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THE LOCAL ISOMETRIC EMBEDDING IN R
3 OF

TWO-DIMENSIONAL RIEMANNIAN MANIFOLDS

WITH GAUSSIAN CURVATURE CHANGING SIGN TO

FINITE ORDER ON A CURVE

Marcus A. Khuri

Abstract

We consider two natural problems arising in geometry which are
equivalent to the local solvability of specific equations of Monge-
Ampère type. These two problems are: the local isometric em-
bedding problem for two-dimensional Riemannian manifolds, and
the problem of locally prescribed Gaussian curvature for surfaces
in R

3. We prove a general local existence result for a large class of
Monge-Ampère equations in the plane, and obtain as corollaries
the existence of regular solutions to both problems, in the case
that the Gaussian curvature vanishes to arbitrary finite order on
a single smooth curve.

0. Introduction

Let (M2, ds2) be a two-dimensional Riemannian manifold. A well-
known problem is to ask when can one realize this, locally, as a small
piece of a surface in R

3. This question has only been partially answered.
Suppose that the first fundamental form, ds2 = Edu2 + 2Fdudv +

Gdv2, is given in the neighborhood of a point, say (u, v) = 0. Let K
be the Gaussian curvature; then the known results are as follows. The
question is answered affirmatively in the case that ds2 is analytic or
K(0) 6= 0; these classical results can be found in [8], [16], and [17]. In
the case that K ≥ 0 and ds2 is sufficiently smooth, or K(0) = 0 and
∇K(0) 6= 0, C.-S. Lin provides an affirmative answer in [12] and [13]
(a simplified proof of the later result has been given by Q. Han [4]). If
K ≤ 0 and ∇K possesses a certain nondegeneracy, Han, Hong, and Lin
[6] show that an embedding always exists. Furthermore, if (u, v) = 0
is a nondegenerate critical point for K and ds2 is sufficiently smooth,
then the author provides an affirmative answer in [11]. However, A.
V. Pogorelov has given a counterexample in [15], where he constructs a
C2,1 metric with no C2 isometric embedding in R

3. More recently, other
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counterexamples for metrics with low regularity have been proposed by
Nadirashvili and Yuan [14], and local nonexistence results for smooth
Monge-Ampère equations have been obtained in [10]. In this paper we
prove the following:

Theorem 0.1. Let ds2 ∈ Cr, r ≥ 60, and suppose that σ is a geodesic

passing through the origin. If K vanishes to finite order on σ, then there

exists a Cr−36 local isometric embedding into R
3.

Remark. The geodesic hypothesis on σ is actually unnecessary, and
is only included so that Theorem 0.1 arises as a corollary of our main
result, Theorem 0.3 below. Please see the appendix for the justification.
Also, a similar result has been obtained independently by Q. Han [5].

We begin by deriving the appropriate equations for study. Our goal
is to find three functions x(u, v), y(u, v), z(u, v), such that ds2 = dx2 +
dy2 + dz2. The following strategy was first used by J. Weingarten [21].
We search for a function z(u, v), with |∇z| sufficiently small, such that
ds2 − dz2 is flat in a neighborhood of the origin. Suppose that such a
function exists; then since any Riemannian manifold of zero curvature
is locally isometric to Euclidean space (via the exponential map), there
exists a smooth change of coordinates x(u, v), y(u, v) such that dx2 +
dy2 = ds2 − dz2, that is, ds2 = dx2 + dy2 + dz2. Therefore, our problem
is reduced to finding z(u, v) such that ds2−dz2 is flat in a neighborhood
of the origin. A computation shows that this is equivalent to the local
solvability of the following equation,

(z11 − Γi
11zi)(z22 − Γi

22zi) − (z12 − Γi
12zi)

2(1)

= K(EG − F 2 − Ez2
2 − Gz2

1 + 2Fz1z2),

where z1 = ∂z/∂u, z2 = ∂z/∂v, zij are second derivatives of z, and Γi
jk

are Christoffel symbols.
Equation (1) is a second order Monge-Ampère equation. Another

well-known and related problem, which is equivalent to the local solv-
ability of a second order Monge-Ampère equation, is that of locally
prescribing the Gaussian curvature for surfaces in R

3. That is, given
a function K(u, v) defined in a neighborhood of the origin, when does
there exist a piece of a surface z = z(u, v) in R

3 having Gaussian cur-
vature K? This problem is equivalent to the local solvability of the
equation

(2) z11z22 − z2
12 = K(1 + |∇z|2)2.

For this problem we obtain a result similar to that of Theorem 0.1.

Theorem 0.2. Let σ be a smooth curve passing through the origin.

