\mathfrak{g})$ vanish on $S S M$, then so does $\{f, g\}$.
7.1.4 Definition. A finitely generated module M is lisse if $S S M=\{0\}$. More generally, we will say that M is lisse along a vector subspace $\ell \subset \mathfrak{g}$ if $S S M \cap \ell^{\perp}=$ $\{0\}$.

Note that any quotient of a lisse module is lisse. Any extension of a lisse module by a lisse module is lisse. Any finite dimensional M is lisse; the converse is true if $\operatorname{dim} \mathfrak{g}<\infty$.

Explicitly, a module M is lisse if amd only if for a finite dimensional subspace $V \subset M$ that generates M and any $g \in \mathfrak{g}$ there exists $N \gg 0$ such that $g^{N} V \subset$ $U_{N-1} V$.
7.2 Finiteness property. Let $k \subset \mathfrak{g}$ be a Lie subalgebra. We will say that a \mathfrak{g} module M is a (\mathfrak{g}, k)-module if k acts on M in a locally finite way (i.e., for any $x \in M$ one has $\operatorname{dim} U(k) x<\infty)$. If such an M is finitely generated, then it carries a good k-invariant filtration (e.g., take a finite dimensional k-invariant subspace $M_{0} \subset M$ that generates M and put $\left.M_{i}=U_{i} M_{0}\right)$. Hence $S S M \subset k^{\perp}=(\mathfrak{g} / k)^{*} \subset \mathfrak{g}^{*}$.
7.2.1 Lemma. Let M be a finitely generated (\mathfrak{g}, k)-module and $n \subset \mathfrak{g}$ be a vector subspace such that $\operatorname{dim} \mathfrak{g} / n+k<\infty$ and M is lisse along n. Then $\operatorname{dim} M / n M<\infty$.

Proof. Let M_{\bullet} be a K-invariant good filtration on M, so $g r M_{\bullet}$ is a finitely generated $S^{\bullet}(\mathfrak{g} / k)$-module. Consider the induced filtration on $M / n M$. It suffices to see that $\operatorname{dimgr}(M / n M)<\infty$. But $\operatorname{gr}(M / n M)$ is a quotient of $\operatorname{gr} M / n g r M$ (since $\left.g r_{i} M / n M=M_{i} / M_{i-1}+\left(M_{i} \cap N M\right),(g r M / n g r M)_{i}=M_{i} / M_{i-1}+n M_{i-1}\right)$. The latter is a finitely generated module with zero support over the finitely generated algebra $S^{\bullet}(\mathfrak{g} / k+n)$, hence it is finitely generated.

We will use 7.3.1 as follows. Assume we are in a situation 3.3, so we have a HarishChandra pair (\mathfrak{g}, K), an S-localization data $\psi=\left(S^{\#}, N, \varphi, \varphi_{0}\right)$ for (\mathfrak{g}, K) and the corresponding S-localization functor $\Delta_{\psi}:(\widetilde{\mathfrak{g}}, K)-\bmod \rightarrow \mathcal{D}_{\psi}$-mod. Certainly, any $(\tilde{\mathfrak{g}}, K)$-module M is a $(\tilde{\mathfrak{g}}, k)$-module and $S S M$ is an Ad K-invariant closed subset of k^{\perp}. Now 7.2.1 (together with 3.3.4) implies:
7.2.2 Corollary. Assume that the following finiteness condition holds:
$\left.{ }^{*}\right)$ The sheaf $\mathfrak{g}_{S}^{\#} / k_{S}^{\#}+\varphi\left(N_{(0)}\right)$ is \mathcal{O}_{S}-coherent.
Then for a lisse $(\tilde{\mathfrak{g}}, K)$-module M the \mathcal{D}_{ψ}-module $\Delta_{\psi}(M)$ is lisse (see 3.2.7). More generally, if a $(\widetilde{\mathfrak{g}}, K)$-module M is lisse along any subspace $\varphi_{0}\left(N_{(0) s}\right) \subset \widetilde{\mathfrak{g}}$, $s \in S^{\#}$, then $\Delta_{\psi}(M)$ is a lisse \mathcal{D}_{ψ}-module.

The following corollaries of 7.1 .3 will be useful.
7.2.3 Lemma. Let M be a (\mathfrak{g}, k)-module such that $S S M$ has finite codimension in k^{\perp}. Then SSM is involutive.
7.2.4 Corollary. Assume that a Harish-Chandra pair (\mathfrak{g}, K) has the property that any Zariski closed Ad K-invariant subset of k^{\perp} is either $\{0\}$ or has finite codimension. Then for any (\mathfrak{g}, K)-module M the $S S(M)$ is involutive.
7.3 Lisse modules over Virasoro algebra. Consider the Virasoro algebra $\widetilde{\mathcal{T}}_{c}$: this is the central \mathbb{C}-extension of Lie algebra $\mathcal{T}=\mathbb{C}((t))$ that corresponds to the 2 cocycle $\left\langle f \partial_{t}, g \partial_{t}\right\rangle_{c}=c \operatorname{Res}\left(f^{\prime \prime \prime} g \frac{d t}{t}\right)$. It carries the filtration $\widetilde{\mathcal{T}}_{c n}:$ for $n \geq 1$, $\widetilde{\mathcal{T}}_{c n}=t^{n+1} \mathbb{C}[[t]] \partial_{t}$, for $n \leq 0, \widetilde{\mathcal{T}}_{c n}=\mathbb{C}+t^{n+1} \mathbb{C}[[t]] \partial_{t}$. Put $L_{i}:=t^{i+1} \partial_{t} \in \widetilde{\mathcal{T}}_{c}$. One also has the following Lie subalgebras of $\widetilde{\mathcal{T}}_{c}$:

$$
n_{+}=\widetilde{\mathcal{T}}_{c 1} \subset b_{+}=\mathbb{C}[[t]] t \partial_{t} \subset P_{+}=\mathbb{C}[[t]] \partial_{t}, \quad n_{-}=\mathbb{C}\left[t^{-1}\right] \partial_{t} \subset b_{-}=\mathbb{C}\left[t^{-1}\right] t \partial_{t}
$$

so $b_{+}=L i e K, n_{+}=$Lie K_{1} (see 3.4.1). One has $b_{+} \oplus n_{-} \oplus \mathbb{C}=\widetilde{\mathcal{T}}_{c}, b_{+} \cap b_{-}-f=\mathbb{C} L_{0}$. 7.3.1 A higher weight \mathcal{T}-module of central charge c is a $\left(\widetilde{\mathcal{T}}_{c}, b_{+}\right)$-module M such that $1 \in \mathbb{C} \subset \widetilde{\mathcal{T}}_{c}$ acts as $i d_{M}$ and any $m \in M$ is killed by some $\widetilde{\mathcal{T}}_{c n}$ for $n \gg 0$. Denote by \mathcal{T}_{c+}-mod the category of such modules. Note that any $M \in \mathcal{T}_{c+}-\bmod$ is a $\left(\widetilde{\mathcal{T}}_{c}, K_{1}\right)$-module. We will say that M is L_{0}-diagonalizable if M coincides with the direct sum of L_{0}-eigenspaces.

