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Abstract. Extending recent work in 5 dimensions, we prove the existence and uniqueness of solutions to

the reduced Einstein equations for vacuum black holes in (n + 3)-dimensional spacetimes admitting the

isometry group R × U(1)n, with Kaluza-Klein asymptotics for n ≥ 3. This is equivalent to establishing

existence and uniqueness for singular harmonic maps φ : R3 \Γ → SL(n+1,R)/SO(n+1) with prescribed

blow-up along Γ, a subset of the z-axis in R3. We also analyze the topology of the domain of outer

communication for these spacetimes, by developing an appropriate generalization of the plumbing con-

struction used in the lower dimensional case. Furthermore, we provide a counterexample to a conjecture

of Hollands-Ishibashi concerning the topological classification of the domain of outer communication. A

refined version of the conjecture is then presented and established in spacetime dimensions less than 8.

1. Introduction

In several recent papers, harmonic maps into symmetric spaces were used to construct solutions of the
5-dimensional Einstein equations with symmetry group R × U(1)2. More precisely, in this situation the
Einstein vacuum equations reduce to an axially symmetric harmonic map with prescribed singularities
from R3 into the symmetric space SL(3,R)/SO(3). In [16], solutions of this problem corresponding to
spacetimes which are asymptotically flat were constructed, while in [15] a similar approach was applied to
obtain solutions with Kaluza-Klein and locally Euclidean asymptotics. Furthermore, the absence of conical
singularities on the two unbounded axes was also established in [15]. It is important to emphasize, however,
that many of these solutions are expected to have conical singularities on at least one of the bounded
components of the axis. In [1], existence and uniqueness results were produced for the stationary bi-
axisymmetric minimal supergravity equations. While in [14], plumbing of disk bundles was used to analyze
the topology of the domain of outer communication (DOC) of these solutions. It is the purpose of the
present work to extend these results to (n+3)-dimensional vacuum gravity with symmetry group R×U(1)n.
Similarly to the above, the Einstein vacuum equations in this setting reduce to an axially symmetric
harmonic map with prescribed singularities from R3 to the symmetric space target SL(n+1,R)/SO(n+1).

A significant motivation for this higher dimensional study is to expand the availability of candidate
regular solutions, as well as to expand the range of topologies exhibited. It is expected that in 4 dimensions,
all asymptotically flat stationary and axially symmetric vacuum solutions with more than one horizon, the
cross-sections of which must be 2-spheres, will have a conical singularity on some bounded component of
the axis of rotation. Some results in this direction have been obtained [8,19,34], but a complete resolution
is still out of reach. On the other hand, in dimension 5, there are several known regular solutions other
than the S3-horizon Myers-Perry [26] black holes, namely the Emparan-Reall and Pomeransky-Sen’kov
black rings [5, 33] having horizon topology S1 × S2, the black Saturns [3] of Elvang-Figueras, as well
as the the black bi-rings [4] and di-rings [6, 13] found by Elvang-Rodriguez, Evslin-Krishnan, and Iguchi-
Mishima. Recent work by Lucietti-Tomlinson concerning the existence of conical singularities may be found
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in [20, 21], see also [17, 18]. It is reasonable to expect that many more regular solutions may be found in
higher dimensions, other than trivial examples obtained for instance by taking products of known solutions
with flat tori. The spacetimes that we produce provide a plethora of candidates having an increasing
variety of topologies for the domain of outer communication. Moreover, even those solutions with a conical
singularity should be of interest, since we expect that one could perturb time slices to obtain initial data,
satisfying relevant energy conditions, with outermost apparent horizon and DOC having exotic topologies.

Motivation is also derived from questions regarding the topological classification of the domain of outer
communication. Specifically, we address Conjecture 1 in [9], which postulates that under reasonable hy-
potheses, the topology of a Cauchy slice in the DOC can be obtained by removing the black hole region
from the connected sum of a product of spheres with the asymptotic region. We provide a counterexample
to this statement, and discuss why the spirit of the conjecture may nevertheless remain valid. We then
offer a refined version of the conjecture, and present a proof for spacetime dimensions less than 8.

The methods used here parallel those employed in [14–16] with a number of notable differences which
we now point out. The rod structure, an n-tuple of relatively prime integers associated with each axis
rod, and which determines the combination of the Killing fields that degenerate on that rod, is much more
complex than in the 5-dimensional setting where it was merely a pair of relatively prime integers. In
particular, the admissibility condition at the corners (points where two axis rods meet), which ensures that
the reconstructed spacetime has the structure of a manifold, now involves second determinant divisors. We
are thus led to use Smith and Hermite normal forms. Also, the energy estimates for harmonic maps into
higher rank symmetric spaces, needed to prove existence, require us to extend the construction of horocyclic
coordinates to these more complicated spaces. Finally, the plumbing construction used to analyze the
topology of the DOC in 5 dimensions must be generalized in higher dimensions, and involves in addition to
the disk bundle integer invariants, a so called ‘plumbing vector’ which describes how neighboring bundles
are glued together.

The paper is organized as follows. The next section presents necessary background and states the
main results. In Section 3, we apply Smith and Hermite normal forms to describe the rod structures of
Tn-manifolds. The model map, an approximate solution of the harmonic map problem, is constructed in
Section 4. While in Section 5, we produce horocyclic coordinates on the symmetric space target and use
them to derive energy estimates. The domain of outer communication is analyzed in Section 6, using an
adaptation of the technique of plumbing from the topology of disk bundles. We conclude with a study of
the Hollands-Ishibashi conjecture in Section 7.

2. Background and Main Results

A connected asymptotically locally Kaluza-Klein stationary vacuum spacetime, with 3, 4, or 5 ‘large’
asymptotically (locally) flat dimensions, will be referred to as well-behaved if the orbits of the stationary
Killing field are complete, the domain of outer communication (DOC) is globally hyperbolic, and the DOC
contains an acausal spacelike connected hypersurface which is asymptotic to the canonical slice in the
asymptotic end and whose boundary is a compact cross section of the horizon. These assumptions are used
for the reduction of the stationary vacuum equations, and are consistent with [9]. By asymptotically locally
Kaluza-Klein we refer to a spacetime which asymptotes to the ideal geometry

(
R4−s,1/G

)
×Tn+s−2, where

Tn+s−2 is a flat torus, G ⊂ O(4 − s) is a discrete subgroup of spatial rotations, and s ∈ {0, 1, 2}. If G is
trivial, then the moniker ‘locally’ is removed from the terminology.

Let (Mn+3, g), n ≥ 1 be a well-behaved asymptotically Kaluza-Klein stationary n-axisymmetric vacuum
spacetime, that is, it admits R×U(1)n as a subgroup of its isometry group. As a consequence of topological
censorship [2] the orbit space is simply connected, and hence the spacetime metric g may be written in
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Weyl-Papapetrou coordinates [9, Theorem 8] as

(2.1) g = f−1e2σ(dρ2 + dz2)− f−1ρ2dt2 + fij(dϕ
i + vidt)(dϕj + vjdt),

where (fij) is an n × n symmetric positive definite matrix with determinant f , and fij , vj , σ are all
functions of ρ and z. Let

(2.2) g3 = e2σ(dρ2 + dz2)− ρ2dt2, A(j) = vjdt,

then the vacuum equations imply

(2.3) d(ffij ⋆3 dA
(j)) = 0,

where ⋆3 represents the Hodge dual operator with respect to g3. Thus, there exist globally defined twist
potentials ωi such that

(2.4) dωi = 2ffij ⋆3 dA
(j).

The value of the twist potentials on axes adjacent to the horizons determines the angular momenta of the
black holes. Next, note that we can write the 3-dimensional reduced Einstein-Hilbert action [23] as

(2.5) S =

∫
R×(Mn+3/[R×U(1)n])

R(3) ⋆3 1 +
1

4
Tr(Φ−1dΦ ∧ ⋆3Φ

−1dΦ),

where

(2.6) Φ =

(
f−1 −f−1ωi

−f−1ωi fij + f−1ωiωj

)
, i, j = 1, .., n,

is symmetric, positive definite, and satisfies det(Φ) = 1. By varying the action with respect to Φ and
applying R-symmetry, a majority of the reduced Einstein vacuum equations may be obtained:

τflj = ∆flj − fkm∇µflm∇µfkj + f−1∇µωl∇µωj = 0,

τωj = ∆ωj − fkl∇µfjl∇µωk − f lm∇µflm∇µωj = 0.
(2.7)

These are the equations for a harmonic map φ : R3 \ Γ → SL(n + 1,R)/SO(n + 1). Given a solution to
this system, the remaining metric components vi and σ may be found [12] by quadrature. Therefore, the
stationary vacuum equations in the n-axially symmetric setting are equivalent to a harmonic map problem
with prescribed singularities on Γ, a subset of the z-axis which represents the axes of the U(1)n-action or
rather those points associated with a nontrivial isotropy group.

Consider the orbit space Mn+3/[R×U(1)n]. It is homeomorphic to the right half plane {(ρ, z) : ρ > 0},
and its boundary ρ = 0 encodes the topology of the horizons [7, 10, 11]. The domain for the harmonic
map is obtained from this observation by adding an ignorable angular coordinate ϕ ∈ [0, 2π), yielding
R3 parametrized by the cylindrical coordinates (ρ, z, ϕ). The harmonic map itself is axisymmetric, as it
does not depend on ϕ. Uniqueness theorems for higher dimensional stationary n-axisymmetric black holes
ultimately reduce to the uniqueness question for such harmonic maps [11], with prescribed axis behavior
determined by invariants called rod structures as well as a set of potential constants; see Section 3 below for
details. Together this information forms a rod data set, which may be encoded in an approximate solution
referred to as a model map. We then say that the model map corresponds to the rod data set. If the
rods that represent horizon cross-sections have nonzero length, then the rod structure is associated with
nondegenerate black hole solutions [11, Lemma 7]. The prescribed harmonic map problem is solved by
finding a solution which is asymptotic to the model map. A precise description of the properties required
for the model map is given in Definition 4.1, and the notion of asymptotic maps is reviewed in Definition
5.1. Our first main result is a generalization of Theorem 1 in [16]. In particular, it extends the previous
result to higher dimensions, and removes the assumption of a compatibility condition for the rod data.



4 KAKKAT, KHURI, RAINONE, AND WEINSTEIN

However the notion of admissibility, which is explained in Section 3, is still retained since this is required
to ensure that the total space arising from the rod structures is a manifold.

Theorem A.

(a) For any admissible rod data set, with nondegenerate horizon rods, there exists a model map φ0 : R3\Γ →
SL(n+ 1,R)/SO(n+ 1) which corresponds to the rod data set.

(b) There exists a unique harmonic map φ : R3 \ Γ → SL(n+ 1,R)/SO(n+ 1) which is asymptotic to the
model map φ0.

(c) A well-behaved asymptotically (locally) Kaluza-Klein solution of the (n+ 3)-dimensional vacuum Ein-
stein equations admitting the isometry group R × U(1)n can be constructed from φ if and only if the
resulting metric coefficients are sufficiently smooth across Γ, and there are no conical singularities on
any bounded axis rod.

Consider now the topology of the domain of outer communication. In 5 dimensions, we obtained a
classification theorem [14, Theorem 1] in which the canonical slice was decomposed into a disjoint union
of linearly plumbed disc bundles over 2-spheres, and a few other more simple pieces. There does not
seem to be a direct natural generalization of linear plumbing which is applicable to the higher dimensional
setting of stationary n-axisymmetric vacuum spacetimes. In fact, a naive approach leads to a construction
that is not unique, as there are various ways to glue the neighboring toroidal fibers together. In order
to remedy this issue we define a generalized or toric plumbing with additional parameters pi ∈ Zn which
are called plumbing vectors, see Definition 6.6. In the next result, the higher dimensional generalization
of [14, Theorem 1] is presented. This theorem applies beyond the realm of vacuum solutions, namely to
those satisfying the null energy condition, which is a hypothesis included to ensure that the topological
censorship theorem [2, Theorem 5.3], [9, Theorem 5] is valid.

We will use the following notation for the building blocks of the decomposition. The axis Γ is a union of

intervals {Γi,j}Ij+2
i=1 , j = 1, . . . , J called axis rods, each of which is defined by a particular isotropy subgroup

of U(1)n. With each such rod that is flanked on both sides by another axis, we associate ξξξi,j = ξi,j ×Tn−3

where ξi,j is a (D2) disc-bundle over either the 3-sphere S3, the ring S1 × S2, or a lens space L(p, q) with
p > q relatively prime positive integers. A sequence of such product spaces may be glued together, with

the help of plumbing vectors, to form the toric plumbing P
(
ξξξ1,j , . . . , ξξξIj ,j

∣∣∣p2,j , . . . ,pIj ,j

)
. The topologies

of ξi,j , and the plumbing vectors themselves pi,j , are completely determined by the rod structures of the
axes involved.