If K ∈ Cr, r ≥ 58, and K vanishes to finite order on σ, then there

exists a piece of a Cr−34 surface in R
3 with Gaussian curvature K.
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With the goal of treating both problems simultaneously, we will study
the local solvability of the following general Monge-Ampère equation

(3) det(zij + aij(u, v, z,∇z)) = Kf(u, v, z,∇z),

where aij(u, v, p, q) and f(u, v, p, q) are smooth functions of p and q, f >
0, K vanishes to finite order along a smooth curve σ passing through the
origin, and aij vanishes along σ to an order greater than or equal to one
degree less than that of K. Clearly equation (2) is of the form (3), and
equation (1) is of the form (3) if Γi

jk vanishes to the order of one degree
less than that of K along σ, which we assume without loss of generality.
More precisely, since σ is a geodesic we can introduce geodesic parallel
coordinates, such that σ becomes the v-axis and ds2 = du2 + h2dv2, for
some h ∈ Cr−1 satisfying

huu = −Kh, h(0, v) = 1, hu(0, v) = 0.

It then follows that the Christoffel symbols vanish to the appropriate
order along the v-axis. We will prove

Theorem 0.3. Let σ be a smooth curve passing through the origin.

If K, aij, f ∈ Cr, r ≥ 58, K vanishes to finite order along σ, and aij

vanishes to an order greater than or equal to one degree less than that

of K along σ, then there exists a Cr−34 local solution of (3).

Equation (3) is elliptic if K > 0, hyperbolic if K < 0, and of mixed
type if K changes sign in a neighborhood of the origin. If K(0) = 0 and
∇K(0) 6= 0 [13], then (3) is a nonlinear type of the Tricomi equation.
While if the origin is a nondegenerate critical point for K [11], then (3) is
a nonlinear type of Gallerstedt’s equation [3]. In our case, assuming that
K vanishes to some finite order n+1 ∈ Z>0 along σ (i.e., all derivatives
up to and including order n vanish along σ), and aij vanishes at least
to order n along σ, the linearized equation for (3) may be put into the
following canonical form after adding suitable first and second order
perturbation terms and making an appropriate change of coordinates,

(4) Lu = yn+1A1uxx + uyy + yn−1A2ux + A3uy + A4u,

where the Ai are smooth functions and A1 > 0 or A1 < 0. It will be
shown that this special canonical form is amenable to the making of
estimates, even in the case that (4) changes type along the line y = 0.

From now on we assume that n > 0 is even, since the case when n is
odd may be treated by the results in [12] and [6] where K is assumed
to be nonnegative or nonpositive, and the case n = 0 may be treated by
the methods of [13]. Furthermore, we assume without loss of generality

that the curve σ is given by an equation H̃(u, v) = 0, where H̃ ∈ C∞

and H̃v|σ ≥ M1 for some constant M1 > 0. Let ε be a small parameter
and set u = ε2x, v = ε2y, z = u2/2 + ε5w (the x, y used here are not
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the same as those appearing in (4)). Substituting into (3), we obtain

(5) Φ(w) := (1 + εwxx + a11)(εwyy + a22) − (εwxy + a12)
2 − Kf = 0.

By the assumptions of Theorem 0.3 we may write

aij = ε2nHn(x, y)Pij(ε, x, y, w,∇w)

and

Kf = ε2(n+1)Hn+1(x, y)P (ε, x, y, w,∇w),

where

H = ε−2H̃, Hy|σ ≥ M1, P ≥ M2

for some constant M2 > 0 independent of ε, and Pij , P are Cr with
respect to x, y and C∞ with respect to the remaining variables. Then
(5) becomes

Φ(w) = (1 + εwxx + ε2nHnP11)(εwyy + ε2nHnP22)(6)

− (εwxy + ε2nHnP12)
2 − ε2(n+1)Hn+1P

= 0.

Choose x0, y0 > 0 and define the rectangle X = {(x, y) | |x| < x0, |y| <
y0}. Then solving Φ(w) = 0 in X, is equivalent to solving (3) locally at
the origin.

In the following sections, we shall study the linearization of (6) about
some function w. In Section 1 the linearization will be reduced to the
canonical form (4). Existence and regularity for the modified linearized
equation will be obtained in Section 2. In Section 3 we make the appro-
priate estimates in preparation for the Nash-Moser iteration procedure.
Finally, in Section 4 we apply a modified version of the Nash-Moser pro-
cedure and obtain a solution of (6). An appendix is included in Section
5 in order to justify removing the geodesic hypothesis from Theorem
0.1.

Acknowledgments. This is a revised portion of my dissertation [9]
conducted at the University of Pennsylvania under the direction of Pro-
fessor Jerry Kazdan. I would like to thank Jerry Kazdan, Dennis De-
Turck, Herman Gluck, and Stephen Shatz for their suggestions and
assistance. Also a special thanks for very useful discussions is due to
Qing Han, who has obtained a similar result [5] independently for the
isometric embedding problem, Theorem 0.1.

1. Reduction to Canonical Form

In this section we will bring the linearization of (6) into the canonical
form (4). This shall be accomplished by adding certain perturbation
terms and making appropriate changes of variables. The process will
entail defining a sequence of linear operators Li, 1 ≤ i ≤ 7, where L1 is
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the linearization of (6) and L7 is of the form (4); furthermore, Li+1 will
differ from Li by a perturbation term or by a change of variables.