Let M be a higher weight module. Denote by $* M$ the space of those linear functionals φ on M that are finite with respect to the action of ${ }^{t} L_{0}$. The operators $L_{i}:={ }^{t} L_{-i}$ define the $\widetilde{\mathcal{T}}_{c}$-action on $* M$. Clearly $* M$ is a higher weight module called the (contravariant) dual to M. One has an obvious morphism $M \rightarrow * * M$ which is an isomorphism if amd only if the generalized eigenspaces of L_{0} on M are finite dimensional. In particular this holds when M is a finitely generated module.
7.3.2 Remark. For $M \in \mathcal{T}_{c+}-\bmod$ consider the monodromy operator $T=\exp \left(2 \pi i L_{0}\right)$. Clearly T commutes with the Virasoro action, i.e., $T \in A u t M$. Hence one has a canonical direct sum decomposition $M=\bigoplus_{\bar{a} \in \mathbb{C} / \mathbb{Z}} M_{\bar{a}}$, where $M_{\bar{a}}$ is the generalized $\exp (2 \pi i a)$-eigenspace of M. Denote by $\mathcal{T}_{c+\bar{a}}-\bmod$ the subcategory of those M 's that $M=M_{\bar{a}}$. Clearly $\mathcal{T}_{c+}-\bmod =\prod_{a \in \mathbb{C} / \mathbb{Z}} \mathcal{T}_{c+\bar{a}}-\bmod$.
7.3.3 Lemma. For any finitely generated $M \in \mathcal{T}_{c+}$-mod there are exactly three possibilities for $S S M$: it is either equal to $\{0\}$, or to $\widetilde{\mathcal{T}}_{c 0}^{\perp}=\left(\mathbb{C}+b_{+}\right)^{\perp}$, or to $\widetilde{\mathcal{T}} \stackrel{\perp}{c-1}=\left(\mathbb{C}+P_{+}\right)^{\perp}$.

Proof. Clearly $S S M \subset \widetilde{\mathcal{T}}_{c 0}^{\perp}$. It is Ad K-invariant (the Ad K_{1}-invariance is obvious; for any $t \in \mathbb{C}$ the operator $\exp \left(t L_{0}\right)$ acts on M, hence $S S M$ is also Ad $\exp \left(t L_{0}\right)$ invariant). It is easy to see that any Ad K-invariant Zariski closed subset of $\widetilde{\mathcal{T}} \stackrel{\perp}{0}$ is either $\{0\}$ or coincides with one of the vector spaces $\widetilde{\mathcal{T}}_{c-n}^{\perp}, n \geq 0$. According to 7.2.4 this $\widetilde{\mathcal{T}}_{c-n}$ is the Lie subalgebra of $\widetilde{\mathcal{T}}_{c}$; this implies 7.3.3.

For a higher weight module M consider the subspace $M^{\mathfrak{n}_{+}}$of singular vectors. Clearly $M^{\mathfrak{n}_{+}} \neq 0$ and it is L_{0}-invariant, so we have a decomposition $M^{\mathfrak{n}_{+}}=$ $\bigoplus_{h \in \mathbb{C}} M_{(h)}^{\mathfrak{n}_{+}}$by generalized eigenspaces of L_{0}. We will say that a singular vector v has generalized weight h if $v \in M_{(h)}^{\mathfrak{n}_{+}}$(i.e., if $\left(L_{0}-h\right)^{n} v=0$ for $n \gg 0$), and that v has weight h if $L_{0} v=h v$. As usual, the Verma module $M_{c h}=M_{h} \in \widetilde{\mathcal{T}}_{c+}-\bmod$ is a module generated by a single "vacuum" singular vector v_{h} of weight h with no other relations. This M_{h} is the free $U\left(\mathfrak{n}_{-}\right)$-module generated by v_{h}, hence any submodule of M_{h} generated by a singular vector is a Verma module. Denote by $L_{c h}=L_{h}$ the (only) irreducible quotient of M_{h}. Any irreducible higher weight module is isomorphic to some L_{h}, and the L_{h} 's with different h 's non-isomorphic. One has $* L_{h}=L_{h}$.

The following basic facts are due to Feigin-Fuchs [FF].
7.3.4 Proposition. Let $M=M_{h}$ be a Verma module, $N \subset M$ is a non-zero submodule. Then
(i) N is generated by ≤ 2 singular vectors, i.e., N is either a Verma submodule or a sum of two Verma submodules.
(ii) N is an intersection of ≤ 2 Verma submodules.
(iii) M / N has finite length.
(iv) The spaces $M_{\left(h^{\prime}\right)}^{\mathfrak{n}_{+}}$have dimension ≤ 1, therefore, by (i), the irreducible constituents of M have multiplicity 1.
7.3.5 Lemma. Let $P \in \widetilde{\mathcal{T}}_{c+}$-mod be a finitely generated module. Then
(i) P admits a filtration of finite length ℓ with successive quotients isomorphic to a quotient of a Verma module.
(ii) The maximal semisimple quotient of P has length $\leq \ell$.
(iii) Any submodule of P is finitely generated.

Proof. Note that P is a quotient of some module Q induced from a finite dimensional b_{+}-module. Such Q has a filtration with successive quotients isomorphic to Verma modules. This implies (i) and reduces (ii), (iii) to the case of Verma module which follows from 7.3.4 (i).
7.3.6 Lemma. Let $M=M_{h}$ be a Verma module, $N \subset M$ be a non-zero submodule, $L=M / N$. One has
(i) $S S M=\widetilde{\mathcal{T}} \stackrel{\perp}{\perp}=\mathfrak{n}_{-}^{*}$
(ii) $S S L$ is either $\{0\}$ or equals to $\tilde{\mathcal{T}}_{c-1}^{\perp}$
(iii) If $S S L=0$, then L is irreducible and N is generated by two singular vectors.
(iv) If N is a proper Verma submodule, then the coinvariants $L_{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}$are infinite dimensional.