Theorem B. The topology of the domain of outer communication of an orientable well-behaved asymp-
totically Kaluza-Klein stationary n-axisymmetric spacetime, with n ≥ 3, and satisfying the null energy
condition is Mn+3 = R×Mn+2 where the Cauchy surface is given by a union of the form

(2.8) Mn+2 =

J⋃
j=1

P
(
ξξξ1,j , . . . , ξξξIj ,j

∣∣∣p2,j , . . . ,pIj ,j

) N1⋃
k=1

Cn+2
k

N2⋃
m=1

B4
m × Tn−2

⋃
Mn+2

end ,

in which each constituent is a closed manifold with boundary and all are mutually disjoint expect possibly
at the boundaries. Here Cn+2

k is [0, 1]×D2 × Tn−1, B4
m denotes a 4-dimensional ball, and the asymptotic

end Mn+2
end is given by R+ × Y × Tn−2 where Y represents either S3, or S1 × S2. Furthermore J , N1, and

N2 are the number of connected components of the axis which consist of three or more axis rods, one finite
axis rod, and two axis rods, respectively.

This result identifies the fundamental constituents of the DOC, and its proof shows how they may be
computed from the rod structure of the torus action. On the other hand, it does not express the topology
in a concise way. In order to achieve this goal, at least in low dimensions, we observe in the next result that
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a simplified expression may be obtained by filling in the horizons and capping off the asymptotic end with
appropriately chosen toric plumbings. In particular, this produces a ‘compactified DOC’ which is a simply
connected (n + 2)-manifold without boundary admitting an effective Tn-action. Classification results for
such manifolds [28–30] may then be applied to obtain the following theorem, which generalizes [14, Theorem
2] where the case n = 2 was treated.

Theorem C. Consider the domain of outer communication Mn+3 = R × Mn+2 of an orientable well-
behaved asymptotically Kaluza-Klein stationary n-axisymmetric spacetime, with 2 ≤ n ≤ 4, satisfying the
null energy condition, and having H components of the horizon cross-section. There exists a choice of
horizon fill-ins {M̄n+2

h }Hh=1 and a cap for the asymptotic end M̄n+2
end , each of which is either the product of

a 4-ball with a torus B4 × Tn−2 or a finite toric plumbing, such that the compactified Cauchy surface

(2.9) M̄n+2 =
(
Mn+2 \Mn+2

end

) H⋃
h=1

M̄n+2
h

⋃
M̄n+2

end

is homeomorphic to one of the following possibilities, where k = b2(M̄
n+2) is the second Betti number and

0 ≤ ℓ ≤ k.

n = 2 n = 3 n = 4

S4 S5 S3 × S3

#k
2 (S

2 × S2) #k(S2 × S3) #k(S2 × S4)#(k + 1)(S3 × S3)

ℓCP2#(k − ℓ)CP2 (S2×̃S3)#(k − 1)(S2 × S3) (S2×̃S4)#(k − 1)(S2 × S4)#(k + 1)(S3 × S3)

Moreover, the toric plumbings for each fill-in and cap may be computed algorithmically from the neighboring
rod structures of each horizon and the asymptotic end.

In the chart above, the first row consists of the case when the compactified DOC is 2-connected, while
the second and third rows consist of the spin and non-spin scenarios, respectively. In the second and third
rows the second Betti number k is positive, and is even for dimension 4 with the spin property. The twisted
product notation is used to denote the nontrivial (and non-spin) sphere bundles over S2. Furthermore,

note that S2×̃S2 ∼= CP2#CP2 and CP2#CP2#CP2 ∼= CP2#(S2 × S2) [30, Remark 5.8]. This together
with [32, Theorem II.4.2, pg. 313], shows that in the non-spin 4 dimensional case an alternate expression
for the decomposition may be given in terms of a connected sum of a number of S2 × S2’s, and either a
single S2×̃S2 or a number of CP2’s. This is analogous to the result for dimensions 5 and 6 modulo the
presence of the complex projective planes. Theorem C may be thought of as evidence towards a modified
version of a conjecture made by Hollands and Ishibashi in [9, Conjecture 1], concerning the topological
classification of the DOC under a spin assumption. In Section 7 we construct a spacetime which serves as
a counterexample to the original conjecture, and this motivates the refinement below. Note that Theorem
C shows that the following conjecture holds true for n = 2, 3, 4, if the compactified DOC is spin.

Conjecture D. Consider the domain of outer communication Mn+3 = R×Mn+2 of an orientable well-
behaved asymptotically Kaluza-Klein stationary n-axisymmetric spacetime, with n ≥ 2, satisfying the null
energy condition. If the Cauchy surface Mn+2 is spin, then there exists a choice of horizon fill-in and a
cap for the asymptotic end, such that the corresponding compactified DOC is homeomorphic to

(2.10) #n
i=2mi · Si × Sn+2−i

for some nonnegative integers mi.
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3. Topology and the Rod Structure

The topology of the spacetimes considered here will always be of the form R × Mn+2, due to the
assumption of global hyperbolicity. The time slice Mn+2 is assumed to admit an effective action by the
torus Tn, and hence the quotient map Mn+2 → Mn+2/Tn exhibits Mn+2 as a Tn-bundle over a 2-
dimensional base space with possibly degenerate fibers on the boundary. Fibers over interior points are
n-dimensional, while fibers over points along the boundary can be (n−1) or (n−2)-dimensional. The set of
points where the fiber is (n−1)-dimensional are called axis rods while the points with an (n−2)-dimensional
fiber are called corners. The set of corners is always discrete. If in addition topological censorship holds,
as is the case under the hypotheses of the main theorems, then the base space Mn+2/Tn is homeomorphic
to a half plane [11]. The boundary ∂R2

+ of this half-plane is divided into disjoint intervals separated by
corners or horizon rods where the fibers do not degenerate. The boundary points of horizon rods are called
poles. Associated to each axis rod interval Γi ⊂ ∂R2

+ is a vector vi ∈ Zn called the rod structure, that
defines the 1-dimensional isotropy subgroup R/Z · vi ⊂ Rn/Zn ∼= Tn for the action of Tn on points that
lie over Γi. The topology of the DOC is determined by the rod structures, namely

(3.1) Mn+2 ∼= (R2
+ × Tn)/ ∼

where the equivalence relation ∼ is given by (p,ϕ) ∼ (p,ϕ + λvi) with p ∈ Γi, λ ∈ R/Z, and ϕ ∈ Tn.
This setting is a special case of the following construction.

Definition 3.1. A simple Tn-manifold is an orientable smooth manifold Mk, k ≥ n with an effective
Tn-action, in which the quotient space Mk/Tn is simply connected and the quotient map defines a trivial
fiber bundle over the interior of the quotient.

If Mn+2 is a simply connected Tn-manifold (it admits an effective Tn-action) such that ∂(Mn+2/Tn) ̸=
∅, then it is necessarily a simple Tn-manifold, see Theorem 7.1. As above, the topology of an (n +
2)-dimensional simple Tn-manifold is completely determined by the set of rod structures. A graphical
representation of this information is called a rod diagram, see Figure 1 for examples. These are drawn
as either a disk in the compact case, or a half plane in the noncompact case, in which the boundary is
divided into segments with associated rod structure vectors indicating the linear combination of generators
that degenerate at the axes. Black dots represent corners or poles where two rods meet, and the segments
drawn with jagged lines are horizon rods along which the torus action is free. We will revisit this figure
after Lemma 3.3.

It should be noted that the notion of rod structures given above does not guarantee a unique presentation.
Indeed, the vectors v and 2v both generate the same isotropy subgroup R/Z ·v, and thus both can be used
to describe the same rod structure. In order to identify a unique presentation (up to a choice of sign), it
is natural to restrict attention to primitive elements. A vector or a set of vectors {v1, . . . ,vk} ⊂ Zn forms
a primitive set, if they are linearly independent and

(3.2) Zn ∩ spanR{v1, . . . ,vk} = spanZ{v1, . . . ,vk}.

For a single vector v = (v1, . . . , vn), this is equivalent to the components being relatively prime, that is
gcd{v1, . . . , vn} = 1. Next, observe that the group GL(n,Z) of unimodular matrices provides the group of
coordinate transformations for Tn = Rn/Zn. Two rod diagrams are equivalent if every rod structure of one
is obtained from the corresponding rod structure of the other by the action of the same unimodular matrix.
Thus, quantities depending only on the Tn-structure will be invariant under GL(n,Z) transformations. The
following proposition exhibits an example of such a quantity, Detk, referred to as the kth determinant divisor
[27, Chapter II, Section 14]. In the statement we will use the multi-index notation Ink , for k ≤ n, to denote
the set of k-tuples i = (i1, . . . , ik) ∈ Zk such that 1 ≤ i1 < · · · < ik ≤ n.
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(1, 0, 0)

(1,−1, 1)

(2, 0, 3)

(1, 1, 0)

(1, 0, 0)

(0, 1, 0)

(2, 0, 3)

(2,−1, 1)



1 1 0
0 −1 0
0 1 1




Figure 1. This figure shows two rod diagrams, separated by an arrow, both depicting
(5 + 1)-dimensional spacetimes with a single black hole. Each rod diagram shows the
2-dimensional quotient space as the right-half-plane with the vertical lines being their
boundaries. The jagged lines are black hole horizon rods, the interior of which correspond
to the product of an open interval with T 3. The rod structures flanking the horizon
rod yield horizon cross-sectional topology S1×S3. The two rod diagrams depict the same
spacetime. The unimodular matrix in the middle represents a coordinate change on Tn. In
particular, it is the transformation matrix from Lemma 3.3 which sends the rod structures
on the left to their Hermite normal form on the right.

Proposition 3.2. Let v1, . . . ,vm ∈ Zn, k ≤ min{m,n}, and set

(3.3) Detk(v1, . . . ,vm) = gcd{Qi
j | i ∈ Ink , j ∈ Imk },

where Qi
j is the determinant of the k × k minor obtained from the matrix defined by the column vectors

v1, . . . ,vm, by picking columns j and rows i. Then Detk is invariant under GL(n,Z), that is

(3.4) Detk(v1, . . . ,vm) = Detk(Av1, . . . , Avm)

for all A ∈ GL(n,Z).

Proof. Let ω ∈ ∧k Zn be a k-form on Zn. Each such form can be written as a linear combination of the
basis elements {ei1 ∧ · · · ∧eik | i ∈ Ink }, where {ei} is the basis of covectors dual to the standard basis {ej}
of Zn, so that ei(ej) = δij . Thus

(3.5) ω =
∑
i∈In

k

ai1...ike
i1 ∧ · · · ∧ eik , ai ∈ Z,

where by definition ei1 ∧ · · · ∧ eik(vj1 , . . . ,vjk) is the minor determinant Qi
j. Consider the k × k minor

determinant Q′i
j of the matrix formed from the column vectors Avj1 , . . . , Avjk , and observe that Q′i

j is
multilinear and antisymmetric in {vj1 , . . . ,vjk}. Therefore it is a linear combination as in (3.5), and may
be expressed as

(3.6) Q′i
j =

∑
i′∈In

k

aii′Q
i′

j .
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Observe that if p ∈ Z divides Qi′

j for all i′ ∈ Ink , then p also divides Q′i
j and hence

(3.7) Detk(Av1, . . . , Avm) = gcd{Q′i
j | i ∈ Ink , j ∈ Imk } ≥ gcd{Qj′

i | i′ ∈ Ink , j ∈ Imk } = Detk(v1, . . . ,vm).

Furthermore since A−1 ∈ GL(n,Z), the same reasoning shows that

(3.8) Detk(v1, . . . ,vm) = Detk(A
−1(Av1), . . . , A

−1(Avm)) ≥ Detk(Av1, . . . , Avm).

