
J
H
E
P
0
6
(
2
0
1
5
)
1
8
8

Published for SISSA by Springer

Received: March 31, 2015

Accepted: June 12, 2015

Published: June 29, 2015

Existence of black holes due to concentration of

angular momentum

Marcus A. Khuri1

Department of Mathematics, Stony Brook University,

Stony Brook, NY 11794, U.S.A.

E-mail: khuri@math.sunysb.edu

Abstract: We present a general sufficient condition for the formation of black holes due

to concentration of angular momentum. This is expressed in the form of a universal in-

equality, relating the size and angular momentum of bodies, and is proven in the context of

axisymmetric initial data sets for the Einstein equations which satisfy an appropriate en-

ergy condition. A brief comparison is also made with more traditional black hole existence

criteria based on concentration of mass.

Keywords: Classical Theories of Gravity, Black Holes, Spacetime Singularities

ArXiv ePrint: 1503.06166

1The author acknowledges the support of NSF Grant DMS-1308753.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)188

mailto:khuri@math.sunysb.edu
http://arxiv.org/abs/1503.06166
http://dx.doi.org/10.1007/JHEP06(2015)188


J
H
E
P
0
6
(
2
0
1
5
)
1
8
8

Contents

1 Introduction 1

2 Heuristic evidence and precise formulation 2

3 Inequality between size and angular momentum for bodies 4

4 Criterion for the existence of black Holes 6

1 Introduction

The Trapped Surface Conjecture [20] and Hoop Conjecture [22] are concerned with the

folklore belief that if enough matter and/or gravitational energy are present in a sufficiently

small region, then the system must collapse to a black hole. In more concrete terms, this

belief is often realized by establishing a statement of the following form. Let Ω be a compact

spacelike hypersurface satisfying an appropriate energy condition in a spacetime M. There

exists a universal constant C > 0 such that if

Mass(Ω) > C · Size(Ω), (1.1)

then Ω is either enclosed by, or has a nontrivial intersection with, a closed trapped surface.

The point is that the presence of a closed trapped surface implies that the spacetime M
contains a singularity (or more precisely is null geodesically incomplete) by the Hawking-

Penrose Singularity Theorems [11], and assuming Cosmic Censorship [16] must therefore

contain a black hole. Although this problem is well-studied, the general case is still open.

In particular, previous results [1–3, 9, 13–15, 24] require special auxiliary conditions, for

instance assuming that the spacelike slice is spherically symmetric or maximal, whereas

others [8, 19, 25] are not meaningful for slices with small extrinsic curvature.

While it is natural, based on intuition, to suggest that high concentrations of matter

and/or gravitational energy should lead to black hole formation, here we will propose a less

intuitive criterion for gravitational collapse. Namely, we will show that high concentrations

of angular momentum alone are enough to induce collapse. In analogy with (1.1), this will

be realized by proving the existence of a universal constant C > 0 such that if

|J (Ω)| > C · R2(Ω), (1.2)

then Ω is either enclosed by, or has a nontrivial intersection with, a closed trapped surface.

Here J (Ω) represents total angular momentum, and R(Ω) is a certain radius which mea-

sures the size of Ω. Thus, if a rotating body possesses enough angular momentum and is

sufficiently small, then the system must collapse to form a black hole. To the best of the

author’s knowledge, this is a new and previously uninvestigated process by which black

holes may form. In what follows, we will give a heuristic justification of (1.2) as well as a

rigorous proof for axially symmetric rotating systems.
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2 Heuristic evidence and precise formulation

In [7], Dain introduced an inequality relating the size and angular momentum for General

Relativistic bodies of the form

R2(Ω) &
G

c3
|J (Ω)|, (2.1)

where G is the gravitational constant, c is the speed of light, and & represents an order of

magnitude; the precise constant depends on the choice of radius R. He presented heuristic

arguments which imply (2.1), and which are based on the following four assumptions and

principles:

(i) the body Ω is not contained in a black hole,

(ii) the speed of light c is the maximum speed,

(iii) the reverse inequality of (1.1) holds for bodies Ω which are not contained in a

black hole,

(iv) inequality (2.1) holds for black holes.

Now suppose that (1.2) holds. Then (2.1) is violated, and hence one of the above

four statements cannot be valid. Since (ii) is firmly established, (iii) is closely tied to the

Trapped Surface/Hoop Conjecture and is expected to hold, and (iv) has been proven [6],

it follows that assumption (i) should be false. In general terms, we conclude that if a body

satisfies (1.2), this should indicate the presence of a black hole.

A precise version of this conclusion will now be described, and then proven below.