Proof. (i) is obvious. To prove (ii) take a non-zero $\varphi \in U\left(\mathfrak{n}_{-}\right)$such that $\varphi v_{h} \in N$. The symbol $\sigma(\varphi)$ vanishes on $S S L$, hence $S S L \neq \mathfrak{n}_{-}^{*}$, and we are done by 7.3.3.
(iii) By 7.3.4 (iii) any reducible L has a quotient such that the corresponding N is a Verma submodule. Since a quotient of a lisse module is lisse, (iii) is reduced to a statement that for any proper Verma submodule $N=M_{h^{\prime}} \subset M_{h}$ one has $S S M_{h} / M_{h^{\prime}} \neq 0$. By 7.2.1 this follows from (iv).
(iv) The commutant $\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]$is Lie subalgebra of \mathfrak{n}_{-}with basis $L_{-3}, L_{-4}, L_{-5}, \ldots$. The quotient $\mathfrak{n}_{-} /\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]$is abelian Lie algebra with basis L_{-1}, L_{-2}. To prove (iv) note that $M_{h\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}$is a free module over $U\left(\mathfrak{n}_{-} /\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]\right)=\mathbb{C}\left[L_{-1}, L_{-2}\right]$ with generator \bar{v}_{h}, and $\left(M_{h} / M_{h^{\prime}}\right)_{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}$is a quotient of $M_{h\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}$modulo the $\mathbb{C}\left[L_{-1}, L_{-2}\right]$ submodule generated by the image $\bar{v}_{h^{\prime}}$ of $v_{h^{\prime}}$ (since $\left.M_{h^{\prime}}=U\left(\mathfrak{n}_{-}\right) v_{h^{\prime}}\right)$. Since $\bar{v}_{h^{\prime}}=P \bar{v}_{h}$, where P is a polynomial of weight $h^{\prime}-h \neq 0$, we see that our coinvariants $\left(M_{h} / M_{h^{\prime}}\right)_{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}=\mathbb{C}\left[L_{-1}, L_{-2}\right] / P \mathbb{C}\left[L_{-1}, L_{-2}\right]$ are infinite dimensional.
7.3.7 We will say that an irreducible module $L_{h} \in \widetilde{\mathcal{T}}_{c+}-\bmod$ is minimal, or a Belavin-Polyakov-Zamolodchikov module, if the conditions (i), (ii) below hold:
(i) For some integers p, q such that $1<p<q,(p, q)=1$, one has

$$
c=c_{p, q}=1-6(p-q)^{2} / p q
$$

(clearly p, q are uniquely defined by c)
(ii) For some integers $n, m, 0<n<p, 0<m<q$ one has

$$
h=h_{n, m}=\frac{1}{4 p q}\left[(n q-m p)^{2}-(p-q)^{2}\right] .
$$

Clearly $h_{n, m}=h_{p-n, q-m}$. For given $c=c_{p, q}$ there is exactly $\frac{1}{2}(p-1)(q-1)$ different minimal irreducible modules. Note that $L_{c_{p, q}, 0}$ is always minimal (since $0=h_{1,1}$).
7.3.8 Proposition. ([FF]) An irreducible module L_{h} is minimal iff both the following conditions hold:
(i) L_{h} is dominant which means that L_{h} is not isomorphic to a subquotient of any $M_{h^{\prime}}, h^{\prime} \neq h$.
(ii) The kernel N_{h} of the projection $M_{h} \rightarrow L_{h}$ is generated by exactly 2 singular vectors (see 7.3.4 (i)).
7.3.9 Remarks. (i) For $h=h_{n m}, c=c_{p q}$ the singular vectors from 7.3 .8 (ii) have weights $h-n m, h-(p-n)(q-m)$. They are different by 7.3 .4 (iv) (or by a direct calculation).
(ii) It is easy to see, using contravariant duality, that L_{h} is dominant iff M_{h} is a projective object in the category of L_{0}-diagonalizable higher weight modules.

Equivalently, this means that $M_{h}^{\wedge}=\lim _{\leftarrow} M_{h}^{(n)}$ is a projective covering of L_{h} in the category $\widetilde{\mathcal{T}}_{c+}$-mod. Here $M_{h}^{(n)}$ is the higher weight module generated by the singular vector v that satisfies the only relation $\left(L_{0}-h\right)^{n} v=0$.
7.3.10 Proposition. For an irreducible module $L=L_{h}=M_{h} / N_{h}$ the following conditions are equivalent:
(i) L is lisse
(ii) L is minimal
(iii) The coinvariants $L_{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}$are finite-dimensional
(iv) The invariants $L^{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}$are finite dimensional
(v) For some non-zero $\varphi \in U\left(\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]\right)$one has $\varphi v_{h} \in N_{h}$

Proof. One has (i) \Longrightarrow (iii) by 7.2 .1 , (iii) \Longleftrightarrow (iv) by contravariant duality, (ii) \Longleftrightarrow (iii) by $[\mathrm{FF}],(\mathrm{v}) \Longrightarrow$ (i) by 7.3 .5 (ii) (since $\sigma(\varphi)$ vanishes on $S S L$, one has $S S L \neq \widetilde{\mathcal{T}}_{c-1}^{\perp}$. It remains to show that (ii) $\Longrightarrow(\mathrm{v})$. So let L_{h} be minimal. Put $\left.T=U\left(\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]\right) v_{h} \subset M_{h}$. We wish to see that the projection $T \rightarrow L_{h}$ is not injective. This follows since the asymptotic dimension of T is larger than the one of L_{h}. Precisely, according to the character formula for L (see $[\mathrm{K}]$ prop. 4) the function $\log \operatorname{tr}_{L}\left(\exp \left(2 \pi t L_{0}\right)\right)$ is asymptotically equivalent as $t \rightarrow 0$ to $\pi \alpha / 12 t$ for some constant $\alpha<1$. On the other hand, one has $\log \operatorname{tr}_{T}\left(\exp \left(-2 \pi t L_{0}\right)\right)=$ $\log \operatorname{tr}_{M_{h}}\left(\exp \left(2 \pi t L_{0}\right)\right)+\log (1-\exp (-2 \pi t))+\log (1-\exp (-4 \pi t))$ (since as L_{0}-module M_{h} is isomorphic to $v_{h} \otimes S\left(L_{-1}, L_{-2}, \cdots\right)$, where the generators L_{-i} of the symmetric algebra have weights i, and T is isomorphic to $\left.v_{h} \otimes S\left(L_{-3}, L_{-n}, \cdots\right)\right)$. This function is asymptotically equivalent to $\pi / 12 t$. Since the spectrum of L_{0} is real, this implies that $T \rightarrow L_{h}$ is not injective.
7.3.11 Remark. For $c=c_{p, q}, h=h_{11}=0$ one may prove that (ii) \Longrightarrow (i) in a very elementary way. Namely, by 7.3 .8 (ii) one knows that L_{0} is minimal iff N_{0} does not coincide with the submodule N^{\prime} of M_{0} generated by $L_{-1} v_{0}$. Choose minimal i such that for certain $\varphi \in U\left(\mathfrak{n}_{-}\right)_{i}$ one has $\varphi v_{0} \in N_{0} \backslash N^{\prime}$. Then the symbol of φ is prime to L_{-1}, hence, by 7.3 .5 (ii), L_{0} is lisse. This remark, due essentially to Drinfeld, was a starting point for the results of this paragraph.
7.3.12 Proposition. The following conditions on a higher weight module M are equivalent
(i) M is a finitely generated lisse module
(ii) M is isomorphic to a finite direct sum of minimal irreducible modules.
(iii) One has $\operatorname{dim} M^{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}<\infty$