The desired invariance follows from these two inequalities. □

A corner point between two adjacent axis rods is admissible if the total space over a neighborhood of
the corner is a manifold. The importance of the second determinant divisor in the current context arises
from the fact that it determines whether or not a corner is admissible. Since the corner point represents
an (n − 2)-torus within the total space, a tubular neighborhood will be a manifold if and only if it is
homeomorphic to B4 × Tn−2, or equivalently if its boundary is S3 × Tn−2. This last criteria occurs
precisely when there is a matrix Q ∈ GL(n,Z) such that Qv = e1 and Qw = e2, where v, w are the
rod structures of the axis rods forming the corner, and e1, e2 are members of the standard basis for Zn.
Corollary 3.6 below, guarantees that such a Q exists if and only if Det2(v,w) = 1. The statement of this
result uses the Hermite normal form, whose properties are listed in the next lemma. A proof of this lemma
can be found in [22]. The Hermite normal form may be viewed as the integer version of the reduced echelon
form, or as the integer version of the QR decomposition for real matrices.

Lemma 3.3. Let A be a n× k integer matrix. There exist integer matrices Q and H such that QA = H,
where Q is unimodular and H = (hij) has the following properties.

(1) For some integer m, the rows 1 through m of H are non-zero, and the rows m + 1 through n are
rows of zeros.

(2) There is a sequence of integers 1 ≤ r1 < r2 < · · · < rm ≤ r = rankA such that the entries hiri of
H, called pivots, are positive for i = 1, . . . ,m. The pivot hiri is the first non-zero element in the
row i, that is, hij = 0 for 1 ≤ j < ri.

(3) In each column of H that contains a pivot, the entries of the column are bounded between 0 and
the pivot, that is, for i = 1, . . . ,m and 1 ≤ j < i we have 0 ≤ hjri < hiri .

The matrix H is unique and is known as the Hermite normal form of A. Furthermore, the Hermite normal
form of BA is equal to the Hermite normal form of A whenever B is a unimodular matrix. Finally, the
unimodular matrix Q, known as the transformation matrix of A, is unique when A is an invertible square
matrix.

It should be noted that if the first l columns of A are linearly independent, then the upper-left l × l
block of the Hermite normal form of A is upper triangular with nonzero diagonal entries, namely ri = i
for i = 1, . . . , l. For our purposes, the matrix A will typically consist of a collection of k rod structures for
rods which are not necessarily adjacent. An example of this is shown in Figure 1, where the 3× 4 matrix
A is assembled from the rod structures on the left (treated as column vectors), and sent to its Hermite
normal form consisting of the rod structures on the right, via the transformation matrix that appears in
the middle of the diagram.

Remark 3.4. If rod structures {v1,v2,v3} arise from three consecutive rods with admissible corners, then
more information is known about their Hermite normal form {w1,w2,w3}. In particularw1 = e1, w2 = e2,
and w3 = (q, r, p, 0, . . . , 0) with 0 ≤ q < p, 0 ≤ r < p, p = Det3(v1,v2,v3), and gcd{q, p} = 1 if the set of
vectors is linearly independent. In the case of a linearly dependent triple, we have p = 0 and q = 1, while
r is unconstrained. Furthermore, given any integers µ, λ ∈ Z there exists a coordinate change which sends
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vi to w′
i where

w′
1 = (1, 0, . . . , 0)

w′
2 = (0, 1, 0, . . . , 0)

w′
3 = (q + µp, r + λp, p, 0, . . . , 0).

(3.9)

These observations will be utilized in Section 6.

In order to establish the relationship between the admissibility condition for corners and the 2nd deter-
minant divisor, we recall the Smith normal form. This may be considered as the integer matrix analog of
the singular value decomposition, and is utilized in the classification of finitely generated Abelian groups.
This latter fact will be employed when we compute the fundamental group of the DOC in Theorem 7.1. A
proof of the following result can be found in [27].

Lemma 3.5. Let A be an n× k integer matrix of rank l. There exist integer matrices U , V , and S such
that UAV = S. The matrices U and V are unimodular, and S is diagonal with entries si such that si|si+1

for 1 ≤ i < l. These entries, referred to as elementary divisors, satisfy si = 0 for i > l with all others
computed by

(3.10) si =
Deti(A)

Deti−1(A)
, i ≤ l,

where we have set Det0(A) = 1. The matrix S is unique and is known as the Smith normal form of A.

The distinction between the Hermite and Smith normal forms, in the context of rod structures, is as
follows. The transformations used to obtain Hermite normal form are always actions by n×n matrices on
the left. Such an action corresponds to shuffling the Killing vectors around by linear combinations. This
does not affect the topology of the total space nor its toric structure, only the representation of the torus
Tn ∼= Rn/Zn and thus the rod structures. By contrast, Smith normal form also includes actions on the
right by k × k matrices. These actions correspond to shuffling the axis rods themselves. This changes the
topology of our space, possibly no longer making it a manifold. Consequently, when seeking out a simpler
presentation of the rod structures we will invoke the Hermite normal form in order to avoid changing the
topology. Two exceptions to this are in the proof of Theorem 7.1, where only the integer span of the rod
structures is significant and not their order, and in the proof of Corollary 3.6 below, where the Hermite
and Smith normal forms coincide.

Corollary 3.6. Let A be an n × k integer matrix of rank k. Then Detk(A) = 1 if and only if the upper
k × k block of the the Hermite normal form of A is the identity matrix.

Proof. Assume that the upper k× k block of the Hermite normal form is the identity. By uniqueness, this
matrix is also the Smith normal form. The diagonal entries are then 1 = si = Deti(A)/Deti−1(A), which
implies that Detk(A) = Detk−1(A) = · · · = Det0(A) = 1.

Conversely, assume that Detk(A) = 1 and let

(3.11)

[
S
0

]
= UAV

be the Smith normal form of A, where S = diag(s1, . . . , sk). Consider the n× n matrix

(3.12) B = U−1

[
S 0
0 In−k

] [
V −1 0
0 In−k

]
=

[
A E

]
,

where E consists of the last n− k columns of U−1. It follows that

(3.13) det(B) = det(U−1) det(S) det(V −1) = s1 · · · sk =
Det1(A)

Det0(A)
· · · Detk(A)

Detk−1(A)
= Detk(A).
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By assumption Detk(A) = 1, and thus B is invertible. Therefore

(3.14) B−1A =

[
Ik
0

]
,

and by uniqueness this must be the Hermite normal form of A. □

As mentioned after the proof of Proposition 3.2, this corollary shows that a pair of adjacent rod structures
v, w is admissible if and only if Det2(v,w) = 1. Moreover, in a similar manner, a collection of k rod
structures {v1, . . . ,vk} can be sent to the standard basis {e1, . . . , ek}, and thus forms a primitive set, if
and only if Detk(v1, . . . ,vk) = 1. Another application of the Hermite normal form is to give a variant
proof of Hollands and Yazadjiev’s horizon topology theorem [11, Theorem 2]. It states that for n ≥ 2, all
closed (n+ 1)-manifolds with an effective Tn-action, whose quotient is not a circle, must be a product of
Tn−2 and either S3, a lens space L(p, q), or S1 × S2. This is a generalization of a result by Orlik and
Raymond for 3-manifolds, see [30, Section 2]. Observe that the (n + 1)-dimensional case can be reduced
to the 3-dimensional case by applying the transformation matrix from Lemma 3.3 to the matrix of rod
structures defining the horizon, which we assume to be primitive vectors. In particular, the resulting
Hermite normal form consists of the new rod structures (1, 0, . . . , 0) and (q, p, 0, . . . , 0), with 0 ≤ q < p.
With this representation of the Tn-action, the last n − 2 coordinate Killing fields clearly never vanish.
Therefore the total space is homeomorphic to a product of Tn−2, and a 3-manifold Σ with an effective T 2

action. According to the possibilities given for the 3-dimensional case, we find that Σ is either S3 if p = 1,
S1 × S2 if p = 0, or the lens space L(p, q) if p > 1.

Remark 3.7. Given a horizon topology Σ×Tn−2, it is possible to determine the topology of Σ directly from
the 2nd determinant divisor. Let v,w ∈ Zn be primitive vectors that describe the flanking rod structures
of the horizon, and compute Det2(v,w). If this value is 0, then v = w and Σ = S1 × S2. If it is 1, then
the pair is admissible and Σ = S3. If Det2(v,w) = p > 1 then Σ = L(p, q) for some q < p. Moreover, q
may be found from the relation w = qv mod p.

Theorem 3.8. Given any two (primitive) rod structures v and w, it is always possible to find a finite
number of additional rod structures that connect v to w in such a way that each corner in the resulting
sequence of rods is admissible. That is, there exists a sequence of rod structures {v1, . . . ,vk}, with v1 = v
and vk = w, having the property that Det2(vi,vi+1) = 1 for i = 1, . . . , k − 1.

Proof. By Lemma 3.3 there exists a unimodular matrix Q which transforms v and w into Hermite normal
form, in particular Qv = (1, 0, . . . , 0) and Qw = (q, p, 0, . . . , 0) where 0 ≤ q < p. If q = 0, then p = 1
since w is primitive, and hence Det2(v,w) = 1. So assume that q ≥ 1. In [14, Section 3] an algorithm
is presented that is based on the continued fraction decomposition of p/q, which produces a sequence of
rod structures in Z2 connecting (1, 0) to (q, p) such that each corner is admissible. We may then append
zeros to each of the rod structures in this sequence, to obtain a sequence in Zn that connects (1, 0, . . . , 0)
to (q, p, 0, . . . , 0) with the same property. Applying Q−1 then produces the desired sequence. □

This result was used in [14], for (4+1)-dimensional spacetimes, to construct simply connected fill-ins for
horizons. The simple connectivity of the fill-ins preserves the fundamental group of the DOC, and is not
difficult to achieve since in this low dimensional setting admissible rod structures cannot contribute to the
fundamental group. In higher dimensions this is not the case, and a more careful choice of rod structures
is needed to achieve simply connected fill-ins. Moreover, since the boundary between the filled in region
and the DOC now has a much larger fundamental group, there is a more complicated relation between the
topologies of these regions. In the last section, we will study the fundamental group of the compactified
domain of outer communication.
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4. The Model Map

In this section we construct a model map φ0 : R3 \ Γ → SL(n + 1,R)/SO(n + 1), which describes the
singular behavior of the desired harmonic map near the axis Γ, as well as the asymptotics at infinity. The
model map can be viewed as an approximate solution to the singular harmonic map problem near the axes
and at infinity [16,35]. We define a model map as follows.

Definition 4.1. A map φ0 : R3 \ Γ → SL(n+ 1,R)/SO(n+ 1) is a model map if

(1) |τ(φ0)| is bounded, where τ denotes the tension of φ0, and
(2) there is a positive function function w ∈ C2(R3) with ∆w ≤ −|τ(φ0)| and w → 0 at infinity.

It should be noted that if |τ(φ0)| = O(r−α) as r → ∞, for some α > 2, then this is sufficient to
satisfy condition (2). In order to facilitate the construction of the model map, we will utilize the following
parameterization of the target space. Namely, the target space is parameterized by (F, ω), where F = (fij)
is a symmetric positive definite n × n matrix and ω = (ωi) is an n-tuple corresponding to the twist
potentials. On each axis rod, the Dirichlet boundary data for ωi is constant. These so called potential
constants determine the angular momenta of the horizons, and do not vary between adjacent axis rods which
are separated by a corner. In (F, ω) coordinates, the metric on the target space SL(n + 1,R)/SO(n + 1)
may be expressed as (see [23])

(4.1)
1

4

df2

f2
+

1

4
f ijfkldfikdfjl +

1

2

f ijdωidωj

f
=

1

4
[Tr(F−1dF )]2 +

1

4
Tr(F−1dFF−1dF ) +

1

2

dωtF−1dω

f
,

where f = detF and F−1 = (f ij) is the inverse matrix. By setting

(4.2) H = F−1∇F, G = f−1F−1(∇ω)2, K = f−1F−1∇ω,

it follow from (2.7) that the squared norm of the tension becomes

(4.3) |τ |2 =
1

4
[Tr(divH +G)]2 +

1

4
Tr[(divH +G)(divH +G)] +

1

2
f(divK)tF (divK).

It is clear from (4.3) that the tension norm is invariant under the transformation

(4.4) F 7→ hFht and ω 7→ hω,

for any h ∈ SL(n,R). Note that deth = 1 is not required for this to hold when ω is constant, since G and
K are then zero. The next result generalizes the model map construction from lower dimensions that was
presented in [15,16].

Lemma 4.2. For any admissible rod data set, with nondegenerate horizons, there exists a corresponding
model map φ0 : R3 \ Γ → SL(n + 1,R)/SO(n + 1), for n ≥ 2, having tension decay at infinity given by
|τ | = O(r−5/2).