Fix a constant C > 0, and let w ∈ C∞(R2) be such that |w|C16 ≤ C.
Then the linearization of (6) evaluated at w is given by

(7) L1(w) =
∑

i,j

b1
ij∂xixj

+
∑

i

b1
i ∂xi

+ b1,

where x1 = x, x2 = y and

b1
11 = ε(εwyy + ε2nHn(x, y)P22(ε, x, y, w,∇w)),

b1
12 = b1

21 = −ε(εwxy + ε2nHn(x, y)P12(ε, x, y, w,∇w)),

b1
22 = ε(1 + εwxx + ε2nHn(x, y)P11(ε, x, y, w,∇w)),

b1
1 = ε2nHn(x, y)P1(ε, x, y, w,∇w),

b1
2 = ε2nHn(x, y)P2(ε, x, y, w,∇w),

b1 = ε2nHn(x, y)P3(ε, x, y, w,∇w),

for some P1, P2, P3. If ε is sufficiently small, we may solve for εwyy +
ε2nHnP22 in equation (6) to obtain
(8)

εwyy+ε2nHnP22 =
1

1 + εQ
[(εwxy+ε2nHnP12)

2+ε2(n+1)Hn+1P +Φ(w)],

where Q(ε, x, y, w,∇w,∇2w) = wxx + ε2n−1HnP11. Plugging (8) into
(7), we have

L2(w) : = L1(w) −
εΦ(w)

1 + εQ
∂xx

=
∑

i,j

b2
ij∂xixj

+
∑

i

b2
i ∂xi

+ b2,

where

b2
11 =

ε(εwxy + ε2nHnP12)
2 + ε2n+3Hn+1P

1 + εQ
.

Next define L3(w) by

L3(w) : =
1

ε(1 + εQ)
L2(w)(9)

=
∑

i,j

b3
ij∂xixj

+
∑

i

b3
i ∂xi

+ b3.

To simplify (9), we will make a change of variables that will eliminate
the mixed second derivative term. In constructing this change of vari-
ables we will make use of the following lemma from ordinary differential
equations.
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Lemma 1.1 ([1]). Let G(x, t) be a C l real valued function in the

closed rectangle |x − s| ≤ T1, |t| ≤ T2. Let T = sup |G(x, t)| in this

domain. Then the initial value problem dx/dt = G(x, t), x(0) = s,
has a unique C l+1 solution defined on the interval |t| ≤ min(T2, T1/T ).
Moreover, x(s, t) is C l with respect to s.

We now construct the desired change of variables. For any domain
Ω ⊂ R

2, and constant µ, let µΩ = {µ(x, y) | (x, y) ∈ Ω}.

Lemma 1.2. For ε sufficiently small, there exists a Cr diffeomor-

phism

ξ = ξ(x, y), η = y,

of a domain X1 onto µ1X, where µ1 > 1, such that in the new variables

(ξ, η), L3(w) is denoted by L4(w) and is given by

L4(w) =
∑

i,j

b4
ij∂xixj

+
∑

i

b4
i ∂xi

+ b4,

where x1 = ξ, x2 = η, and

b4
11 = ε2(n+1)Hn+1P 4

11,

b4
12 = b4

21 ≡ 0,

b4
22 ≡ 1,

b4
1 = ε2nHnP 41

1 + nε2nHn−1P 42
1

+

[
∂x

(
Φ(w)

2(1 + εQ)2

)
+

∂xΦ(w)

2(1+ εQ)2

]
ξx,

b4
2 = b3

2,

b4 = b3,

for some P 4
11, P 41

1 , P 42
1 , and P 4

11 ≥ C1 for some constant C1 > 0 inde-

pendent of ε and w. Furthermore
∑

|b4
ij |C12 + |b4

i |C12 + |b4|C12 ≤ C2, for

some C2 independent of ε and w.

Proof. Using the chain rule we find that b4
12 = b3

12ξx + b3
22ξy. There-

fore, we seek a smooth function ξ(x, y) such that

(10) b4
12 = b3

12ξx + b3
22ξy = 0 in X1, ξ(x, 0) = x,

where X1 will be defined below. Since b3
22 ≡ 1, the line y = 0 will be

non-characteristic for (10). Then by the theory of first order partial
differential equations, (10) is reduced to the following system of first
order ODE:

ẋ = b3
12, x(0) = s, − µ1x0 ≤ s ≤ µ1x0,

ẏ = 1, y(0) = 0,

ξ̇ = 0, ξ(0) = s,
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where x = x(t), y = y(t), ξ(t) = ξ(x(t), y(t)) and ẋ, ẏ, ξ̇ are derivatives
with respect to t.