Proof. By 7.3.10 we know that $(\mathrm{i}) \Longleftarrow$ (ii) \Longrightarrow (iii). We will use the following facts:
$\left({ }^{*}\right)$ Let L_{h} be a minimal irreducible module. Then any quotient of length 2 of $M_{h}^{(n)}$ (see 7.3 .9 (ii)) is actually a quotient of $M_{h}=M_{h}^{(1)}$ (i.e., is L_{0}-diagonalizable).
$\left(^{* *}\right)$ If $L_{h_{1}}, L_{h_{2}}$ are minimal and $h_{1} \neq h_{2}$, then $M_{h_{1}}$ and $M_{h_{2}}$ have no common irreducible component.
Here $(*)$ follows from the fact that $N_{h} \subset M_{h}$ coincides with the 1 st term of Jantzen filtration, see [FF]; for $\left({ }^{* *}\right)$ see $[\mathrm{FF}]$. Note that $\left({ }^{*}\right)$ implies, by 7.3.8, 7.3.9 (ii), that
(***) $\operatorname{Ext}^{1}\left(L_{h_{1}}, L_{h_{2}}\right)=0$ for any minimal $L_{h_{1}}, L_{h_{2}}$.
Now we may prove that (i) \Longrightarrow (ii). By 7.3 .10 it suffices to show that a lisse module M is semisimple. Consider the maximal semisimple quotient $P=M / N$
(see 7.3.5 (ii)). We have to show that $N=0$. By 7.3.5 (iii) there is an irreducible quotient $Q=N / T$ of N, so we have a non-trivial extension $0 \rightarrow Q \rightarrow M / T \rightarrow$ $P \rightarrow 0$ with lisse M / T. According to 7.3 .9 (ii) and $(* *)$ we see that there exists at most one minimal L_{h} such that $E x t^{1}\left(L_{h}, Q\right) \neq 0$. By $\left(^{*}\right)$ and 7.3 .9 (i) for such L_{h} one has $\operatorname{dim} E x t^{1}\left(L_{h}, Q\right)=1$. This implies that M / T is isomorphic to a direct sum of minimal irreducible modules and a length 2 module which is a non-trivial extension of a minimal module L_{h} by Q. By 7.3 .9 (ii) and $\left(^{*}\right)$ this extension is a quotient of a Verma module. By 7.3.5 (ii) it is non-lisse, hence M / T is non-lisse. Contradiction.

Let us prove that (iii) \Longrightarrow (ii). Let M be a module such that $\operatorname{dim} M^{\left[\mathfrak{n}_{+}, \mathfrak{n}_{+}\right]}=r<$ ∞. Let $M^{\prime} \subset M$ be a maximal semisimple submodule of M. By 7.3.10 M^{\prime} is a direct sum of minimal irreducible modules. Clearly the length of M^{\prime} is $\leq r$, so it suffices to show that $M^{\prime}=M$. Note that any non-zero submodule $N \subset M$ intersects M^{\prime} non-trivially (if $N \cap M^{\prime}=0$ then, shrinking N if necessary, we may assume that N is a quotient of a Verma module. If N has finite length, then it contains an irreducbile submodule, which lies in M^{\prime}. If N has infinite length, then, by 7.3.4, $\operatorname{dim} N^{\mathfrak{n}_{+}}=\infty$; since $N^{\mathfrak{n}_{+}} \subset M^{\left[\mathfrak{n}_{+}, \mathfrak{n}_{+}\right]}$this is not true). Assume that $M / M^{\prime} \neq 0$. Replacing M by an appropriate submodule that contains M we may assume that M / M^{\prime} is a quotient of a Verma module, in particular M / M^{\prime} is L_{0}-diagonalizable. Consider the dual extension $0 \rightarrow *\left(M / M^{\prime}\right) \rightarrow * M \rightarrow * M^{\prime} \rightarrow 0$. One has $* M^{\prime}=\oplus L_{h_{i}}$, hence, by $7.3 .8,7.3 .9$ (ii) the projection $\oplus M_{h_{i}} \rightarrow \oplus L_{h_{i}}=* M^{\prime}$ lifts to the map $\oplus M_{h_{i}}^{(2)} \rightarrow * M$. This map is surjective (otherwise the dual to its cokernel would intersect M^{\prime} trivially), hence $* M$ has finite length. Replacing $*\left(M / M^{\prime}\right)$ by its irreducible quotient we may assume that M / M^{\prime} is irreducible.

As above (see the proof (i) $\Longrightarrow(\mathrm{ii})) * M$ is a direct sum of irreducible minimal modules plus a length two non-trivial extension of a minimal module L_{h}. By 7.39 (ii), 7.3 .4 (ii) and $\left(^{*}\right.$) above this length two extension is a quotient of M_{h} by a Verma submodule. By 7.3.6 (iv) the coinvariant $(* M)_{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}$are of infinite dimension. Since $(* M)_{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}=\left(M^{\left[\mathfrak{n}_{-}, \mathfrak{n}_{-}\right]}\right)^{*}$, we are done.
7.3.13 Now for $n \geq 1$ consider the product of Virasoro algebras $\widetilde{\mathcal{T}}_{c}{ }^{n}$: this is a central \mathbb{C}-extension of \mathcal{T}^{n} with cocycle $\left\langle\left(f_{i} \partial_{t}\right),\left(g_{i} \partial_{t}\right)\right\rangle_{c}=\sum_{i}\left\langle f_{i} \partial_{t}, g_{i} \partial_{t}\right\rangle_{c}$ (see 3.4.1). The above theory extends to $\widetilde{\mathcal{T}}_{c}^{n}$ in an easy manner. Namely, we have a standard subalgebra $\mathfrak{n}_{+}=\prod \mathfrak{n}_{+i} \subset \mathfrak{b}_{+}=\prod \mathfrak{b}_{+i} \subset \mathfrak{p}_{+}=\prod \mathfrak{p}_{+i}, \mathfrak{n}_{-i} \subset \mathfrak{b}_{-}=\prod \mathfrak{b}_{-i}, \mathfrak{f}=$ $\mathfrak{b}_{+} \cap \mathfrak{b}_{-}=\mathbb{C}^{n}$ etc. of $\widetilde{\mathcal{T}}_{c}^{n}$. One defines the corresponding category \mathcal{T}_{c+}^{n}-mod of higher weight modules in an obvious manner. We have an obvious functor $\otimes: \prod \mathcal{T}_{c+}-\bmod$ $\rightarrow \mathcal{T}_{c+}^{n}-\bmod ,\left(M_{1}, \ldots, M_{n}\right) \longmapsto M_{1} \otimes \ldots \otimes M_{n}$. Clearly $S S M_{1} \otimes \ldots \otimes M_{n}=$ $S S M_{1} \times S S M_{2} \times \cdots \times S S M_{n}$.