Consider an initial data set (M, g, k) for the Einstein equations. This consists of a 3-

manifold M , (complete) Riemannian metric g, and symmetric 2-tensor k representing the

extrinsic curvature (second fundamental form) of the embedding into spacetime, which

satisfy the constraint equations

16πG

c4
µ = R+ (Trgk)

2 − |k|2,
8πG

c4
J i = ∇j(k

ij − (Trgk)g
ij).

(2.2)

Here µ and J are the energy and momentum densities of the matter fields, respectively,

and R is the scalar curvature of g. In terms of the 4-dimensional stress-energy tensor Tab

we have µ = Tabn
anb and Ji = Tian

a, where na denotes the timelike unit normal to the

slice M . A body Ω is a connected open subset of M with compact closure and smooth

boundary ∂Ω.

We say that the initial data are axially symmetric if the group of isometries of the

Riemannian manifold (M, g) has a subgroup isomorphic to U(1), and that the remaining

quantities defining the initial data are invariant under the U(1) action. In particular, if ηi

denotes the Killing field associated with this symmetry, then

Lηg = Lηk = Lηµ = LηJ = 0, (2.3)

– 2 –
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where Lη denotes Lie differentiation. Furthermore, the total angular momentum of the

body Ω is defined by

J (Ω) =
1

c

∫

Ω

Jiη
idωg. (2.4)

Axisymmetry is imposed primarily to obtain a suitable and well-defined notion of angular

momentum for bodies. Note that in this setting gravitational waves have no angular

momentum, so all the angular momentum is contained in the matter sources. Without

this assumption quasi-local angular momentum is difficult to define [21]. It will also be

assumed that the following version of the dominant energy condition holds on Ω, namely

µ ≥ | ~J |+ |J(e3)| (2.5)

where (e1, e2, e3 = |η|−1η) is an orthonormal frame field on M and ~J = J(e1)e1 + J(e2)e2.

Note that this is a stronger version of the classical dominant energy condition which states

µ ≥ |J | =
√

| ~J |2 + J(e3)2. (2.6)

Let us now consider how to measure the size of the body Ω. A particularly pertinent

measure in the current setting, is a homotopy radius defined by Schoen and Yau in [19],

which played a crucial role in their criterion for the existence of black holes due to concen-

tration of matter. The Schoen/Yau radius, RSY(Ω), may be described as the radius of the

largest torus that can be embedded in Ω. More specifically, let Γ be a simple closed curve

which bounds a disk in Ω, and let r denote the largest distance from Γ such that the set

of all points within this distance forms a torus embedded in Ω. Then RSY(Ω) is defined

to be the largest distance r among all curves Γ. For example, if Bρ is a ball of radius ρ

in flat space, then RSY(Bρ) = ρ/2. In analogy with [7], we define the radius that appears

in (1.2) by

R(Ω) =

(∫

Ω
|η|dωg

)1/2

RSY(Ω)
. (2.7)

With these definitions of angular momentum J and radius R, we obtain a precise

formulation of inequality (1.2), save for the universal constant C to be described below.

It will be shown that this inequality implies the existence of a closed trapped surface, or

more accurately an apparent horizon. Recall that the strength of the gravitational field in

the vicinity of a 2-surface S ⊂ M may be measured by the null expansions

θ± := HS ± TrSk, (2.8)

where HS is the mean curvature with respect to the unit outward normal. The null ex-

pansions measure the rate of change of area for a shell of light emitted by the surface in

the outward future direction (θ+), and outward past direction (θ−). Thus the gravitational

field is interpreted as being strong near S if θ+ < 0 or θ− < 0, in which case S is referred to

as a future (past) trapped surface. Future (past) apparent horizons arise as boundaries of

future (past) trapped regions and satisfy the equation θ+ = 0 (θ− = 0). Apparent horizons

may be thought of as quasi-local notions of event horizons, and in fact, assuming Cosmic

Censorship, they must generically be contained inside black holes [23].

– 3 –
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3 Inequality between size and angular momentum for bodies

In order to establish the existence of apparent horizons when inequality (1.2) is satisfied, we

will utilize a device employed by Schoen and Yau [19]. Namely, they showed that if a certain

differential equation does not possess a regular solution, then an apparent horizon must be

present in the initial data. This so called Jang equation is given in local coordinates by

(

gij − f if j

1 + |∇f |2
)

(

∇ijf
√

1 + |∇f |2
− kij

)