Proof. We first present a proof for the rod data set corresponding to two horizons and a single corner, as
shown in Figure 2. At the end of the proof, we will indicate the necessary adjustments for the general case.
Observe that in the diagram there are four neighborhoods R1, R2, R3, and R4 associated with certain
axis rods, having rod structures p, q, r, and t respectively. The model map will be constructed separately
in each of these regions. The following two harmonic functions on R3 \Γ will play an important role in the
construction

(4.5) ua = log(ra − (z − a)) = log(2ra sin
2(θa/2)), va = log(ra + (z − a)) = log(2ra cos

2(θa/2)),

where ra =
√
ρ2 + (z − a)2 is the Euclidean distance from the point z = a on the z-axis, and θa is the

polar angle.
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N

S

C1

R1

R2

R3

T

R4

p = (p1, p2, 0, ..., 0)

(0, ..., 0)

q = (q1, . . . , qn)

(0, ..., 0)

r = (r1, . . . , rn)

t = (1, 0, ..., 0)

Figure 2. This diagram depicts the various regions used in the contruction of the model
map. Axis rod structures are represented by p, q, r, and t, while horizon rods are indicated
by dashed lines.

Consider first the case in which the asymptotic end is modeled on L(p, q)× Tn−2, where 0 ≤ q < p. By
applying Lemma 3.3 if necessary, it may be assumed without loss of generality that the rod structures on
the semi-infinite rods are p = (p1, p2, 0, . . . , 0) with p2 > 0, and t = (1, 0, . . . , 0). The model map outside
of a large ball (corresponding to the shaded region outside of the circle in Figure 2) and in the regions R1

and R4, may then be given by

(4.6) F1 = hF̃1h
t, ω = hω̃(θ),

where ω̃ is a function of θ = θ0 alone described below and

(4.7) F̃1 = diag (eu0−log 2, ev0−log 2, 1, ..., 1), h =

 0
√
p2 0

1/
√
p2 −p1/

√
p2 0

0 0 In−2

 ,

with In−2 representing the identity matrix. Notice that, up to multiplication by constants, ht sends t 7→ e2
and p 7→ e1. Thus, the matrix F1 possesses the appropriate kernel at the semi-infinite rods to encode
the given rod structures. Moreover, since φ0 = (F1, ω) is obtained from the map (F̃1, ω̃) by applying an

isometry to the target space, and F̃1 arises from the canonical flat metric on R4 × Tn−2, it follows that
divH = divF−1

1 ∇F1 = 0. We may further choose ω̃(θ) to be constant for θ ∈ [0, ϵ]∪ [π−ϵ, π], thus showing
that (F1, ω) is harmonic in R1 and R4. The constants are chosen to coincide with the prescribed potential
constants on the axis rods. Within the remaining angular interval, ω̃(θ) may be prescribed arbitrarily as
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long as it is smooth. In order to verify the decay of the tension for this map in the range θ ∈ [ϵ, π − ϵ],
observe that since F1 = O(r), f = O(r2), |∇ω| = O(r−1), and divK = O(r−4) we have

(4.8) f(divK)tF1(divK) = O(r−5), G = O(r−4).

Hence |τ | decays like r−5/2, which is sufficient. Similarly, in the case where the asymptotic end is modeled
on S2 × Tn−1, we can without loss of generality assume that the rod structures on both the semi-infinite
rods are (1, 0, . . . , 0). The model map outside of the large ball and in the regions R1 and R4 is now given
by

(4.9) F1 = diag (eu, 1, ..., 1), ω = ω(θ),

where u = 2 log ρ and ω is constant on θ ∈ [0, ϵ]∪ [π− ϵ, π]. As before, the tension decays as |τ | = O(r−5/2)
when r → ∞.

Next consider the compact region R2 below the first horizon. The poles in this region are located at
z = a and z = b, a < b, and the rod structure is q = (q1, q2, . . . , qn). The model map in this region is
defined by

(4.10) F2 = h2F̃2h
t
2, ω = c2,

where F̃2 = diag (eu, 1, ..., 1), u = ua − ub, and

(4.11) h2 =
([

q, e2, . . . , en
]t)−1

.

The constant vector c2 is chosen to agree with the prescribed potential constants on the rod. As pointed
out in the remark preceding the lemma, deth2 = 1 is not required here since ω is constant. It follows that
the map φ0 = (F2, ω) is harmonic in region R2.

Now we will deal with the regions R3, R4 and the transition region T between them. Let the pole S
be at z = s > 0 and the corner C1 be at z = 0. The rod structure above the corner C1 is r = (r1, . . . , rn),
and below the corner is t = (1, 0, . . . , 0). Because of admissibility, we can without loss of generality assume
that r2 > 0. As above we set ω to be a constant c3, agreeing with the prescribed potential constant on the
rods, in the entire southern tubular neighborhoods R3 and R4. Let

(4.12) F̃3 = diag (eu, ev, 1, ..., 1), u = (u0 − log 2)− λ(z)(us − log 2), v = v0 − log 2,

where λ = λ(z) is a smooth cut-off function which is 1 near R3 and 0 near R4. Define the map in region
R3 by

(4.13) F3 = h3F̃3h
t
3, ω = c3,

where

(4.14) h3 =
√
p2

([
r, e1, e3, . . . , en

]t)−1

.

We have already given the map in R4. In order to define the map in T , set h3(z) to be a smooth curve of
invertible n × n matrices which connects h3 in (4.14) to h in (4.7). Note that this is possible since both
endpoint matrices have negative determinant, and that the curve may be chosen so that the second column

of (h3(z)
t)

−1
remains the constant vector 1/

√
p2e1. The map F3(z) = h3(z)F̃3(z)h

t
3(z) then identifies

the correct rod structures, and agrees with the previously defined map on R4. Since ω = c3, we have
G = K = 0 in R3 ∪R4. It remains to show that divF−1

3 ∇F3 is bounded on the transition region T , since
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it vanishes on the complement. To see this, compute

divF−1
3 ∇F3 =[∇(F̃3h

t
3)

−1] · (h−1
3 ∇h3)F̃3h

t
3 + (F̃3h

t
3)

−1 div(h−1
3 ∇h3)F̃3h

t
3

+ (F̃3h
t
3)

−1(h−1
3 ∇h3) · ∇(F̃3h

t
3) + (∇h−t

3 ) · (F̃−1
3 ∇F̃3)h

t
3

+ h−t
3 div(F̃−1

3 ∇F̃3)h
t
3 + h−t

3 (F̃−1
3 ∇F̃3) · ∇ht

3 + div(h−t
3 ∇h3).

(4.15)

Note that |∇u| and ∂zv = 1/r are clearly bounded in T . Moreover, the second row of h−1
3 ∇h3 vanishes,

and this leads to the desired boundedness of divF−1
3 ∇F3. Indeed, consider the first term on the right-hand

side of (4.15), namely

(4.16) [∇(F̃3h
t
3)

−1] · (h−1
3 ∇h3)F̃3h

t
3 =

[(
ht
3

)−1
∂zF̃

−1
3 + ∂z

(
ht
3

)−1 · F̃−1
3

]
(h−1

3 ∂zh3)F̃3h
t
3.

The only potential difficulty in bounding this expression on T arises from the function e−v, in F̃−1
3 and

∂zF̃
−1
3 . However, since h−1

3 ∂zh3 has a vanishing second row, the products

(4.17) F̃−1
3 · (h−1

3 ∂zh3), ∂zF̃
−1
3 · (h−1

3 ∂zh3),

no longer contain e−v and the first term of (4.15) is controlled. The remaining terms may be handled
analogously. It follows that (4.15) is bounded, and hence the model map φ0 = (F3, ω) has bounded tension
in a tubular neighborhood of the two southern most rods. This treats the case in which the asymptotic
end is modeled on L(p, q) × Tn−2, and a similar procedure may be used in the case that the asymptotic
end is modeled on S2 × Tn−1.

We will now address the multiple corner case. Any connected component of the axis consists of a
consecutive sequence of axis rods. To construct the model map in a tubular neighborhood of such a
component, first divide this region into neighborhoods centered at corners and transition regions between
corners. The basic block consists of two such neighborhoods around adjacent corners Cn and Cs, and the
transition region T between them. It suffices to illustrate the map construction in such blocks, as the full
map may then be obtained by combining the individual pieces to handle any rod structure configuration.

Consider a basic block with rod structures p, q, and r on axis rods Γ1, Γ2, and Γ3 respectively, moving
from north to south. Note that p and q, as well as q and r, must be linearly independent since the corners
Cn and Cs are admissible. It follows that there is a collection of standard basis vectors {ei1 , . . . , ein−2}
that complete {p,q} to a basis, and similarly for {q, r}. We may then form the matrices

(4.18) hp,q =
([

p,q, ei1 , . . . , ein−2

]t)−1

, hr,q =
([

r,q, ej1 , . . . , ejn−2

]t)−1

.

Next define F0 = diag (eu, ev, 1, ..., 1) where u and v are harmonic, with eu vanishing on Γ1 and Γ3, and
ev vanishing on Γ2. These functions may be given as the sum of logarithms of the form (4.5). Then F0

corresponds to the rod structures e1, e2, and e1 on Γ1, Γ2, and Γ3 respectively. Consider a smooth curve
of invertible n × n matrices hp|r,q(z) which agrees with hp,q on Γ1 and in a neighborhood of Cn, and
transitions over T ⊂ Γ2 so that it agrees with hr,q on Γ3 and in a neighborhood of Cs. The existence of
such a curve is possible since we may assume that the determinants of hp,q and hr,q have the same sign
by replacing r with −r if necessary. Moreover, the curve may be designed such that the second column of(
hp|r,q(z)

t
)−1

is the constant vector q. This implies that the second row of h−1
p|r,q∇hp|r,q vanishes, so that

with the help of (4.15) we find that divF−1∇F remains bounded along T , where F = hp|r,qF0h
t
p|r,q. The

model map φ0 = (F, ω) on the basic block, with ω constant, then has bounded tension.
Lastly, it remains to treat the case of multiple blocks within an axis component. To accomplish this,

take u and v harmonic so that eu and ev vanish in an alternating fashion on the string of axis rods. The
diagonal matrix F0 is then defined along the entire string. We will inductively construct the model map
on basic block assemblies. As a demonstration of this, consider adding an additional rod Γ4, with rod
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structure w, to the sequence of three rods discussed above which we call basic block B1. We may view
the Γ2, Γ3, Γ4 string, with rod structures q, r, w, as a basic block B2; the corner between the third and
fourth rod will be denoted by Cw. The map has already been defined into a neighborhood of Γ3, and may
be extended into a neighborhood of Γ4 as follows. Recall that the maps

(4.19) F1 = hp|r,qF0h
t
p|r,q, F2 = hr,q|wF0h

t
r,q|w,

are defined on the basic blocks B1 and B2 respectively, and identify the desired rod structures. However,
they do not necessarily coincide on the overlap regions. In order to remedy this situation, let h4(z) be a

smooth curve of invertible n × n matrices connecting hr,q to hr,w with a transition over T̃ ⊂ Γ3. This
is possible since by replacing w with −w if necessary, we may assume that both endpoint matrices have

determinants of the same sign. Moreover, this curve may be chosen such that the first column of (h4(z)
t)

−1

remains the constant vector r. Set F = h4(z)F0h4(z)
t on Γ3, and observe that this agrees with F1 and

F2 near the corners Cs and Cw, respectively, so that F is naturally defined on all of B1 ∪ B2. Since the
first row of h−1

4 ∇h4 vanishes, we find with the aid of (4.15) that divF−1∇F remains bounded along Γ3.
The model map φ0 = (F, ω) on the two basic blocks, with ω constant, then has bounded tension. We may
continue this process inductively to treat any number of consecutive axis rods. □

Remark 4.3. In [15,16] an additional technical assumption on the rod structures, known as the compatibility
condition, was used for the construction of the model map. The condition, which is not required for Lemma
4.2, states that given three adjacent rod structures with admissible corners, say (m,n), (p, q), and (r, s),
the following inequality must hold

(4.20) mr(mq − np)(ps− rq) ≤ 0 .

This turns out not to be a geometric condition, as it can always be achieved by a change of coordinates.
To see this, first assume without loss of generality that the determinants (mq−np) and (ps− rq) are 1, by
possibly replacing (p, q) or (r, s) or both with the vector of the same length and opposite direction. Note
that this operation does not alter the isotropy subgroup prescribed by the rod structure. Next apply the
unimodular matrix

(4.21) A =

(
q −p
−n m

)
to obtain the rod structures A · {(m,n), (p, q), (r, s)} = {(1, 0), (0, 1), (r′, s′)}, for some r′, s′ ∈ Z. Then
Equation (4.20) is clearly satisfied for the new set of rod structures.