Choose µ1 > 1. We first show that the characteristic curves, given
parametrically by (x, y) = (x(t), t), exist globally for −µ1y0 ≤ t ≤ µ1y0.
We apply Lemma 1.1 with T1 = 2µ1x0, and T2 = µ1y0, to the initial-
value problem ẋ = b3

12, x(0) = s. Let T be as in Lemma 1.1. Since
|w|C16 ≤ C, we have

T = sup
X1

|b3
12| ≤ εC3,

for some C3 independent of ε. Then for ε small, T ≤ 2x0
y0

, implying that

min(T2, T1/T ) = µ1y0.

Then Lemma 1.1 gives the desired global existence.

Let X1 be the domain with boundary consisting of the two lines
y = ±µ1y0, and the two characteristics passing through ±µ1x0. Then
the mapping (ξ, η) takes ∂X1 onto ∂µ1X. We now show that the map
ρ : µ1X → X1 given by (s, t) 7→ (x(s, t), y(s, t)) = (x(s, t), t), is a diffeo-
morphism. It will then follow that the map (x, y) 7→ (ξ(x, y), η(x, y)) =
(s(x, y), y) = ρ−1(x, y) is a diffeomorphism of X1 onto µ1X. To show
that ρ is 1-1, suppose that ρ(s1, t1) = ρ(s2, t2). Then t1 = t2 and
x(s1, t1) = x(s2, t2), which implies that s1 = s2 by uniqueness for
the initial-value problem for ordinary differential equations. To show
that ρ is onto, take an arbitrary point (x1, y1) ∈ X1, and we will show
that there exists s ∈ [−µ1x0, µ1x0] such that ρ(s, y1) = (x(s, y1), y1) =
(x1, y1). Since the map

x(s, y1) : [−µ1x0, µ1x0] → [x(−µ1x0, y1), x(µ1x0, y1)]

is continuous, and x(−µ1x0, y1) ≤ x1 ≤ x(µ1x0, y1) by definition of
X1, the intermediate value theorem guarantees that there exists s ∈
[−µ1x0, µ1x0] with x(s, y1) = x1. Therefore, ρ has a well-defined inverse
ρ−1 : X1 → µ1X.

To show that ρ−1 is smooth it is sufficient, by the inverse function
theorem, to show that the Jacobian of ρ does not vanish at each point
of µ1X. Since

Dρ =

(
xs xt

0 1

)
,

this is equivalent to showing that xs does not vanish in µ1X. Differen-
tiate the equation for x with respect to s to obtain d

dt(xs) = (b3
12)xxs,

xs(0) = 1. Then by the mean value theorem

|xs(s, t) − 1| = |xs(s, t) − xs(s, 0)| ≤ µ1y0 sup
X1

|(b3
12)x| sup

µ1X
|xs|

for all (s, t) ∈ µ1X. Thus, since |w|C16 ≤ C,

1 − εµ1y0C4 sup
µ1X

|xs| ≤ xs(s, t) ≤ εµ1y0C4 sup
µ1X

|xs| + 1
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for all (s, t) ∈ µ1X. Hence for ε sufficiently small, xs(s, t) > 0 in µ1X.
We have now shown that ρ is a diffeomorphism. Moreover, by Lemma
1.1 and the inverse function theorem ρ, ρ−1 ∈ Cr.

We now calculate b4
11 and b4

1. We have

b4
11 =

(εwxy + ε2nHnP12)
2 + ε2(n+1)Hn+1P

(1 + εQ)2
ξ2
x(11)

−
2(εwxy + ε2nHnP12)

1 + εQ
ξxξy + ξ2

y .

Since ξy = −b3
12ξx, plugging into (11) we obtain

b4
11 =

ε2(n+1)Hn+1Pξ2
x

(1 + εQ)2
:= ε2(n+1)Hn+1P 4

11.

To show that P 4
11 ≥ C1, we now estimate ξx. By differentiating (10)

with respect to x, we obtain

b3
12(ξx)x + (ξx)y = −(b3

12)xξx, ξx(x, 0) = 1.

As above let (x(t), y(t)) be the parameterization for an arbitrary char-

acteristic, then ξx(t) = ξx(x(t), y(t)) satisfies ξ̇x = −(b3
12)xξx, ξx(0) = 1.

By the mean value theorem

|ξx(t) − 1| = |ξx(t) − ξx(0)| ≤ µ1y0 sup
X1

|(b3
12)x| sup

X1

|ξx|.

Therefore

(12) 1 − εµ1y0C5 sup
X1

|ξx| ≤ ξx(t) ≤ εµ1y0C5 sup
X1

|ξx| + 1.

Thus for ε small ξx ≥ C6 > 0, showing that P 4
11 ≥ C1 for some C1 > 0

independent of ε and w.

We now calculate b4
1. We have

(13) b4
1 = b3

11ξxx + 2b3
12ξxy + b3

22ξyy + b3
1ξx + b3

2ξy.