= 0, (3.1)

where f i = gij∇jf . Geometrically, this expression is equivalent to the apparent horizon

equation, but in the 4-dimensional product manifold R × M . When regular solutions do

not exist, the graph t = f(x) blows-up and approximates a cylinder over an apparent

horizon in the base manifold M (see [10, 18]). Whether or not the solution blows-up,

is related to concentration of scalar curvature or rather matter density for the induced

metric, gij = gij + ∇if∇jf , on the graph. In this regard, it is important to have an

explicit formula [4, 5, 18] for the scalar curvature of this metric, namely

R =
16πG

c4
(µ− J(v)) + |h− k|2g + 2|q|2g − 2divg(q), (3.2)

where h is the second fundamental form of the graph, divg is the divergence operator with

respect to g, and q and v are 1-forms given by

vi =
fi

√

1 + |∇f |2
, qi =

f j

√

1 + |∇f |2
(hij − kij). (3.3)

Suppose now that the Jang equation has a regular solution over Ω. One way to

measure the concentration of scalar curvature on this region is to estimate the first Dirichlet

eigenvalue, λ1, of the operator ∆g− 1

2
R; here ∆g = gij∇ij is the Laplace-Beltrami operator.

Let φ be the corresponding first eigenfunction, then

λ1 =

∫

Ω

(

|∇φ|2 + 1

2
Rφ2

)

dωg
∫

Ω
φ2dωg

. (3.4)

Notice that in the expression for the scalar curvature (3.2), only the divergence term yields

a potentially negative contribution to the quotient. However, after applying the divergence

theorem, we find that this term is dominated by the two nonnegative terms |∇φ|2 and

|q|2gφ2. It follows that

λ1 ≥
8πG

c4

∫

Ω
(µ− J(v))φ2dωg
∫

Ω
φ2dωg

. (3.5)

In light of the axial symmetry (2.3), if the Jang solution f possesses axially symmetric

boundary conditions, then Lηf = 0 on Ω. In particular, the 1-form v has no component in

the η direction, which implies that µ− J(v) ≥ µ− | ~J |. It follows that

λ1 ≥
8πG

c4

∫

Ω
(µ− | ~J |)φ2dωg
∫

Ω
φ2dωg

=: Λ. (3.6)

– 4 –
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With a lower bound for the first eigenvalue in hand, we may apply Proposition 1

from [19] to conclude

RSY(Ω) ≤
√

3

2

π√
Λ
, (3.7)

where RSY denotes the Schoen/Yau radius with respect to the metric g. Observe that

since g ≥ g, we have RSY ≥ RSY. Moreover, multiplying and dividing Λ−1 by the quantity
∫

Ω
|η|dωg

( ∫

Ω
(µ− | ~J |)|η|dωg

)−1
yields

Λ−1 ≤ c4C0
8πG

∫

Ω
|η|dωg

∫

Ω
(µ− | ~J |)|η|dωg

, (3.8)

where

C0 =
maxΩ

(

µ− | ~J |
)

minΩ

(

µ− | ~J |
) (3.9)

if µ− | ~J | > 0 in Ω, and C0 = ∞ if µ− | ~J | vanishes at some point of Ω. Hence
∫

Ω

(µ− | ~J |)|η|dωg ≤ 3πc4C0
16G

∫

Ω
|η|dωg

R2
SY

(Ω)
. (3.10)

All together these arguments produce a general relation between the size and angular

momentum of bodies.

Theorem 3.1. Let (M, g, k) be an axially symmetric initial data set which contains no

compact apparent horizons. Assume that either M is asymptotically flat, or has a strongly

untrapped boundary, that is H∂M > |Tr∂Mk|. Then for any body Ω ⊂ M satisfying the

energy condition (2.5), the following inequality holds

|J (Ω)| ≤ 3πc3C0
16G

R2(Ω). (3.11)

Proof. The conditions on the boundary of M or its asymptotics guarantee the existence

of a strongly untrapped 2-surface. For instance, if M is asymptotically flat, then a large

coordinate sphere in the asymptotic end will be strongly untrapped. This property allows

one to solve the Dirichlet boundary value problem [19] for the Jang equation (3.1), with

f = 0 on ∂M or on an appropriate coordinate sphere in the asymptotic end. The solution

f will then be axisymmetric. Moreover, the absence of apparent horizons ensures that

f is a regular solution. We may then apply the arguments preceding this theorem to

obtain (3.10).

Now observe that with the help of the energy condition (2.5),

|J (Ω)| ≤ 1

c

∫

Ω

|J(η)|dωg =
1

c

∫

Ω

|J(e3)||η|dωg

=
1

c

∫

Ω

[

|J(e3)|+ | ~J | − µ+ (µ− | ~J |)
]

|η|dωg

≤ 1

c

∫

Ω

(µ− | ~J |)|η|dωg.