For $\hbar=\left(h_{i}\right) \in \mathbb{C}^{n}$ we have the corresponding Verma module $M_{\hbar}=\otimes M_{h_{i}}$ and its unique irreducible quotient $L_{\hbar}=\otimes L_{h_{i}}$; any irreducible higher weight module is isomorphic to a unique L_{\hbar}. It follows from 7.3 .4 (iv) that any submodule $N \subset M_{\hbar}$ is tensor product $\otimes N_{i}$ of submodules $N_{i} \subset M_{h_{i}}$, so the structure of N is clear from 7.3.4. The lemma 7.3 .5 (with its proof) remains valid for \mathcal{T}_{c+}^{n}-mod. The version of 7.3.6 for $\widetilde{\mathcal{T}}_{c}^{n}$ case (with obvious modifications) follows immediately from the case $n=1$. A module $L_{\hbar}=\otimes L_{h_{i}}$ is called minimal if all $L_{h_{i}}$ are minimal (see 7.3.7). The analog of 7.3 .8 (with" 2 singular vectors" replaced by " $2 n$ singular vectors") remains obviously valid, as well as 7.3.9. The proposition 7.3.10 remains valid and
follows directly from the case $n=1$. The proposition 7.3.12 remains valid together with its proof.

These were defined by Belavin, Polyakov and Zamolodchikov [BPZ]. Let us start with a general representation-theoretic construction.
8.1 Fusion functors for Virasoro algebra. Let C be a compact smooth curve, $A, B \subset C$ be two finite sets of points such that $A \cap B=\emptyset, A \neq \emptyset$. For a central charge $c \in \mathbb{C}$ we have Virasoro algebra $\widetilde{\mathcal{T}}_{c}{ }^{A}$ which is central \mathbb{C}-extension of $\mathcal{T}^{A}=\prod_{a \in A} \mathcal{T}_{a}$ (where $\mathcal{T}_{a}=$ vector fields on punctured formal disc at a) and similar algebras $\widetilde{\mathcal{T}}_{c}{ }^{B}, \widetilde{\mathcal{T}}_{c}{ }^{A \sqcup B}$. One has a canonical surjective map $\widetilde{\mathcal{T}}_{c}^{A} \times \widetilde{\mathcal{T}}_{c}^{B} \rightarrow \widetilde{\mathcal{T}}_{c}{ }_{c} \sqcup B$ (which is factorization by $\{(a,-a)\} \subset \mathbb{C} \times \mathbb{C})$; the morphisms $\widetilde{\mathcal{T}}_{c}^{A} \rightarrow \widetilde{\mathcal{T}}_{c}{ }_{c}^{A \sqcup B} \longleftarrow \widetilde{\mathcal{T}}_{c}^{B}$ are injective. One also has the canonical embedding $i_{A \sqcup B}: \mathcal{T}(U) \longrightarrow \widetilde{\mathcal{T}}_{c}^{A \sqcup B}$, where $U=C \backslash(A \sqcup B)$, and the ones $i_{A}: \mathcal{T}(C \backslash A) \rightarrow \widetilde{\mathcal{T}}_{c}{ }^{A}, i_{B}: \mathcal{T}(C \backslash B) \rightarrow \widetilde{\mathcal{T}}_{c}{ }^{B}$. There is also a canonical morphism $j_{B}: \mathcal{T}(C \backslash A) \rightarrow \widetilde{\mathcal{T}}_{c}^{B}$ which is composition of the obvious embedding $\mathcal{T}(C \backslash A) \rightarrow \mathcal{T}_{-1}^{B}$ and the section $s_{\mathcal{O}_{B}}: \mathcal{T}_{-1}^{B} \rightarrow \widetilde{\mathcal{T}}_{c}^{B}$. The restriction $\left.i_{A \sqcup B}\right|_{\mathcal{T}(C \backslash A)}: \mathcal{T}(C \backslash A) \longrightarrow \widetilde{\mathcal{T}}_{c}{ }^{A \sqcup B}$ coincides with $i_{A}+j_{B}$.
8.1.1 Assume we have a positive divisor $d=\sum n_{b} b \geq 0$ supported on B. Let $\mathcal{T}(C \backslash A, d) \subset \mathcal{T}(C \backslash A, d)$ be the Lie subalgebra of vector fields vanishing of order $\geq n_{b}+1$ at any $b \in B$. Clearly one has $\mathcal{T}\left(C \backslash A, d_{1}\right) \subset \mathcal{T}\left(C \backslash A, d_{2}\right)$ for $d_{1} \geq d_{2}$, and $\mathcal{T}(C \backslash A, 0) / \mathcal{T}(C \backslash A, d)=\mathcal{T}_{0}^{B} / \mathcal{T}_{d}^{B}$, where $\mathcal{T}_{d}^{B}=\prod \mathcal{T}_{n_{b}, b}$. Let $\epsilon_{d}: \widetilde{\mathcal{T}}_{c}^{B} \longrightarrow$ $\widetilde{\mathcal{T}}_{c}{ }^{A} / i_{A}(\widetilde{\mathcal{T}}(C \backslash A, d))$ be the composition
$\widetilde{\mathcal{T}}_{c}^{B} \longrightarrow \widetilde{\mathcal{T}}_{c}^{B} / s_{\mathcal{O}_{B}}\left(\mathcal{T}_{B, d}\right) \longrightarrow \widetilde{\mathcal{T}}_{c}{ }^{A \sqcup B} / i_{A \sqcup B}(\mathcal{T}(U))+s_{\mathcal{O}_{B}}\left(\mathcal{T}_{B, d}\right) \leftleftarrows \widetilde{\mathcal{T}}_{c}^{A} / i_{A}(\mathcal{T}(C \backslash A, d))$. The maps t_{d} are compatible, so we have $\epsilon=\underset{\overleftarrow{d}}{\lim \epsilon_{d}}: \widetilde{\mathcal{T}}_{c}^{B} \longrightarrow{\underset{\overleftarrow{d}}{ }}_{\lim }^{\mathcal{T}^{A}} / i_{A}(\mathcal{T}(C \backslash A, d))$.
8.1.2 Now we are able to define the (contravariant) fusion functor $\mathcal{F}_{C}: \widetilde{\mathcal{T}}_{c}{ }^{A}-\bmod \rightarrow$ $\widetilde{\mathcal{T}}_{c}{ }^{B}-\bmod$.