From (10) we obtain

(14) ξxy = −(b3
12)xξx − b3

12ξxx, ξyy = −(b3
12)yξx − b3

12ξxy.
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Plugging into (13) produces

b4
1 =

ε2(n+1)Hn+1P

(1 + εQ)2
ξxx + b3

1ξx + b3
2ξy

(15)

+

[
∂y

(
εwxy + ε2nHnP12

1 + εQ

)
−

1

2
∂x

(
εwxy + ε2nHnP12

1 + εQ

)2
]

ξx

= ε2nHnQ1 + nε2nHn−1Q2

+

[
∂y

(
εwxy

1 + εQ

)
−

1

2
∂x

(
εwxy

1 + εQ

)2
]

ξx,

for some Q1, Q2. We now calculate the last term of (15). From (6) we
have

(16)
−ε2w2

xy

(1 + εQ)2
=

−εwyy(1 + εQ) + ε2nHnQ3 + Φ(w)

(1 + εQ)2
,

for some Q3. Then plugging (16) into (15), we obtain

∂y

(
εwxy

1 + εQ

)
−

1

2
∂x

(
εwxy

1 + εQ

)2

= ∂y

(
εwxy

1 + εQ

)
−

1

2
∂x

(
εwyy

1 + εQ

)

+ ε2nHnQ4 + nε2nHn−1Q5 + ∂x

[
Φ(w)

2(1 + εQ)2

]

=
ε/2wxyy(1 + εwxx) − ε2wxywxxy + ε2/2wyywxxx

(1 + εQ)2

+ ε2nHnQ6 + nε2nHn−1Q7 + ∂x

[
Φ(w)

2(1 + εQ)2

]

=
∂x

2(1 + εQ)2
[εwyy(1 + εwxx) − ε2w2

xy]

+ ε2nHnQ6 + nε2nHn−1Q7 + ∂x

[
Φ(w)

2(1 + εQ)2

]

=
∂xΦ(w)

2(1 + εQ)2
+ ∂x

[
Φ(w)

2(1 + εQ)2

]

+ ε2nHnQ8 + nε2nHn−1Q9,

for some Q4, . . . , Q9. It follows from (15) that b4
1 has the desired form.

To complete the proof of Lemma 1.2, we now show that
∑

|b4
ij |C12 +

|b4
i |C12 + |b4|C12 ≤ C2, for some constant C2 independent of ε and w. In

view of the fact that |w|C16 ≤ C, this will be accomplished by showing
that |ξ|C14 ≤ C7 for some C7 independent of ε and w. By (12) we find
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that

sup
X1

|ξx| ≤
1

1 − εC5µ1y0
:= C8.

It follows from (10) that

sup
X1

|ξy| ≤ C9,

where C9 is independent of ε and w.
We now estimate ξxx. Differentiate (10) two times with respect to x

to obtain

b3
12(ξxx)x + (ξxx)y = −2(b3

12)xξxx − (b3
12)xxξx, ξxx(x, 0) = 0.

Then the same procedure that yielded (12) produces

sup
X1

|ξxx| ≤ εµ1y0C10 sup
X1

|ξxx| + εµ1y0C11C8,

implying that

sup
X1

|ξxx| ≤
εµ1y0C11C8

1 − εµ1y0C10
:= C12.

Furthermore, in light of (14), we can use the estimates for ξx and ξxx to
estimate ξxy, and then subsequently ξyy. Clearly, we can continue this
procedure to yield |ξ|C14 ≤ C7. q.e.d.

We now continue defining the sequence of linear operators Li(w).
To simplify the coefficient of ∂ξ in L4(w), we remove the portion of b4

1

involving Φ(w) and define

L5(w) : = L4(w) −

[
∂x

(
Φ(w)

2(1 + εQ)2

)
+

∂xΦ(w)

2(1 + εQ)2

]
ξx∂ξ

=
∑

i,j

b5
ij∂xixj

+
∑

i

b5
i ∂xi

+ b5,

where x1 = ξ, x2 = η.
To bring L5(w) into the canonical form (4), we shall need one more

change of variables.

Lemma 1.3. For ε sufficiently small, there exists a Cr diffeomor-

phism

α = α(ξ, η), β = H(ξ, η),

of a domain X2 ⊂ µ1X onto µ2X, 1 < µ2 < µ1, such that µ3X properly

contains the image of ρ−1(X) (where ρ−1 is the diffeomorphism given

by Lemma 1.2), for some µ3, 1 < µ3 < µ2. In the new variables (α, β),
L5(w) is denoted by L6(w) and is given by

L6(w) =
∑

i,j

b6
ij∂xixj

+
∑

i

b6
i ∂xi

+ b6,
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where x1 = α, x2 = β, and

b6
11 = ε2(n+1)βn+1P 6

11,

b6
12 = b6

21 ≡ 0,

b6
22 = P 6

22,

b6
1 = ε2nβnP 61

1 + nε2nβn−1P 62
1 ,

b6
2 = εP 61

2 + nε2nβn−1P 62
2 ,

b6 = ε2nβnP 6
3 ,

for some P 6
11, P 6

22, P 61
1 , P 62

1 , P 61
2 , P 62

2 , P 6
3 , such that P 6

11, P
6
22 ≥ C13

for some constant C13 > 0 independent of ε and w. Furthermore∑
|b6

ij |C12 + |b6
i |C12 + |b6|C12 ≤ C14, for some C14 independent of ε and

w.