Remark 4.4. Lemma 4.2 and Remark 4.3 provide the proof of part (a) from Theorem A.

5. Horocyclic Coordinates and Energy Estimates

In this section we show how the energy estimates based on horocyclic coordinates can be generalized
from the lower rank target space setting that was treated in [16, Section 6]. The target space is now
SL(n+1,R)/SO(n+1), which is a noncompact symmetric space of dimension n(n+3)/2 and rank n. For
convenience we denote G = SL(n+ 1,R), K = SO(n+ 1), and X = G/K. The Iwasawa decomposition is
given by G = NAK, where A is the abelian group

(5.1) A = {diag(eλ1 , ..., eλn+1) |
n+1∏
i=1

eλi = 1},

and N is the nilpotent subgroup of upper triangular matrices with diagonal entries set to 1. Thus, given
g ∈ G there are unique elements m ∈ N , a ∈ A, and k ∈ K with g = mak, and the symmetric space X
may be identified with the subgroup NA. Denote x0 = [Id] ∈ X and note that the orbits A ·x0 =: Fx0

and
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N · x0 are respectively a maximal flat and a horocycle. The former is an n-dimensional totally geodesic
submanifold with vanishing sectional curvature, and the latter is an n(n + 1)/2-dimensional submanifold
with the property that each flat which is asymptotic to the same Weyl chamber at infinity has an orthogonal
intersection with the horocycle in a single point. Furthermore, since each point x ∈ X may be uniquely
expressed as ma ·x0, the assignment x 7→ Fx = ma ·Fx0 yields a smooth foliation whose leaves are the flats
{m · Fx0

}m∈N ; the flat Fx orthogonally interects the horocycle N · x only at x. In this manner, the pair
(a,m) gives rise to a horocyclic orthogonal coordinate system for X.

A Euclidean coordinate system r = (r1, . . . , rn) may be introduced on Fx0 , and can then be pushed
forward to each flat m · Fx0

so that the horocyclic coordinates (a,m) may be represented by (r,m).
Furthermore, each r′ defines a diffeomorphism (translation) (r,m) 7→ (r + r′,m) that preserves the m-
coordinates, and for each m′ ∈ N there is an isometry that preserves the r-coordinates (r,m) 7→ (r,m′m).
These r-translations map horocycles to horocylces, and therefore may be used to push forward a system
of global coordinates θ = (θ1, . . . , θn(n+1)/2) on N · x0

∼= Rn(n+1)/2 to all horocycles. It follows that (r, θ)
form a set of global coordinates on X in which the coordinate fields ∂ri and ∂θj are orthogonal, and such
that the G-invariant Riemannian metric on X is expressed as

(5.2) g = dr2 +Q(dθ, dθ) =

n∑
i=1

dr2i +

n(n+1)/2∑
j,l=1

Qjldθ
jdθl,

where the coefficients Qjl(r, θ) are smooth functions. Moreover, the proof of [16, Lemma 8] generalizes in
a direct manner to the current setting to yield the uniform bounds

(5.3) bQ(ξ, ξ) ≤ ∂riQ(ξ, ξ) ≤ cQ(ξ, ξ),

for all i = 1, . . . , n and ξ ∈ Rn(n+1)/2 where 0 < b < c. With the help of (5.3), by expressing the harmonic
map equations in the horocyclic parameterization we may establish energy bounds on compact subsets
away from the axis. In particular, if φ : R3 \ Γ → X is a harmonic map and Ω ⊂ R3 \ Γ is a bounded
domain then the harmonic energy restricted to Ω satisfies

(5.4) EΩ(φ) ≤ C,

where the constant C depends only on the maximum distance supy∈Ω dX(φ(y), x0).

Definition 5.1. Two maps φ1, φ2 : R3 \ Γ → X are asymptotic if there exists a constant C such that
dX(φ1, φ2) ≤ C, and dX(φ1(y), φ2(y)) → 0 as |y| → ∞.

The distance between the model map and solutions to the harmonic map Dirichlet problem on an
exhausting sequence of domains may be estimated via a maximum principle argument [35], which is based
on convexity of the distance function in the nonpositively curved target. This supremum bound together
with the energy bound, allow for an application of standard elliptic theory to control all higher order
derivatives. The sequence of harmonic maps on exhausting domains will then subconverge to the desired
solution, for details see [16, Sections 6 & 7]. We record this conclusion as the following result.

Lemma 5.2. Let φ0 be a model map. Then there exists a unique harmonic map φ : R3 \Γ → X such that
φ is asymptotic to φ0.

This lemma establishes part (b) of Theorem A. Since φ is asymptotic to φ0, it can be shown in the
same way as [16, Theorem 11], that the two maps respect the same rod data set. Furthermore, part (c) of
Theorem A may be established analogously to [16, Section 8]. This completes the proof of Theorem A.
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6. Plumbing and Topology of the Domain of Outer Communication

There are two methods that can be used to characterize the domain of outer communication. One
method consists of filling in horizons and cross-sections in the asymptotic end to obtain a simply connected
compact manifold. In the next section we use this method for spatial dimensions 4, 5, and 6, where a
complete list of possible topologies is available. The other approach involves breaking up the domain
of outer communication into simpler pieces, and then classifying the individual components. This is the
method of plumbing constructions which will be discussed in the current section, and will yield the proof
of Theorem B. Throughout this section we will assume that n ≥ 3.

In Theorem B the domain of outer communication is broken up into components determined by the
number of corners that they contain. The pieces which contain no corners are either the asymptotic end
Mn+2

end , or a piece which is homeomorphic to [0, 1]×D2 × Tn−1 which we denote by Cn+2
k . When a piece

contains a single corner, the admissibility condition may be used to show that it is the product of a ball
with a torus B4 × Tn−2. This part of the analysis is identical to the (spatial) 4-dimensional case that is
covered in [14, Theorem 1]. However, a significant difference occurs in higher dimensions when analyzing
components that contain at least two corners. A component with exactly two corners will turn out to be
the product of a torus Tn−3 with a disk bundle over a 3-manifold, rather than a 2-sphere. Moreover, for
components with more than two corners, we will have to define a generalization of plumbing where the
fibers and base space are not of the same dimension.

Theorem 6.1. Let Mn+2 be a simple Tn-manifold, and consider a neighborhood N2 in the orbit space
of a portion of the axis with two corners and no horizon rods. The total space over N2 is homeomorphic
to ξ × Tn−3, where the action of Tn ∼= T 3 × Tn−3 acts componentwise. Here ξ is a D2-bundle over
X ∈ {S3, L(p, q), S1 × S2}. The topologies of X and ξ may be read off from the Hermite normal form of
the rod structures.

Proof. The rod diagram of N2 has three axis rods separated by two admissible corners. Using Remark
3.4 we can, without changing the topology, transform our rod structures into the form of Equation (3.9),
where the last n − 3 entries of each rod structure are zero. The last n − 3 Killing fields then do not
vanish over N2, and hence the total space is a product manifold ξ × Tn−3, where the Tn-action splits
naturally into T 3 acting on ξ and Tn−3 acting on itself. Here ξ denotes the manifold represented by the
rod diagram {(1, 0, 0), (0, 1, 0), (q, r, p)} with 0 ≤ q < p, 0 ≤ r < p, and gcd{q, p} = 1 if the vectors are
linearly independent. In the case that they are linearly dependent, we instead have q = 1, p = 0, and
r ∈ Z.

The middle axis rod, where the second Killing field vanishes, is a deformation retract of the space ξ.
This rod represents a closed manifold X ∈ {S3, L(p, q), S1×S2}. Fibers over this space correspond to rays
extending out from the middle axis rod, see Figure 4. Each point in the interior of the middle axis rod
corresponds to an entire T 2, while a ray terminating at that point corresponds to D2×T 2. Moreover, each
of the two corners corresponds to an S1 in the base space X, while the adjacent axis rods correspond to
D2 × S1. It follows that ξ has the structure of a D2-bundle over X.

To determine the topology of X and ξ, we look at the rod structures. If they are linearly dependent,
then by admissibility the rod structures must be {(1, 0, 0), (0, 1, 0), (1, r, 0)}. There is then a free S1 action,
and after factoring this out, it remains to analyze the 4-dimensional disk bundle generated by the diagram
with rod structures {(1, 0), (0, 1), (1, r)}. The base space of this latter disc bundle is S2, and its zero-section
self-intersection number, or equivalently the characteristic number of its Euler class is r, see [14]. Moreover,
we have X = S1 × S2.

If the rod structures {(1, 0, 0), (0, 1, 0), (q, r, p)} are linearly independent, the base space X = L(p, q).
Recall that L(1, q) = S3 for all q. The number of distinct disk bundles, or equivalently SO(2)-bundles, over
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X is determined by the homotopy classes of maps [X,CP∞]. Moreover, the classifying space BS1 = CP∞

is an Eilenberg-Maclane space of type K(Z, 2), so the homotopy classes of based maps from X to K(Z, 2)
is in bijection with H2(X;Z) ∼= Zp. The element of this cohomology group which corresponds to a specific
bundle ξ is called the Euler class e(ξ).

By uniqueness of the Hermite normal form, the r ∈ Zp
∼= H2(L(p, q);Z) in the rod structure is uniquely

determined for each equivariant homeomorphism class of ξ. Conversely, for each class in H2(L(p, q);Z)
there is a unique disk bundle over L(p, q). Each of these disk bundles admits an effective T 3 action, with T 1

acting on the fibers, and a T 2 acting on the base L(p, q). Thus, to each of these disk bundles corresponds
a rod diagram with three axis rods and two admissible corners. This gives a one-to-one correspondence
between integers r ∈ [0, p) and e(ξ) ∈ H2(L(p, q),Z). Furthermore, for the trivial disk bundle L(p, q)×D2

both r = 0 and e(ξ) = 0. To see this, note that the quotient of L(p, q) by its T 2-action can be represented
as an interval where the (1, 0) and the (q, p) circles degenerate at the end points. Similarly, the quotient
of D2 by S1 can be represented by a half open interval where the circle degenerates at the one end point.
Taking the product of these two spaces produces the rod diagram {(1, 0, 0), (0, 1, 0), (q, 0, p)}, from which
we deduce that r = 0. □

The above theorem shows that the total space over a neighborhood of three consecutive axis rod struc-
tures {u,v,w}, satisfying the admissiblity condition, is ξ×Tn−3 where ξ is a disk bundle over either a lens
space or a ring. Observe that there is a subtorus T 3 which leaves the slices ξ × {φ} ∈ ξ × Tn−3 invariant,
and is spanned by the rod structures {u,v,w} ⊂ Zn as follows

(6.1) T 3 ∼= spanR{u,v,w}/Zn ⊂ Rn/Zn ∼= Tn.

Although {u,v,w} may not necessarily be a primitive set, this can be rectified by employing an integral
version of the Gram-Schmidt process, which will lead to the formulation of generalized plumbing.

Lemma 6.2. Let {u,v,w} ⊂ Zn be a consecutive sequence of rod structures satisfying the admissibility
condition, and with a neighborhood that lifts to ξ×Tn−3 in the total space. If ξ is a D2-bundle over L(p, q),
0 ≤ q < p with Euler class determined by r ∈ [0, p), then there exists a unique primitive vector p ∈ Zn

satisfying

(6.2) w = qu+ rv + pp.

Furthermore, {u,v,p} ⊂ Zn forms a primitive set. In addition, if ξ is a D2-bundle over S1 × S2, then
Equation (6.2) is satisfied with p = 0.