Let M be any $\widetilde{\mathcal{T}}_{c}{ }^{A}$-module (so $1 \in \mathbb{C} \subset \widetilde{\mathcal{T}}_{c}{ }^{A}$ acts as $i d_{M}$). Put $\mathcal{F}_{C}(M):=$ $\bigcup_{d} M^{*} i_{A}(\mathcal{T}(C \backslash A, d)) \subset M^{*}$; therefore an element of $\mathcal{F}_{C}(M)$ is a linear functional on M invariant with respect to some $i_{A}(\mathcal{T}(C \backslash A, d))$. For $\tau \in \widetilde{\mathcal{T}}_{c}{ }^{B}, \ell \in \mathcal{F}_{C}(M)$ put $\tau(\ell)={ }^{t} \epsilon(\tau)(\ell)$. It is easy to see that this formula is correct, $\tau(\ell)$ lies in $\mathcal{F}_{C}(M) \subset M^{*}$ and $(\tau, \ell) \longmapsto \tau(\ell)$ is $\widetilde{\mathcal{T}}_{c}^{B}$-action on $\mathcal{F}_{C}(M)$. This way $\mathcal{F}_{C}(M)$ becomes $\widetilde{\mathcal{T}}_{c}{ }^{B}$-module. One has an easy

8.1.3 Lemma.

(i) One has $\mathcal{F}_{C}(M)=\bigcup_{\alpha} \mathcal{F}_{C}(M)^{\mathcal{T}_{B, d}}$, and $\mathcal{F}_{C}(M)^{\mathcal{T}_{B, d}}=\left(M_{\mathcal{T}(C \backslash A, d)}\right)^{*}$.
(ii) Let N be any $\widetilde{\mathcal{T}}_{c}{ }^{B}$-module s.t. $N=\bigcup_{\alpha} N^{\mathcal{T}_{B, d}}$. Then $\operatorname{Hom}\left(N, \mathcal{F}_{C} M\right)=$
$\left[(M \otimes N)_{\mathcal{T}(U)}\right]^{*}$ (here we consider $M \otimes N$ as $\widetilde{\mathcal{T}}_{c}^{\text {A }}{ }^{\text {BB }}$-module via the surjection $\left.\widetilde{\mathcal{T}}_{c}^{A} \times \widetilde{\mathcal{T}}_{c}^{B} \longrightarrow \widetilde{\mathcal{T}}_{c}{ }^{A \sqcup B}\right)$.
¿From now on let us fix a central charge $c=c_{p, q}$ from the list 7.3.7(i). We will assume that our virasoro modules have central charge c. Let M be a finitely generated higher weight $\widetilde{\mathcal{T}}_{c}^{A}$-module.
8.1.4 Corollary. (i) $\mathcal{F}_{C}(M)$ is finitely generated lisse higher weight $\widetilde{\mathcal{T}}_{c}{ }^{B}$-module.
(ii) For any finitely generated higher weight $\widetilde{\mathcal{T}}_{c}{ }^{B}$ - $\operatorname{module} N$ one has $(M \otimes N)_{\mathcal{T}(U)}=$ $(M \otimes \bar{N})_{\mathcal{T}(U)}$, where \bar{N} is the maximal lisse quotient of N.

Proof. (i) Use 8.1.3 (i), 7.2.1, 7.3.12 (inversion 7.3.13).
(ii) First note that the maximal lisse quotient \bar{N} exists and has finite length by 7.3.5, 7.3.8, 7.3.12. By 8.1.3 (ii), 8.1.4 (i) one has $(M \otimes N)_{\mathcal{T}(U)}^{*}=\operatorname{Hom}\left(N, \mathcal{F}_{C}(M)\right)=$ $\operatorname{Hom}\left(\bar{N}, \mathcal{F}_{C}(M)\right)=(M \otimes \bar{N})_{\mathcal{T}(U)}^{*}$, q.e.d.
For $h=\left(h_{b}\right) \in \mathbb{C}^{B}$ let $L_{h}^{B}=\bigotimes_{b \in B} L_{c, h_{b}}$ be the irreducible $\widetilde{\mathcal{T}}_{c}{ }^{B}$-module of higher weight h.
8.1.5 Corollary. One has a canonical isomorphism $M_{\mathcal{T}(C \backslash A)}=\left(M \otimes L_{0}^{B}\right)_{\mathcal{T}(U)}$.

Proof. Clearly $M_{\mathcal{T}(C \backslash A)}=\left(\operatorname{Ind}_{\mathcal{T}(C \backslash A)}^{\mathcal{T}(U)} M\right)_{\mathcal{T}(U)}$. But $\operatorname{Ind}_{\mathcal{T}(C \backslash A)}^{\mathcal{T}(U)} M$ coincides, as $\mathcal{T}(U)$-module, with $\widetilde{\mathcal{T}}_{c}^{A \sqcup B}$-module $M \otimes P_{o}^{B}$, where $P_{o B}=\bigotimes_{b \in B} P_{c, o, b}, P_{c, o}$ is a quotient of Verma module $M_{c, 0}$ modulo relation $L_{-1} v_{0}=0$. Clearly L_{o}^{B} is maximal lisse quotient of P_{o}^{B} (see 7.3.8), and 8.1.5 follows from 8.1.4 (ii).
8.1.6 Corollary. Let d_{1} be the divisor $\sum_{b \in B} b$. Consider the action of Lie algebra $\mathcal{T}(C \backslash A, 0) / \mathcal{T}\left(C \backslash A, d_{1}\right)=\mathcal{T}_{0}^{B} / \mathcal{T}_{d_{1}}^{B}=\mathbb{C}^{B}$ on coinvariants $M_{\mathcal{T}\left(U, d_{1}\right)}$. This action is semisimple. For $h=\left(h_{b}\right) \in \mathbb{C}^{B}$ the $\left(h_{b}\right)$-component $M^{\left(h_{b}\right)}$ is equal to the coinvariants $\left(M \otimes L_{h}^{B}\right)_{\mathcal{T}(U)}$. This space vanishes unless all h_{b} lie in the list 7.3.7 (ii).

Proof. Similar to 8.1.5; the semi-simplicity of \mathbb{C}^{B}-action follows from 7.3 .12 (ii).
8.1.7 Corollary. Assume that B consists of two points b_{1}, b_{2}. Let $\mathcal{T}(C \backslash A, B)^{\prime}$ $\subset \mathcal{T}(C \backslash A, 0)$ be the Lie subalgebra of vector fields that project to $\{(a,-a)\} \subset \mathbb{C}^{2}$ via the projection to $\mathcal{T}(C \backslash A, 0) / \mathcal{T}\left(C \backslash A, d_{1}\right)=\mathbb{C}^{2}$. Then $M_{\mathcal{T}(C \backslash A, B)^{\prime}}=\oplus(M \otimes$ $\left.L_{c, h b_{1}} \otimes L_{c, h b_{2}}\right)_{\mathcal{T}(U)}$, where $L_{c h}$ runs the list 7.3 .7 (ii) of irreducible lisse modules.
Proof. Similar to 8.1.6.
8.2 Localization of lisse modules. Let $\pi: C_{S} \rightarrow S$ be a family of smooth projective curves, $A \subset C_{S}(S)$ be a finite non-empty disjoint set of sections, ν_{a} are 1-jets of parameters at $a \in A$. By 3.4.3-3.4.7 these define the S-localization data for $\left(\widetilde{\mathcal{T}}_{c}^{A}, v_{1}\right)$. Consider the corresponding S-localization functor $\Delta_{\psi_{c}}:\left(\widetilde{\mathcal{T}}_{c}^{A}, v_{1}\right)_{c}$ - \bmod $\rightarrow D_{\lambda^{c}}$-modules on S. Assume as above that M is a lisse $\left(\widetilde{\mathcal{T}}_{c}^{A}, v_{1}\right)_{c^{-}}$module.
8.2.1 Lemma. The $D_{\lambda^{c}-m o d u l e ~} \Delta_{\psi_{0}}(M)$ is lisse with regular singularities at infinity.