(3.12)

Combining (3.10) and (3.12) produces the desired result.
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This theorem is of independent interest, and generalizes the main result of [7] in two

ways. That is, Dain’s inequality between the size and angular momentum of bodies required

two strong hypotheses, namely that the initial data are maximal Trgk = 0 and that the

matter density µ is constant. Here we have removed both of these hypotheses at the

expense of a slightly weaker inequality. More precisely, when µ − | ~J | is constant, the two

inequalities may be compared directly. The universal constant obtained by Dain, πc3

6G , is

less than the universal constant of (3.11), 3πc3

16G . Recently, other related inequalities have

been derived by Reiris [17], which also require the maximal hypothesis.

4 Criterion for the existence of black Holes

The proof of Theorem 3.1 naturally leads to a black hole existence result, due to its reliance

on solutions of the Jang equation. As noted, this technique for producing black holes was

originally exploited by Schoen and Yau [19]. Namely, if the reverse inequality of (3.11)

holds, then we must conclude that the Jang equation does not admit a regular solution.

This implies that the Jang solution blows-up and ensures the presence of an apparent

horizon. We now state the main result.

Theorem 4.1. Let (M, g, k) be an axially symmetric initial data set, such that either M

is asymptotically flat, or has a strongly untrapped boundary, that is H∂M > |Tr∂Mk|. If

Ω ⊂ M is a bounded region satisfying the energy condition (2.5), with

|J (Ω)| > 3πc3C0
16G

R2(Ω), (4.1)

then M contains an apparent horizon of spherical topology and in particular contains a

closed trapped surface.

It should be observed that Theorems 3.1 and 4.1 are independent of the particular mat-

ter model, and only require an energy condition which prevents the matter from traveling

faster than the speed of light.

Whether or not such a process, by which high concentrations of angular momentum

leads to gravitational collapse, can occur in nature, appears to be an interesting open

problem. On the theoretical side, it is important to understand the types of geometries

which admit an inequality of the form (4.1). In this regard we note that the inequality

cannot hold in the maximal case. This is due to the fact, explained at the end of the previous

section, that the constant in Dain’s inequality [7] is smaller than the constant in (4.1). This

is analogous to the situation with Schoen and Yau’s criterion for black hole formation, in

which a stronger inequality holds for bodies in the maximal case, thus preventing such

initial data from satisfying their hypotheses for the existence of trapped surfaces. Thus,

the geometries which satisfy the Schoen/Yau criterion require large amounts of extrinsic

curvature; see [15] for a discussion concerning this topic. We expect that the same holds

true for Theorem 4.1.

Let us now compare the above result with more traditional black hole existence crite-

ria based on concentration of mass. In general terms, we have shown that a body under-

goes gravitational collapse if its total angular momentum and radius satisfy an inequality

– 6 –
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of the form
G

c3
|J | & R2, (4.2)

whereas a version of the Hoop Conjecture asserts that

2Gm

c2
> R (4.3)

is sufficient for collapse, where m denotes rest mass and the left-hand side is the

Schwarzschild radius Rs. Consider the fastest spinning pulsar [12] known to date, PSR

J1748-2446ad. Its angular velocity is ω ≈ 4.5 × 103rad s−1, it has a radius of R ≈ 15km,

and consists of two solar masses m ≈ 2M⊙ = 4× 1030kg. It follows that

√

G

c3
|J | =

√

G

c3
mωR2 ≈ 3.2km and

2Gm

c2
≈ 5.9km. (4.4)

Upon comparing these values with the radius, we find that although it is close, neither (4.2)

nor (4.3) is satisfied, as expected. Moreover, the similarity of the values in (4.4) seems

to suggest that the criteria (4.2) and (4.3) may apply in similar regimes (at least for

astronomical objects), however this is dependent on the magnitude of the optimal constant

in (4.2) which is not addressed in this paper. It is thus a question worthy of further

investigation to determine the optimal constant.

We may also compare the criteria (4.2) and (4.3) in the realm of elementary particles.

It turns out that here, (4.2) offers additional insight due to the quantization of angular

momentum. More precisely, for a particle of spin s its angular momentum is given by

|J | =
√

s(s+ 1)~, (4.5)

where ~ = 1.05×10−30cm2s−1kg is Planck’s constant. According to (4.2), in order for such

a particle to remain stable gravitationally, its radius should be bounded below by a multiple

of [s(s+ 1)]1/4lp where lp =
√

G~

c3
is the Planck length. A similar, although somewhat less

convincing argument is known, from which one may derive the same conclusion based on

criteria (4.3). Namely, the gravitational stability of a particle implies that its radius should

not be less than the Schwarzschild radius, R ≥ Rs. Moreover, the length scale at and below

which quantum effects become very important is given by the Compton wavelength λ = ~

mc ,

and hence we should have Rs ≥ λ. This, however, implies that Rs ≥
√
2lp, which again

yields a lower bound for the radius of the particle in terms of the Planck length.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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