Proof. First consider the case in which ξ is a D2-bundle over L(p, q), 0 ≤ q < p with Euler class determined
by r ∈ [0, p). Let Q be the unimodular matrix that transforms {u,v,w} into Hermite normal form, that
is Qu = e1, Qv = e2, and Qw = qe1 + re2 + pe3. We may then set p = Q−1e3 and observe that (6.2)
is satisfied. Since the Hermite normal form is unique, and p ̸= 0, it is clear that p ∈ Zn is the unique
solution to the equation. Furthermore, since Q−1 is unimodular and e3 is a primitive vector we find that p
is primitive as well. Next note that {u,v,p} is a primitive set if and only if Det3(u,v,p) = 1. Moreover,
by multilinearity of the determinant together with Equation (6.2), it follows that

(6.3) Det3(u,v,p) = p−1 Det3(u,v,w) = p−1 Det3(e1, e2, qe1 + re2 + pe3) = 1,

where the second equality follows from the coordinate invariance of Det3. Lastly, if ξ is a D2-bundle over
S1 × S2, then q = 1 and p = 0 so that (6.2) is satisfied with p = 0. □

We will now consider portions of the axis having more than two consecutive corners in a simple Tn-
manifold. The total space over neighborhoods of these regions of the axis, with l+1 corners, will be shown
to consist of l disk bundle-torus products that are glued together in a fashion that may be viewed as a
generalization of the linear plumbing construction. This higher dimensional plumbing, which we will refer
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to as toric plumbing, is not a straightforward generalization of 4-dimensional procedure due to the various
ways that the extra toroidal dimensions may be conjoined. For each pair of neighboring disk bundles
we will define a plumbing vector, which distinguishes the different ways that the two disk bundles can be
plumbed together. Figure 3 provides examples of the same two disk bundles being plumbed together in
different ways to form non-homeomorphic total spaces.

Consider a section of the axis rod, having admissible corners, with rod structures {v1, . . . ,vl+2}. From
Theorem 6.1, a neighborhood of each consecutive triple of rod structures {vi,vi+1,vi+2} lifts to the total
space as a product ξξξi ∼= ξi × Tn−3 ⊂ Mn+2, where ξi is a disk bundle with Euler class determined by ri
over either L(pi, qi), or S

1 × S2 if pi = 0. With the aid of a unimodular transformation matrix Q, we can
arrange the rod structures into Hermite normal form {w1, . . . ,wl+2} so that Qvi = wi. Recall that the wi

are uniquely determined, although Q may not have this property. By Remark 3.4, the first three elements
are given by w1 = e1, w2 = e2, and w3 = (q1, r1, p1, 0, . . . , 0). For each i such that pi ̸= 0, Lemma 6.2
ensures the existence of a unique primitive vector pi ∈ Zn satisfying

(6.4) wi+2 = qiwi + riwi+1 + pipi.

When pi = 0 we define pi = 0, and (6.4) is trivially satisfied.

Definition 6.3. The vectors pi satisfying (6.4) are referred to as plumbing vectors.

Remark 6.4. If Q̄ is a unimodular matrix, then {v1, . . . ,vl+2} and {Q̄v1, . . . , Q̄vl+2} have the same Hermite
normal form and thus the same plumbing vectors. Therefore, plumbing vectors do not depend on the choice
of coordinates, but rather depend only on the toric structure of the total space.

While the set of plumbing vectors is uniquely determined by a set of rod structures, they are not uniquely
determined by the topologies of ξi. In Figure 3, we present two pairs of examples in which the same disk
bundles are being plumbed with different plumbing vectors. From Remark 6.4 we know that the total spaces
will have different toric structures, and will not simply differ by a change of coordinates. Furthermore,
in these examples the boundaries of the total spaces have different fundamental groups. Thus, plumbing
vectors can affect the topology of the total space.

Plumbing vectors satisfy a number of relations, the first of which is the collection of recursion equations
that are used in the definition

(6.5a)

w1 = e1, w2 = e2,

wi+2 = qiwi + riwi+1 + pipi if pi ̸= 0, and

pi = 0 if pi = 0,

for i = 1, . . . , l. The next two conditions arise from are admissibility of the corners, and primitivity of the
triples containing the plumbing vector. More precisely, adjacent rods {wi+1,wi+2} are assumed to have
an admissible corner, that is Det2(wi+1,wi+2) = 1. By using the recursion relations and the multilinearity
of determinants, this can be re-expressed as

(6.5b) Det2(wi+1, qiwi + pipi) = 1.

Furthermore, the primitivity condition that is guaranteed by Lemma 6.2 asserts that

(6.5c) Det3(wi,wi+1,pi) = 1,

when pi ̸= 0. If pi = 0 then this condition does not apply. Finally, we obtain two conditions from the fact
that {w0, . . . ,wl+2} is in Hermite normal form. The first describes conditions under which certain entiees
must vanish. That is, if pij = 0 for all j ≥ m and 1 ≤ i < k, where pi = (pi1, . . . , pin), then

(6.5d) pkj = 0 for all j > m.
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(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)

P
(
ξξξ, ξξξ

∣∣e4)

S3 × T 2

ξξξ ξξξ

(1, 0, 0) (0, 1, 0) (2, 3, 5) (11, 9, 24)

P
(
ξξξ1, ξξξ2

∣∣(1, 0, 2))

L(3, 2)× S1

ξξξ1 ξξξ2

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (1, 0, 0, 0)

P
(
ξξξ, ξξξ

∣∣e1)

S2 × T 3

ξξξ ξξξ

(1, 0, 0) (0, 1, 0) (2, 3, 5) (−3, 9,−11)

P
(
ξξξ1, ξξξ2

∣∣(−1, 0,−3)
)

S3 × S1

ξξξ1 ξξξ2

Figure 3. The left two examples represent different toric plumbings of the trivial bundle
ξξξ = S3×D2×S1 with itself. In the top left example the plumbing vector is p2 = e4, while
in the bottom left example the plumbing vector is p2 = e1. The right two examples are
different toric plumbings of ξξξ1 over L(5, 2) with Euler class determined by 3, and ξξξ2 over
L(7, 3) with Euler class determined by 2. The plumbing vector for the top right example is
p2 = (1, 0, 2), while the plumbing vector for the bottom right example is p2 = (−1, 0,−3).
We can see that for each pair the topology and toric structure of the total space is different,
as a consequence of having different plumbing vectors. The notation P (ξξξ1, ξξξ2,p) refers to
the toric plumbing of ξξξ1 and ξξξ2 with plumbing vector p, as given in Definition 6.6.

The second condition indirectly restricts the size of certain components in the plumbing vectors. Write
wi = (wi1, . . . , win), and denote the last nonzero entry of pk by pkmk

. If pimk
= 0 for all 1 ≤ i < k, then

w(k+2)mk
is a pivot in the Hermite normal form so that

(6.5e) 0 ≤ w(k+2)j < w(k+2)mk
for all j < mk.

These relations will be collectively referred to as the plumbing relations.
The first plumbing vector p1 takes a simple form in all cases, depending only on whether p1 vanishes.

Namely, if the base space of ξ1 is S1 × S2 then p1 = 0, and we have p1 = 0. If p1 ̸= 0 then note that
Remark 3.4 implies w3 = (q1, r1, p1, 0, . . . , 0). This immediately shows that p1 = e3 solves Equation (6.5a),
and by uniqueness of plumbing vectors it follows that p1 must take this form. In what follows, since p1

is determined only by the topology of ξ1 and not by plumbing information, we do not include it when
describing the toric plumbing of ξ1 and ξ2. Thus, only l − 1 plumbing vectors are needed to describe the
gluing for a string of l + 2 rod structures.

Proposition 6.5. There is a one-to-one correspondence between collections of admissible rod structures
{w1, . . . ,wl+2} ⊂ Zn in Hermite normal form, and collections of bundles {ξξξ1, . . . , ξξξl} paired with a set of
primitive vectors {p2, . . . ,pl} ⊂ Zn satisfying Equations (6.5).

Proof. Let {w1, . . . ,wl+2} ⊂ Zn be a collection of admissible rod structures in Hermite normal. The proof
of Theorem 6.1 shows that from each successive triple {wi,wi+1,wi+2}, there is a unique bundle ξξξi which is
the lift of a (orbit space) neighborhood of these three rods to the total space Mn+2. The rod structures also
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w1 w2 w3 w4

Figure 4. In the figure above we have w1 = e1, w2 = e2, w3 = (q1, r1, p1), and w4 =
q2w2 + r2w3 + p2p2 in accordance with Equation (6.5a). The diagram shows a toric
plumbing of two disk bundle-torus products ξξξ1 and ξξξ2 over lens spaces L(p1, q1) and
L(p2, q2), along plumbing vector p2. The fibers of ξξξ1 are given by rays emanating from
w2, while the fibers of ξξξ2 are given by rays emanating from w3. Note that in the overlap,
the fibers and sections switch roles between ξξξ1 and ξξξ2.

give the integers qi, ri, and pi used in Definition 6.3 to obtain the plumbing vectors pi. By construction,
together with the admissiblity condition, these vectors satisfy the full set of plumbing relations (6.5).

Conversely, let {ξξξ1, . . . , ξξξl} be a collection of bundles and let {p2, . . . ,pl} ⊂ Zn be a collection of vectors
satisfying Equations (6.5). According to the discussion preceding this proposition, we may append to this
list p1 = 0 if the base of ξξξ1 is S1 × S2, or p1 = e3 if the base of ξξξ1 is a lens space. Equation (6.5a) then
uniquely determines the rod structures {w1, . . . ,wl+2}, since the integers qi, ri, and pi are uniquely defined
by each ξξξi as in the proof of Theorem 6.1. By hypothesis, the vectors {w1, . . . ,wl+2} satisfy (6.5b) which
can be rewritten as Det2(wi+1,wi+2) = 1, thus establishing admissibility. Lastly, we note that Equations
(6.5a) and (6.5e) imply that the matrix composed of column vectors wi satisfies the conditions of Lemma
3.3. Thus, the collection of rod structures is in Hermite normal form. □

Definition 6.6. Let ξξξi ∼= ξi × Tn−3, i = 1, . . . , l where each ξi is a D2-bundle over either a 3-dimensional
lens space or S1×S2, and let {p2, . . . ,pl} ⊂ Zn be a collection of primitive vectors satisfying the plumbing
relations (6.5). We define the toric plumbing of ξξξ1, . . . , ξξξl along the plumbing vectors p2, . . . ,pl to be the
(n+2)-dimensional simple Tn-manifold given by rod structures {w1, . . . ,wl}, where the wi are determined
by Equations (6.5a). This simple Tn-manifold is denoted by P

(
ξξξ1, . . . , ξξξl

∣∣p2, . . . ,pl

)
.

Toric plumbing may be considered as a generalization of standard equivariant plumbing. In the latter
construction the base and the fiber have the same dimension, while in the former they do not. In order to
elucidate the similarity between the two notions of plumbing, we restrict attention to n = 3 and consider a
simple T 3-manifold P

(
ξξξ1, ξξξ2

∣∣p2

)
. First note that this represents a gluing of ξξξ1 and ξξξ2. Indeed, the inclusion

ξξξ1 ↪→ P
(
ξξξ1, ξξξ2

∣∣p2

)
is manifested by the fact that {w1,w2,w3} gives the canonical (Hermite normal

form) rod diagram for ξξξ1. Furthermore, the inclusion of ξξξ2 may be observed by applying a unimodular
transformation Q which sends w2 to e1, w3 to e2, and sends p2 to e3 if p2 ̸= 0, to obtain the rod
structures {Qw2, Qw3, Qw4} which give the canonical rod diagram for ξξξ2; the primitivity condition from
(6.5c) guarantees that existence of the matrix Q.

Consider now the gluing map between the two bundles. This map will operate between the subsets of
ξξξ1 and ξξξ2 which are depicted by the overlap in Figure 4. This region is an open neighborhood of a single
corner, and thus is homeomorphic to B4 × S1. In both ξξξ1 and ξξξ2 the corner represents a single (polar)
circle in the base 3-manifold. The overlap region can further be viewed as a trivialization B2 ×D2 ×S1 of
the D2-bundles ξξξ1, ξξξ2 over a neighborhood of a polar circle. Here we use B2 to denote a disk in the base,
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and D2 to denote a disk in the fiber. Just as in standard equivariant plumbing, Figure 4 shows that the
D2 fibers in say ξξξ1, which are represented by rays emanating from w2, switch roles in the overlap with the
B2 sections in the base of ξξξ2. The gluing map is an automorphism on the overlap B2 ×D2 × S1, and we
have observed that the base and fiber disks B2 and D2 are exchanged in the gluing process. This leaves
the circle S1 unaccounted for. Since the automorphism must respect the action of T 3 on B2×D2×S1, the
image of this S1 can be represented uniquely by an element of π1(T

3) ∼= Z3. Note, however, that the image
of S1 in Z3 does not necessarily coincide with the polar circle, but rather an S1 ⊂ T 3 which acts upon it.
These circle actions are not unique as there are two Killing fields, the ones associated to B2 and D2, which
vanish on the polar circle. The Lie group homomorphism from T 3 to T 3 arising from these circle actions
should be an isomorphism. This is the same as requiring that the image of the polar S1, together with the
circle actions on B2 and D2, forms an integral basis for Z3. The plumbing vector p2 ∈ Z3 may then be
interpreted as representing the image of the polar circle, with the integral basis criteria being equivalent
to the primitivity property (6.5c).