Proof. Lissing follows from 7.2.2; the statement on regular singularities follows from 8.2.5 below.
8.2.2 Assume now that $S=S p e c \mathbb{C}[[q]], \pi: C_{S} \rightarrow S$ be a projective family of curves such that the generic fiber C_{η} is smooth and the closed fiber C_{0} has the only singular point b which is quadratic, $A \subset C_{S}(S)$ be a finite non-empty disjoint set of sections, and $\left\{\nu_{a}\right\}$ be a 1 -jet of coordinates at $a \in A$.

This collection defines an S-localization data "with logarithmic singularities at $q=0$ " for $\left(\widetilde{\mathcal{T}}_{c}^{A}, v_{1}\right)$. (The definition of " S-loc. data ψ with log. sing. at $q=$ 0 " coincides with 3.3.3 but we replace the condition that N is a transitive Lie algebroid by the one that a canonical map $\sigma: N \rightarrow \mathcal{T}_{S}$ has image equal to $\mathcal{T}_{S}^{0}=$ $q \mathcal{T}_{S}=\mathbb{C}[[q]] q \partial_{q}$. As in 3.3 such data defines an \mathcal{O}_{S}-extension $\mathcal{A}_{\psi_{c}}^{0}$ of \mathcal{T}_{S}^{0} and the corresponding associative algebra $D_{\psi_{c}}^{0}$ which is isomorphic to the subalgebra of $D_{\mathbb{C}[q]]}$ generated by $\mathbb{C}[[q]]=\mathcal{O}_{S}$ and $q \partial_{q}$. We have the corresponding S-localization functor $\Delta_{C_{S}}:\left(\widetilde{\mathcal{T}}_{c}^{A}, v_{1}\right)-\bmod \rightarrow D_{\psi_{c}}^{0}$-mod. The definition of this ψ repeats word-forword 3.4.3-3.4.7: we get the loc. data with logarithmic singularities just because \mathcal{T}_{S}^{0} consists precisely of those vector fields that could be lifted to $C_{S} \backslash A(S)$. Note that the "vertical" part $N_{(0)}=\operatorname{ker} \sigma \subset N$ is a free \mathcal{O}_{S}-module and $N_{(0)} / q N_{(0)}$ coincides with the Lie algebra $\mathcal{T}\left(C_{0}^{\vee} \backslash A, B\right)^{\prime}$, where C_{0}^{\vee} is the normalization of C_{0} and $B=\left\{b_{1}, b_{2}\right\}$ is the preimage of b (see 8.1.7). According to 3.5 the algebra $D_{\psi_{C}}^{0}$ coincides with the algebra $D_{\lambda_{C_{S}}^{c}}^{0}$ of differential operators on the determinant bundle $\lambda_{C_{S}}^{c}$ generated by " $q \partial_{q}$ " and \mathcal{O}_{S}.

Now let t_{1}, t_{2} be formal coordinates at b such that $q=t_{1} t_{2}$. Let C_{S}^{\vee} be the corresponding smooth S-curve (our b 's are the a 's in 3.6.1). We have canonical points $b_{1}, b_{2} \in C_{S}^{\vee}(S)$ with parameters t_{1}, t_{2}. Take 1-jets of parameters $q^{-1} d t_{1}, d t_{2}$ (see 6.1.4) at b 's. These, together with A, ν_{A}, define $\mathbb{C}((q))$-localization data for $\left(\widetilde{\mathcal{T}}_{c}^{A \sqcup B}, v_{1}\right)$. The corresponding algebra coincides with $D_{\lambda_{C_{\eta}^{v}}^{c}}$, so we have the localization functor $\Delta_{C_{\eta}^{\vee}}:\left(\widetilde{\mathcal{T}}_{c}^{A \sqcup B}, v_{1}\right)-\bmod \rightarrow D_{\lambda_{C_{\eta}^{\nu}}^{c}}-\bmod$.
8.2.3 Let \mathcal{H} be a lisse $D_{\lambda_{C_{\eta}^{v}}^{c}}$-module, i.e. a finite dimensional $\mathbb{C}((t))$-vector space with D-action. An h-lattice $\mathcal{H}_{h} \subset \mathcal{H}$, where $h \in \mathbb{C}$, is a $\mathbb{C}[[t]$-lattice in \mathcal{H} invariant with respect to the action of $D_{\lambda_{C_{S}^{V}}^{c}}^{0}$ and such that the operator $q \partial_{q} \in D_{\lambda_{C_{S}^{V}}^{c}}^{0} / q$ acts on $\mathcal{H}_{h} / q \mathcal{H}_{h}$ as multiplication by h. Certainly, such \mathcal{H}_{h} exists iff \mathcal{H} has regular singularities at 0 with monodromy equal to $h \bmod \mathbb{Z}$; if \mathcal{H}_{h} exists, it is unique, so we'll call it "the" h-lattice.

From now on let M be a lisse $\widetilde{\mathcal{T}}_{c}{ }^{A}$-module.
8.2.4 Lemma. For any $h \in \mathbb{C}, \Delta_{C_{\eta}^{\vee}}\left(M \otimes L_{h b_{1}} \otimes L_{h b_{2}}\right)$ is a lisse module that admits the h-lattice $\Delta_{C_{\eta}^{\vee}}\left(M \otimes L_{h} \otimes L_{h}\right)_{h}$.

Proof. "lisse" follows from 8.1.4 (ii), 7.2.1. The existence of h-lattice follows easily from 3.4.7.1.

According to 3.6 .3 we have a canonical isomorphism $D_{\lambda_{C_{S}}}=D_{\lambda_{C_{S}}^{c}}$. Denote this algebra $D_{\lambda^{c}}$. So, by 8.2.4, we have for any $h \in \mathbb{C}$ a $D_{\lambda^{c}}^{0}$-module $D_{\lambda_{C_{\eta}^{c}}^{c}}^{c}\left(M \otimes L_{n} \otimes\right.$ $\left.L_{h}\right)_{h}$, which is zero if L_{h} is not lisse (i.e. if $h \neq h_{n m}$ from 7.3 .7 (ii)) by 8.1.4 (ii).