Proof. Using the chain rule we find that b6
12 = b5

11βξαξ + b5
22βηαη.

Therefore, we seek a smooth function α(ξ, η) such that

(17) b6
12 = b5

11βξαξ + b5
22βηαη = 0 in X2, α(ξ, 0) = ξ,

where X2 will be defined below. By our original assumption on H made
in the introduction, Hy ≥ C15 for some C15 > 0 independent of ε.
Therefore

Hη = Hx
∂x

∂η
+ Hy

∂y

∂η
= −Hx

ξy

ξx
+ Hy ≥ εC16 + C15 ≥ C17 > 0,

for some C16, C17 independent of ε. Since b5
22 ≡ 1, it follows that the

line η = 0 is noncharacteristic for (17). Therefore, the methods used in
the proof of Lemma 1.2 show that the desired function α(ξ, η) exists.

We now define X2. Since Hη ≥ C17 > 0, we may choose µ1 >
µ2 > 1 such that the curves H(ξ, η) = ±µ2y0 are properly contained
in the strips {(ξ, η) | y0 ≤ η ≤ µ1y0}, {(ξ, η) | −y0 ≥ η ≥ −µ1y0}.
Then define X2 ⊂ µ1X to be the domain in the ξ, η plane bounded
by the curves H(ξ, η) = ±µ2y0 and the characteristic curves of (17)
passing through the points (±µ2x0, 0). Then the methods of the proof of
Lemma 1.2 show that the mapping τ : (ξ, η) 7→ (α(ξ, η), β(ξ, η)) is a Cr

diffeomorphism from X2 onto µ2X. Furthermore, since ρ−1(X) ⊂ X2,
if µ3 is chosen large then τ(ρ−1(X)) ⊂ µ3X.

We now compute the coefficients b6
ij , b6

i , b6. We have

b6
11 = ε2(n+1)βn+1P 4

11α
2
ξ + α2

η

= ε2(n+1)βn+1P 4
11α

2
ξ + ε4(n+1)β2(n+1)(P 4

11)
2
β2

ξ

β2
η

α2
ξ

= ε2(n+1)βn+1

[
P 4

11 + ε2(n+1)βn+1(P 4
11)

2
β2

ξ

β2
η

]
α2

ξ



260 M.A. KHURI

: = ε2(n+1)βn+1P 6
11.

As in the proof of Lemma 1.2, αξ ≥ C18 for some C18 > 0 independent
of ε and w. Thus, if ε is sufficiently small the properties of P 4

11 imply
that P 6

11 ≥ C13 for some C13 > 0 independent of ε and w. Next we
calculate b6

22:

b6
22 = ε2(n+1)βn+1P 4

11β
2
ξ + β2

η := P 6
22.

Since Hη ≥ C17, if ε is sufficiently small then P 6
22 ≥ C13. Furthermore,

by (17)

b6
1 = b5

11αξξ + αηη + b5
1αξ + b5

2αη

= b5
11αξξ − ∂η

(
ε2(n+1)βn+1P 4

11βξαξ

βη

)
+ b5

1αξ + b5
2αη

: = ε2nβnP 61
1 + nε2nβn−1P 62

1 .

Lastly since βη = Hx(
−ξy

ξx
) + Hy = O(ε) + Hy, we have

βηη = O(ε) + Hyy = O(ε) + ε2H̃vv = O(ε).

Thus

b6
2 = b5

11βξξ + βηη + b5
1βξ + b5

2βη

: = εP 61
2 + nε2nβn−1P 62

2 .

We complete the proof by noting that the methods of the proof of
Lemma 1.2 show that

∑
|b6

ij |C12 + |b6
i |C12 + |b6|C12 ≤ C14, for some C14

independent of ε and w. q.e.d.

To obtain the canonical form (4), we define

L7(w) : =
1

b6
22

L6(w)

=
∑

i,j

b7
ij∂xixj

+
∑

i

b7
i ∂xi

+ b7,

where x1 = α, x2 = β, and

b7
11 = ε2(n+1)βn+1P 7

11,

b7
12 = b7

21 ≡ 0,

b7
22 ≡ 1,

b7
1 = ε2nβnP 71

1 + nε2nβn−1P 72
1 ,

b7
2 = εP 71

2 + nε2nβn−1P 72
2 ,

b7 = ε2nβnP 7
3 ,
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for some P 7
11, P 71

1 , P 72
1 , P 71

2 , P 72
2 , P 7

3 , such that P 7
11 ≥ C19 for some

constant C19 > 0 independent of ε and w. In the following section, we
shall study the existence and regularity theory for the operator L7(w).