Writing a simple Tn-manifold as a toric plumbing of disk bundles P
(
ξξξ1, . . . , ξξξl

∣∣p2, . . . ,pl

)
facilitates the

analysis of rod diagrams. Indeed P
(
ξξξ1, . . . , ξξξl

∣∣p2, . . . ,pl

)
and P

(
ξξξ′1, . . . , ξξξ

′
l

∣∣p′
2, . . . ,p

′
l

)
can be distinguished

easily, as they are equivariantly homeomorphic if and only if ξξξj ∼= ξξξ′j and pk = p′
k for all j and k. To see

this, use Proposition 6.5 to obtain rod structures {w1, . . . ,wl+2} and {w′
1, . . . ,w

′
l+2} from the disk bundles

and plumbing vectors. These rod structures are automatically in their unique Hermite normal form, and
therefore the two simple Tn-manifolds are equivariantly homeomorphic if and only if the rod structures
are identical.

Remark 6.7. Given a set of bundles {ξξξ1, . . . , ξξξl}, it may be difficult to determine all possible sets of vectors
{p2, . . . ,pl} for which the plumbing relations (6.5) are satisfied. However, it is straightforward to check
if a given set of vectors {p2, . . . ,pl} satisfies the plumbing relations for the bundles {ξξξ1, . . . , ξξξl}. Namely,
first confirm that each pi is a primitive vector. Then simply follow the recursion equations (6.5a) to find
all the wi. If each successive pair {wi,wi+1} is admissible, that is, if their second determinant divisor
is 1, then {w1, . . . ,wl+2} does indeed give a well defined rod diagram for a manifold. Lastly, check that
{w1, . . . ,wl+2} is in Hermite normal form. If so, then {p2, . . . ,pl} are valid plumbing vectors for the
manifold arising from {w1, . . . ,wl+2}.

P(ξ1, ξ2|p2) B4 × S1 C5

M5
end

(1, 0, 0) (0, 1, 0) (2, 1, 5) (2, 1, 4) (1, 1, 0) (4, 5, 0) (0, 0, 1) (0, 0, 1)

Figure 5. This is an example of the decomposition of the domain of outer communication
described in Theorem B. The black hole horizons, represented by jagged intervals, are
deformation retracts of the gray areas. In the leftmost piece of the decomposition, ξξξ1 is
formed by a disk bundle over L(5, 2) with Euler class determined by 1, while ξξξ2 is formed
by a disk bundle over L(2, 1) with Euler class 0; the plumbing vector is p2 = (1, 0, 2).
The remaining pieces include a neighborhood of a corner B4 × S1, a region centered on
the interior of an axis rod C5 = [0, 1] ×D2 × T 2, and the asymptotic end M5

end which is
homeomorphic to R+ × S3 × S1.

The strategy to establish Theorem B is illustrated in Figure 5. More precisely, consider the orbit space
of the domain of outer communication, and remove neighborhoods of the horizon rods (corresponding to
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the gray areas in the diagram). The axis is then broken into connected components, whose neighborhoods
in the orbit space lift to one of the pieces in the total space of the decomposition (2.8). In particular,
if the neighborhood contains no corners, one corner, or multiple corners then it is represented by Cn+2

k ,

B4
m×Tn−2, or P

(
ξξξ1,j , . . . , ξξξIj ,j

∣∣p2,j , . . . ,pIj ,j

)
respectively. The remaining portion of the orbit space lifts

to the asymptotic end. Clearly any rod diagram that arises from a DOC, with the current hypotheses, can
be organized into such pieces. This completes the proof of Theorem B.

7. Classification of Compact Spaces

Theorem C arises from the classification of compact simply connected Tn-manifolds of cohomogeneity
two in dimensions 4, 5, and 6. In dimensions seven and higher, a complete classification is not known, and
the technique used by Oh [28, 29] in the lower dimensional cases does not appear to generalize to higher
dimensions. On the other hand, the fundamental groups of (n+2)-dimensional Tn-manifolds can be readily
computed in all dimensions by the Seifert-Van Kampen theorem, as recorded in the next result. Note that
a portion of part (i) was established within the proof of Theorem 4 in [11].

Theorem 7.1.

(i) Let Mn+2, n ≥ 1 be a closed orientable manifold with an effective Tn-action. If Mn+2 is simply
connected then it is either the 3-sphere, or a simple Tn-manifold where the integral span of its rod
structures is Zn.

(ii) Let Mn+2 be a connected simple Tn-manifold, possibly with boundary. Suppose that the rod diagram
that represents Mn+2 is given by rod structures {v1, . . . ,vm} ⊂ Zn. Then the fundamental group
takes the form

(7.1) π1(M
n+2) ∼= Zn/ spanZ{v1, . . . ,vm} ∼= Zn−l ⊕ Zs1 ⊕ · · · ⊕ Zsl ,

where si|si+1 and si is the ith entry in the Smith normal form of the matrix composed of column
vectors vi, and l = dim spanR{v1, . . . ,vm}.

Proof. Consider part (i). The fundamental group of a Tn-manifold of dimension n + 2 can be calculated
from the topology of the quotient space and the bundle structure, using the Seifert-Van Kampen theorem.
This was carried out by Orlik and Raymond [31, Page 94] in the case when the quotient space is an orbifold
without boundary, yielding the group presentation

π1(M
n+2) ∼=

〈
τ1, . . . , τn, α1, . . . , αa, γ1, . . . , γg, δ1, . . . , δg

∣∣
[τi, τj ]; [τi, αj ]; [τi, γj ]; [τi, δj ]; for all i and j

[γ1, δ1] · · · [γg, δg] · α1 · · ·αa · τ c11 · · · τ cnn ;

αql
l · τpl1

1 · · · τpln
n ; for l = 1, . . . , a

〉
.

(7.2)

The generators τ arise from the torus fibers, the α’s represent loops around each of the a orbifold points,
and the γ’s and δ’s are generators associated with each of the g handles. In the first line of relations
we see that the τ ’s commute with themselves as they are the generators of a torus, and commute with
the α’s, γ’s, and δ’s since the former are generators of the fiber and the latter are generators in base
space Mn+2/Tn. In analogy with the presentation of the fundamental group of a genus g surface, the
second line of relations represents the obstruction to contractibility of the circumscribing loop around all
of the handles and orbifold points. That loop is homotopic to the loop around the fibers described by
c = (c1, . . . , cn) ∈ Zn ∼= π1(T

n). The last line of relations indicates how each orbifold point singularity is
to be resolved, namely, going around the i-th orbifold point qi ̸= 1 times is equivalent to going around each
of the torus fibers pij times.
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We wish to show in this case that Mn+2 ∼= S3. To do that, let the list of generators in Equation (7.2)
be denoted by G and the list of relations by R, so that π1(M

n+2) ∼=
〈
G
∣∣R〉

is trivial. Clearly then the

group H1 =
〈
G
∣∣R∪ {[αi, αj ], γk, δk}

〉
is also trivial. This is an abelian group which can be presented as

(7.3) H1 = (Za ⊕ Zn) / spanZ{(1, c), (q1e1,p1), . . . , (qaea,pa)},
where 1 ∈ Za is the vector consisting of all 1’s and pl = (pl1, . . . , pln) ∈ Zn. The number of generators is
a+ n, and the number of relations is a+1, hence H1 can only be trivial if n ≤ 1. If n = 1 then Mn+2 is a
simply connected closed 3-manifold, and thus is homeomorphic to S3.

We now consider the case where the quotient has boundary, that is ∂
(
Mn+2/Tn

)
̸= ∅. The fundamental

group in this case was calculated by Hollands and Yazadjiev [11, Theorem 3], and takes the form

π1(M
n+2) ∼=

〈
τ1, . . . , τn, α1, . . . , αa, β1, . . . , βb, γ1, . . . , γg, δ1, . . . , δg

∣∣
[τi, τj ]; [τi, αj ]; [τi, βj ]; [τi, γj ]; [τi, δj ]; for all i and j

[γ1, δ1] · · · [γg, δg] · α1 · · ·αa · β1 · · ·βb;

αql
l · τpl1

1 · · · τpln
n ; for l = 1, . . . , a;

τvk1
1 · · · τvkn

n ; for k = 1, . . . ,m
〉
.

(7.4)

The extra generators β represent the b boundary components of the orbit space which are homeomorphic
to circles; on these components the torus action does not degenerate. Additional relations are included for
these generators showing that they commute with the generators of the torus fibers. Moreover, the last line
of relations is given by rod structures {v1, . . . ,vm} for Mn+2 where each vk = (vk1, . . . , vkn) represents
a generator of the isotropy subgroup along the corresponding rod. As before denote the generators of
(7.4) by G and the list of relations by R. We can immediately determine that g = 0 by examining〈
G
∣∣R∪ {τi, αj , βℓ}

〉
, which is in fact the fundamental group of a genus g surface. Next consider the

subgroup
〈
G
∣∣R∪ {τi, αj}

〉
=

〈
β1, . . . , βb

∣∣β1 · · ·βb

〉
, and observe that it is trivial only when all βi = 1, or

rather b = 1. Now consider the abelian group H2 =
〈
G
∣∣R∪ {τi, [αi, αj ]}

〉
, which may be presented as

(7.5) H2 = Za/ spanZ{1, q1e1, . . . , qaea}.
This group cannot be trivial unless q1 = · · · = qa = 1, however this contradicts the nature of qi, and thus
a = 0. We then find that

(7.6)
〈
G
∣∣R〉

= Zn/ spanZ{v1, . . . ,vm},
and note that this is trivial only if the integral span of the rod structures is Zn.

Lastly, we will establish part (ii). Notice that Equation (7.4) reduces to the first equality in Equa-
tion (7.1) when Mn+2 is a simple Tn-space, since in this situation Mn+2/Tn has no holes, handles, or
orbifold points. Furthermore, recall that the Smith normal form of the matrix (v1,v2, . . . ,vm) is obtained
by both left and right actions using unimodular matrices. This does not alter the integral span of the
columns. Thus, as in the classification of finitely generated abelian groups, by a change of basis given by
these unimodular matrices, we obtain the second equality in (7.1). □

Theorem 7.1 may be used to as a tool to analyze the topology of the domain of outer communication
for stationary vacuum n-axisymmetric spacetimes. A conjecture providing a topological classification of
the DOCs in the asymptotically Kaluza-Klein setting, and under a spin assumption, has been put forth by
Hollands-Ishibashi in [9, Conjecture 1]. We now recall the original statement.

Conjecture (Hollands-Ishibashi). Assume that Mn+3, n ≥ 2 is the domain of outer communication of a
well-behaved asymptotically flat or asymptotically Kaluza-Klein spacetime which is spin, has Ricci tensor



THE GEOMETRY AND TOPOLOGY OF STATIONARY MULTI-AXISYMMETRIC BLACK HOLES 25

satisfying the null-convergence condition, and admits an effective U(1)n action. Then any Cauchy surface
Mn+2 can be decomposed as

(7.7) Mn+2 ∼=
(
#n

i=2mi ·
(
Si × Sn+2−i

)
#(Asymptotic Region)

)
\ Black Holes,

where the asymptotic region depends on the precise boundary conditions; e.g. in the standard Kaluza-Klein
setup R3 × Tn−1.

This conjecture implies that the fundamental group for the Cauchy surface always agrees with the
fundamental group of the asymptotic region. Indeed, recall that taking a connected sum with simply
connected space Sk ×Sn+2−k does not affect the fundamental group, and neither does removing the black
hole regions as can be seen from topological censorship, or alternatively by using Theorem 7.1. The next
proposition provides an explicit static vacuum counterexample to the above conjecture.

Proposition 7.2. There exists a well-behaved asymptotically Kaluza-Klein static bi-axisymmetric vacuum
spacetime M5 = R × M4, which is devoid of conical singularities and has two spherical horizons. The
domain of outer communication is spin and simply connected, while its asymptotic region is not simply
connected. In particular, the Cauchy surface M4 violates Conjecture 1 of [9].