On the other hand, we have the $D_{\lambda^{c}}^{0}$-module $\Delta_{C_{S}}(M)$.
8.2.5 Proposition. There is a canonical isomorphism of $D_{\lambda^{c}}^{0}$-modules

$$
\Delta_{C_{S}}(M)=\bigoplus_{h} \Delta_{C_{n}^{\vee}}\left(M \otimes L_{h} \otimes L_{h}\right)_{h} .
$$

Proof. First, note that $\Delta_{C_{S}}(M)$ is a coherent \mathcal{O}_{S}-module by a version of 7.2.2 "with logarithmic singularities". Namely, $\Delta_{C_{S}}(M)$ is a coherent $D_{\lambda^{c}}^{0}$-module, and its singular support $\subset \operatorname{Spec}\left(\operatorname{gr} D_{\lambda^{c}}^{0}\right)$ is 0 section since M is lisse; hence $\Delta_{C_{S}}(M)$ is \mathcal{O}_{S}-coherent.

Let e_{i} be a basis of $L_{h \mathbb{C}(t))}$ that consists of L_{0}-eigenvectors, so $L_{0} e_{i}=\left(h-n_{i}\right) e_{i}$ for $n_{i} \in \mathbb{Z} \geq 0$; let e_{i}^{*} be the dual basis in $L_{h \mathbb{C}((t))}=* L_{h \mathbb{C}((t))}$. It is easy to see that $\Delta_{C_{\eta}^{\vee}}\left(M \otimes L_{h} \otimes L_{h}\right)_{h} \subset \Delta_{C_{\eta}^{\vee}}\left(M \otimes L_{h} \otimes L_{h}\right)$ is \mathcal{O}_{S}-submodule generated by images of elements $q_{m}^{-n_{i}} \otimes e_{i} \otimes e_{j}^{*}$, where $m \in M_{A, C_{S}}, e_{i} \in L_{h\left(\mathbb{C}\left(\left(t_{1}\right)\right), q^{-1} t\right),}, e_{j}^{*} \in L_{h\left(\mathbb{C}\left(\left(t_{2}\right)\right), t_{2}\right)}$ (see 6.1.4 for notations).

To prove 8.2.5 it suffices to construct a morphism of $D_{\lambda{ }^{c}}^{0}$-modules $\Delta_{C_{S}}(M) \rightarrow$ $\oplus \Delta_{C_{n}^{\vee}}(\quad)_{h}$ which induces isomorphism $\bmod q$ (since both are coherent \mathcal{O}_{S}-modules, and the one on the right hand has no q-torsion, this morphism will be isomorphism).

The h-component of this morphism just maps the image of $m \in M_{A, C_{S}}=M_{A, C_{S}^{\vee}}$ in $\Delta_{C_{S}}(M)$ to the image of $\sum_{i} m \otimes e_{i} \otimes e_{i}^{*}$ in $\Delta_{C_{\eta}^{\vee}}\left(M \otimes L_{h} \otimes L_{h}\right)$. It is easy to see that this formula defines a correctly defined morphism of $D_{\lambda^{c}}^{0}$-modules (cf. 6.1.5). It induces isomorphism modulo q by 8.1.7 (since $\Delta_{C_{S}}(M) / q=M_{N_{(0)} / q N_{(0)}}=$ $M_{\mathcal{T}\left(C_{0}^{\succ} \backslash A, B\right)^{\prime}}$, see 8.2.2).
8.3 Definition of minimal theories. Now we may define the minimal theory. Pick central charge $c=c_{p, q}$ from the list 7.3.7(i).

The fusion category $\mathcal{A}=\mathcal{A}_{p, q}$ is category of finitely generated lisse higher weight modules for Virasoro algebra $\widetilde{\mathcal{T}}_{c}$ of central charge c. By 7.3 .12 it satisfies the conditions listed in the beginning of 4.5.1. The data from 4.5.1 ar the following ones:

The duality functor $*: \mathcal{A}^{0} \rightarrow \mathcal{A}$ is contravariant duality (see 7.3.1).
The vacuum module \nVdash is $L_{c, o}$; the isomorphism $* \nVdash \neq \not$ is canonical one (that identifies the vacuum vectors).

The Dehn automorphism d is equal to the monodromy automorphism $T=$ $\exp 2 \pi i L_{o}$ from 7.3.2.

We will define a canonical fusion structure on \mathcal{A} simultaneously with the structures 6.1 of algebraic field theory. Namely, our realization functor $r: A \rightarrow\left(\widetilde{\mathcal{T}}_{c}, v_{1}\right)$ \bmod is "identity" embedding. The vacuum vector $1 \in r(\nVdash)=L_{0}$ is v_{0}.

Let $\pi: C_{S} \rightarrow S, A \subset C_{S}(S), \nu_{A}$, be as in 6.1.2. Assume that $A \neq \emptyset$. For any $X \in \mathcal{A}^{\otimes A}$ the $D_{\lambda^{c}}$-module $\Delta_{\psi_{c}}(X)$ is lisse holonomic with regular singularities at ∞. We put $\langle X\rangle_{C_{s}}=\Delta_{\psi_{c}}(X)$ and γ from 6.1.2 (iv) is identity map.

Assume now that $A=\emptyset$. We should define a canonical lisse $D_{\lambda^{c}}$-module $\langle\nVdash\rangle_{C_{S}}$. Let us make the base change and consider $\pi_{C}: C_{C}=C_{S} \times_{S} C_{S} \rightarrow C_{S}$: this is a family of curves with a canonical (diagonal) section a. Consider the $D_{\lambda^{c}}$-module $\langle\nVdash\rangle_{C_{C}}$; this is a lisse $D_{\lambda^{c}}$-module on C_{S} generated by the holomorphic section $\langle 1\rangle_{C_{C}}$. Note that $\langle 1\rangle_{C_{C}}$ is horizontal along the fibers of $\pi: C_{S} \rightarrow S$. Hence there exists a (unique) $D_{\lambda^{c}}$-module $\langle\nVdash\rangle_{C_{S}}$ on S together with a holomorphic section $\langle 1\rangle_{C_{S}}$ such that $\left\langle\nVdash{ }_{a}\right\rangle_{C_{C}}=\pi^{*}\langle\nVdash\rangle_{C_{S}},\langle 1\rangle_{C_{C}}=\pi^{*}\langle 1\rangle_{C_{S}}$.

Note that the axioms 4.5.4 (ii) and 6.1.2e hold by 8.1.5. The axiom 6.1.3f holds automatically. It remains to define the isomorphism 4.5 .5 (ii) that will satisfy the axiom g from 6.1. This was done in 8.2.5 above (note that since $* L_{h}=L_{h}$, we have $\left.R=\oplus L_{h} \otimes L_{h}\right)$.

By the way, the covariant fusion functor $\mathcal{F}_{C}^{A, B}$ from 4.6 is $* \mathcal{F}_{C}$ for contravariant \mathcal{F}_{C} from 8.1 (by 8.1.3 (iii)).