2. Linear Theory

In this section we study the existence and regularity theory for the
operator L7. More precisely, we will first extend the coefficients of L7

onto the entire plane in a manner that facilitates an a priori estimate,
and then prove the existence of weak solutions having regularity in the
α-direction. It will then be shown that these weak solutions are also
regular in the β-direction via a boot-strap argument.

For simplicity of notation, put x = α, y = β, and L = L7(w). Then

L = ε2(n+1)yn+1B1∂xx + ∂yy + (ε2nynB2 + nε2nyn−1B3)∂x

+ (εB4 + nε2nyn−1B5)∂y + ε2nynB6

: = A∂xx + ∂yy + D∂x + E∂y + F

for some B1, . . . , B6 ∈ Cr such that B1 ≥ M and |Bi|C12 ≤ M
′
, for

some constants M, M
′

> 0 independent of ε and w. By Lemma 1.3
A, D, E, and F are defined in the rectangle µ2X. We will modify these
coefficients on R

2 − µ2X, so that they will be defined and of class Cr

on the entire plane.
Choose values y1, . . . , y6 such that 0 < y1 < · · · < y6 and y1 = µ3y0,

y6 = µ2y0. Let δ, M1 > 0 be constants, where δ will be chosen small.
Fix a nonnegative cut-off function φ ∈ C∞(R) such that

φ(y) =

{
1 if |y| ≤ y5,

0 if |y| ≥ y6.

Furthermore, define functions ψ1, ψ2, ψ3 ∈ C∞(R) with properties:

i) ψ1(y) =





0 if |y| ≤ y2,

−1 if y ≤ −y3,

1 if y ≥ y3,

ii) ψ1 ≤ 0 if y ≤ 0, ψ1 ≥ 0 if y ≥ 0, and ψ
′

1 ≥ 0,

iii) ψ2(y) =

{
0 if y ≥ −y5,

−δy − δ(y5+y6

2 ) if y ≤ −y6,

iv) ψ2 ≥ 0, and −δ ≤ ψ
′

2 ≤ 0,
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v) ψ3(y) =





0 if |y| ≤ y3,

M1 if y ≤ −y4,

−M1 if y ≥ y4,

vi) ψ3 ≥ 0 if y ≤ 0, ψ3 ≤ 0 if y ≥ 0, and ψ
′

3 ≤ 0.

Now define smooth extensions of A, D, E, and F to the entire plane by

A = ψ1(y) + φ(x)φ(y)A,

D = φ(x)φ(y)D,

E = ψ2(y) + φ(x)φ(y)E,

F = ψ3(y) + φ(x)φ(y)F ,

and set

L = A∂xx + ∂yy + D∂x + E∂y + F.

Before making estimates for L, we must define the function spaces
that will be utilized. For m, l ∈ Z≥0, let

C(m, l)(R2) = {u : R
2 → R | ∂s

x∂t
yu ∈ C(R2), s ≤ m, t ≤ l},

and

C(m, l)
c (R2) = {u ∈ C(m, l)(R2) | u has compact support}.

Let θ > 0 be a small parameter, and define the norm

‖ u ‖(m, l)= (
∑

s≤m, t≤l

θs ‖ ∂s
x∂t

yu ‖2
L2(R2))

1/2.

Then define H
(m, l)
θ (R2) to be the closure of C

(m, l)
c (R2) in the norm

‖ · ‖(m, l). Furthermore, let Hm(R2) be the Sobolev space with square
integrable derivatives up to and including order m, with norm ‖ · ‖m.
Lastly, denote the L2(R2) inner product and norm by (·, ·) and ‖ · ‖
respectively.

We are now ready to establish a basic estimate for the operator L
on R

2. This estimate will be used to establish a more general estimate,
which will in turn be used as the foundation for the proof of the existence
of weak solutions.

Lemma 2.1. If ε is sufficiently small, then there exists a constant

C1 > 0 independent of ε, and functions a(y), b(y), γ(y) ∈ C∞(R) where

γ = O(1) as y → ∞, and γ = O(|y|) as y → −∞ such that

(au + buy, Lu) ≥ C1(‖ γuy ‖2 + ‖ u ‖2), for all u ∈ C∞
c (R2).

Proof. We first define the functions a and b. Let M2, M3, M4 > 0
be constants satisfying M3 < M2 and 1

2M4 − M2 ≥ 1. Then choose
a, b ∈ C∞(R) and M2, M3, M4 such that:
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i) a(y) =

{
y2 − M2 if |y| ≤ y5,

−M3 if |y| ≥ y6,

ii) a ≤ −M3, a
′
≤ 0 if y ≤ 0, a

′
≥ 0 if y ≥ 0, and a

′′
≥ −δ,

iii) b(y) =

{
1 if y ≥ 0,

−M4y + 1 if y ≤ −y2,

iv) b ≥ 1, and b
′
≤ 0.