Proof. Consider the rod diagram consisting of rod structures {(1, 0), (0, 0), (0, 1), (0, 0), (1, 0)}. According
to Theorem A, there exists a well-behaved asymptotically Kaluza-Klein static bi-axisymmetric vacuum
spacetime M5 = R × M4, whose orbit space M4/T 2 is a half-plane admitting this rod diagram. The
two (0, 0) rods represent S3 horizons, and the two semi-infinite rods (1, 0) give rise to the asymptotically
Kaluza-Klein end M4

end
∼= R3 × S1. Moreover, in [15, Section 6] it is shown that there are no conical

singularities on the two semi-infinite rods. The spacetime metric may be expressed in Weyl-Papapetrou
form as in (2.1). Furthermore, since the Killing field ∂ϕ2 that degenerates on the middle axis rod (0, 1)
does not affect the cone angle at the two semi-infinite rods, or the asymptotics in M4

end other than the size
of the S1 factor, we may scale the ϕ2 coordinate appropriately to relieve any angle defect on this rod. The
spacetime is then regular.

We will now analyze the topology of the domain of outer communication. First observe that Theorem
7.1 implies that M4 is simply connected, while clearly π1(M

4
end) = Z. Next, fill in each S3 horizon with

a 4-ball B4. This may be accomplished in the rod diagram by connecting the rods flanking the horizons
with a single corner. As for the asymptotic end, a cross-section has the topology S1×S2, and thus may be
filled in with an S1 ×B3. The asymptotic end is flanked by the rods (1, 0) and (1, 0), and thus the filling
may be achieved in the rod diagram by extending one of these semi-infinite axis rods until it reaches the
other, so that a single axis rod with the same rod structure is formed out of the two semi-infinite rods.
Note that these fill-ins respect the T 2-structure by construction. After filling in the horizons and capping
off the asymptotic end, we are left with a closed simple T 2-manifold having a rod diagram consisting of
only two axis rods of rod structures (1, 0) and (0, 1), which meet at two admissible corners. This is the rod
diagram for S4. Therefore, the DOC M4 is homeomorphic to S4 \ (B4 ⊔B4 ⊔S1×B3) which is homotopic
to R4 \ ({pt.} ⊔ S1), which is a spin manifold.

Now assume by way of contradiction that Conjecture 1 of [9] is true. Although the black hole region
is unknown, it cannot intersect the asymptotic region, by definition. We can therefore rearrange terms in
(7.7) to find M4 ∼=

((
#m2 · S2 × S2

)
\ Black Holes

)
#(Asymptotic Region). Recall that in three or more

dimensions, the fundamental group of a connected sum is the free product of the fundamental groups of its
components. Moreover, as stated in the conjecture, the asymptotic region for the standard Kaluza-Klein
setup is R3 × S1. Therefore, there is an injective homomorphism Z ∼= π1(R3 × S1) ↪→ π1(M

4). This leads
to a contradiction, since we have already seen that M4 ∼= R4 \ ({pt.}⊔S1), which is simply connected. □
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Even though Conjecture 1 of [9] is not true as stated, the spirit of the conjecture which suggests that
in the spin case Cauchy surfaces are primarily comprised of connected sums of products of spheres, may
nevertheless remain valid. In fact Theorem C, which will be proven at the end of this section, confirms this
sentiment in low dimensions. We are thus motivated to formulate a refined version, Conjecture D, and will
give a proof of this conjecture for spacetime dimensions 5, 6, and 7. The primary difference between the
revised and original versions is that instead of removing the black hole regions and including a connected
sum to the asymptotic end, we consider closed extensions M̄n+2 ⊃ Mn+2 \Mn+2

end . These extensions, which
may be viewed as compactified domains of outer communication, fill in the asymptotic region as well as
every horizon to form a closed manifold. Theorems 3.8 and 7.1 show that it is always possible to perform
such fill-ins and obtain a closed, simply connected Tn-manifold, albeit the compactified DOC M̄n+2 may
not be spin.

Proposition 7.3. Conjecture D is valid when n = 2, 3, or 4, if the compactified domain of outer commu-
nication is spin.

Proof. Let Mn+2 be a Cauchy surface for the domain of outer communication of the spacetime Mn+3

satisfying the desired hypotheses. Since all Cauchy surfaces are homeomorphic, we can without loss of
generality assume that Mn+2 admits a U(1)n symmetry. This, together with the topological censorship
theorem, shows that Mn+2 is a simple Tn-manifold [9, Theorem 9]. To construct the compactified DOC
M̄n+2 ⊃ Mn+2 \Mn+2

end , we cap off the asymptotic region and fill in all of the horizons in such a way that
the total space is simply connected, by adding additional rods. Theorem 3.8 describes how to construct the
fill-ins from the rod diagram, while Equation (7.1) explains how to make the total space simply connected.
If n = 2, 3, or 4, and if M̄n+2 is spin, then by Theorem C it is homeomorphic to a connect sum of products
of spheres. □

It is likely the case that a spin DOC yields a spin compactified DOC in the proof of this proposition,
in which case Conjecture D would be fully verified for n = 2, 3, or 4. Furthermore, Proposition 7.3 can
be generalized to include the non-spin case where M̄n+2 will instead be homeomorphic to a manifold in
the third row of the table from Theorem C. In addition, it should be noted that the refined conjecture
can be extended to the setting where geometric regularity of the spacetime metric is not required. This
is relevant to applications of Theorem A, since generic spacetimes produced by this result may include
conical singularities on the axes.

Remark 7.4. A slightly modified version of Proposition 7.3 holds true when the spacetime Mn+3 has
conical singularities on its axis rods. To see this, observe that the only place where geometric regularity of
the metric becomes relevant, is when the topological censorship theorem is utilized. Thus, the regularity
assumption as well as the null energy condition may be removed from the hypotheses of Conjecture D, if the
topological censorship principle is added in their place. This principle, together with the U(1)n symmetry,
guarantees that the Cauchy surface Mn+2 is a simple Tn-manifold. The remaining portion of the proof
then proceeds without change. In fact, the conjecture is at its core a purely topological statement.

Conjecture E. Let n ≥ 1. Any closed, spin, simply connected (n+2)-manifold with an effective Tn-action
is homeomorphic to either S3, S4, S5, or #n

i=2mi · Si × Sn+2−i.

It does not appear that this conjecture has previously been recorded in the literature. However, it should
be noted that McGavran claimed in [25, Theorem 3.6] (see also [24]) to have proven a similar statement.
Oh [29] pointed out flaws in McGavran’s argument, and in fact provided counterexamples to his claims.
Oh’s work on this topic [28, 29], along with Orlik and Raymond’s classification [30] in the 4-dimensional
case, remains the best evidence towards Conjecture E.
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Proof of Theorem C. We may follow the same line of argument as in the proof of Proposition 7.3. In
particular, by applying Theorems 3.8 and 7.1 to cap-off the asymptotic end and fill-in the horizons, we
arrive at a compactified domain of outer communication M̄n+2 which is closed, simply connected, and
admits an effective Tn-action. Moreover, this process of capping-off and filling-in may be accomplished in
an algorithmic manner, as explained in the proof of Theorem 3.8. We may then apply the classification
results for such manifolds given in [28–30] for n = 2, 3, 4, to obtain the chart presented in Theorem C. □
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Poincaré 10 (2009), 893–912.

[3] Henriette Elvang and Pau Figueras, Black saturn, Journal of High Energy Physics 5 (2007), 050.

[4] Henriette Elvang and Maria Rodriguez, Bicycling black rings, Journal of High Energy Physics 4 (2008), 045.

[5] Roberto Emparan and Harvey Reall, A rotating black ring solution in five dimensions, Physical Review Letters 88

(2002), no. 10, 101101.

[6] Jarah Evslin and Chethan Krishnan, The black di-ring: an inverse scattering construction, Classical and Quantum

Gravity 26 (2009), no. 12, 125018.

[7] Troels Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Physical Review D 70

(2004), no. 12, 124002.

[8] Jörg Hennig and Gernot Neugebauer, Non-existence of stationary two-black-hole configurations: the degenerate case,

General Relativity and Gravitation 43 (2011), no. 11, 3139–3162.

[9] Stefan Hollands and Akihiro Ishibashi, Black hole uniqueness theorems in higher dimensional spacetimes, Classical and

Quantum Gravity 29 (2012), no. 16, 163001.

[10] Stefan Hollands and Stoytcho Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields,

Communications in Mathematical Physics 283 (2008), no. 3, 749–768.

[11] , A uniqueness theorem for stationary Kaluza-Klein black holes, Communications in Mathematical Physics 302

(2011), no. 3, 631–674.

[12] Daisuke Ida, Akihiro Ishibashi, and Tetsuya Shiromizu, Topology and uniqueness of higher dimensional black holes,

Progress of Theoretical Physics Supplement 189 (2011), 52.

[13] Hideo Iguchi and Takashi Mishima, Black di-ring and infinite nonuniqueness, Physical Review D 75 (2007), 064018.

[14] Marcus Khuri, Yukio Matsumoto, Gilbert Weinstein, and Sumio Yamada, Plumbing constructions and the domain of

outer communication for 5-dimensional stationary black holes, Trans. American Mathematical Society 372 (2019), no. 5,

3237–3256.

[15] Marcus Khuri, Gilbert Weinstein, and Sumio Yamada, Asymptotically locally Euclidean/Kaluza-Klein stationary vacuum

black holes in five dimensions, Progress of Theoretical and Experimental Physics 5 (2018), 053E01.

[16] , Stationary vacuum black holes in 5 dimensions, Comm. Partial Differential Equations 43 (2018), no. 8, 1205–

1241.

[17] , 5-dimensional space-periodic solutions of the static vacuum einstein equations, Journal of High Energy Physics

12 (2020), Art. 2.

[18] , Balancing static vacuum black holes with signed masses in four and five dimensions, Physical Review D 104

(2021), no. 4, 044063.

[19] Yan Yan Li and Gang Tian, Nonexistence of axially symmetric, stationary solution of einstein vacuum equation with

disconnected symmetric event horizon, Manuscripta Mathematica 73 (1991), 83–90.

[20] James Lucietti and Fred Tomlinson, Moduli space of stationary vacuum black holes from integrability, Adv. Theor. Math.

Phys, to appear, available at arXiv:2008.12761.

[21] , On the nonexistence of a vacuum black lens, Journal of High Energy Physics 2 (2021), 005.

[22] Adolf Mader, Almost completely decomposable groups, 1st ed., CRC Press, 2000.

[23] Dieter Maison, Ehlers-harrison-type transformations for jordan’s extended theory of gravitation, General Relativity and

Gravitation 10 (1979), no. 8, 717–723.

[24] Dennis McGavran, Tn-actions on simply connected (n+ 2)-manifolds, Pacific Journal of Mathematics 71 (1977), no. 2,

487–497.

[25] , Adjacent connected sums and torus actions, Trans. American Mathematical Society 251 (1979), 235–254.



28 KAKKAT, KHURI, RAINONE, AND WEINSTEIN

[26] Robert Myers and Malcolm Perry, Black holes in higher dimensional space-times, Annals of Physics 172 (1986), no. 2,

304–347.

[27] Morris Newman, Integral matrices, Academic Press, 1972.

[28] Hae Soo Oh, 6-dimensional manifolds with effective T 4-actions, Topology and its Applications 13 (1982), no. 2, 137–154.

[29] , Toral actions on 5-manifolds, Trans. American Mathematical Society 278 (1983), no. 1, 233–252.

[30] Peter Orlik and Frank Raymond, Actions of the torus on 4-manifolds. I, Trans. American Mathematical Society 152

(1970), no. 2, 531–559.

[31] , Actions of the torus on 4-manifolds. II, Topology 13 (1974), no. 2, 89–112.

[32] Peter Pau, The topological structure of 4-manifolds with effective torus actions, I, Trans. American Mathematical Society

227 (1977).

[33] Andrei Pomeransky and Roman Sen’kov, Black ring with two angular momenta, preprint (2006), arXiv:hep–th/0612005.

[34] Gilbert Weinstein, On the force between rotating co-axial black holes, Trans. American Mathematical Society 343 (1994),

no. 2, 899–906.

[35] , Harmonic maps with prescribed singularities into Hadamard manifolds, Mathematical Research Letters 3 (1996),

no. 6, 835–844.

Department of Mathematics & Department of Physics, Ariel University, Ariel, Israel 40700

Email address: vishnuka@ariel.ac.il

Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794-3660, USA

Email address: khuri@math.sunysb.edu

Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794-3660, USA

Email address: jordan.rainone@stonybrook.edu

Department of Mathematics & Department of Physics, Ariel University, Ariel, Israel 40700

Email address: gilbertw@ariel.ac.il