Now let u ∈ C∞
c (R2), and integrate by parts to obtain

(au + buy, Lu) =

∫ ∫

R2

I1u
2
x + 2I2uxuy + I3u

2
y + I4u

2,

where

I1 =

(
1

2
b
′

− a

)
A +

1

2
bAy,

I2 = −
1

2
bAx +

1

2
bD,

I3 = −a −
1

2
b
′

+ bE,

I4 =
1

2
aAxx +

1

2
a
′′

−
1

2
aDx −

1

2
(aE)y −

(
1

2
b
′

− a

)
F −

1

2
bFy.

We now estimate I1. If |y| ≤ y3 then

I1 ≥

[
(M2 − y2)ε2(n+1)yn+1B1 +

(n + 1)

2
ε2(n+1)ynB1

+
1

2
ε2(n+1)yn+1b∂yB1

]
φ(x)

= ε2(n+1)yn

[
(M2 − y2)yB1 +

(n + 1)

2
B1 +

1

2
yb∂yB1

]
φ(x)

≥ ε2(n+1)C2y
nφ(x) ≥ 0,

for some constants C2 > 0, if y3 is chosen sufficiently small. Moreover,
if |y| ≥ y3 we have

I1 ≥ O(ε2(n+1)) +

{
M3 if y ≥ 0
1
2M4 − M2 if y < 0

≥ C3,

for some C3 > 0, if ε is small.
To estimate I3, we observe that for |y| ≤ y6,

I3 ≥ M3 + O(ε).
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Furthermore, if |y| ≥ y6 then

I3 ≥ M3 +

{
0 if y ≥ 0,

δM4y
2 if y < 0.

Hence, I3 ≥ γ2(y) for some γ ∈ C∞(R) such that γ = O(1) as y → ∞,
and γ = O(|y|) as y → −∞.

Next we show that∫ ∫

R2

I1u
2
x + 2I2uxuy + I3u

2
y ≥ C4 ‖ γuy ‖2,

for some C4 > 0. From our estimates on I1 and I3, this will follow if
I1I3 − 2I2

2 ≥ 0. A calculation shows that when |y| ≤ y6, we have

I1I3 − 2I2
2 ≥ ε2(n+1)C5y

nφ(x) + O(nε2nyn−1φ(x) + ε2nyn|φ
′

(x)|)2

= ε2(n+1)yn[C5 + ε2n−2O(n2yn−2φ(x) + yn|φ
′

(x)|2φ−1(x)

+ nyn−1|φ
′

(x)|)]φ(x)

≥ 0,

for some C5 > 0 independent of ε, if ε is sufficiently small. Moreover, if
|y| ≥ y6 then

I1I3 − 2I2
2 = I1I3 > 0,

from which we obtain the desired conclusion.
Lastly, we estimate I4. In the strip |y| ≤ y4, we obtain

I4 ≥ 1 + O(ε).

Furthermore, if |y| ≥ y4 then

I4 ≥

{
M1M3 + O(ε + δ) if y ≥ 0,

M1(
1
2M4 − M2) + O(ε + δ) if y < 0.

Therefore, I4 ≥ C6 for some C6 > 0 independent of ε. q.e.d.

Having established the basic estimate, our goal shall now be to es-
tablish a more general estimate that involves derivatives of higher order

in the x-direction. Let 〈·, ·〉m denote the inner product on H
(m,0)
θ (R2)

that is,

〈u, v〉m =

∫ ∫

R2

m∑

s=0

θs∂s
xu∂s

xv, for all u, v ∈ H
(m,0)
θ (R2).

Theorem 2.1. If ε = ε(m) is sufficiently small, then for each m ≤
r − 2, there exist constants θ(m) > 0 and Cm > 0, both depending on

|A|Cm+2(R2), |D|Cm+2(R2), |E|Cm+2(R2), and |F |Cm+2(R2), such that for all

θ ≤ θ(m)

〈au + buy, Lu〉m ≥ Cm

(
‖ u ‖2

(m,0) +
m∑

s=0

θs ‖ γ∂s
xuy ‖2

)
,
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for all u ∈ C∞
c (R2).

Proof. We shall prove the estimate by induction on m. The case
m = 0 is given by Lemma 2.1. Let m ≥ 1, and assume that the estimate
holds for all integers less than m.

Let u ∈ C∞
c (R2) and set w = ∂m

x u; then

〈au + buy, Lu〉m

(18)

= 〈au + buy, Lu〉m−1 + θm(aw + bwy, Lmw)

+ θm

(
a∂m

x u + b∂m
x uy,

m−1∑

i=0

∂i
x(Ex∂m−1−i

x uy + ∂xFm−1−i∂
m−1−i
x u)

)
,

where

Lm = A∂xx + ∂yy + Dm∂x + E∂y + Fm,

Dm = D + mAx, Fm = F + mDx +
m(m − 1)

2
Axx.

We now estimate each term on the right-hand side of (18). By the
induction assumption,

(19) 〈au + buy, Lu〉m−1 ≥ Cm−1

(
‖ u ‖2

(m−1,0) +
m−1∑

s=0

θs ‖ γ∂s
xuy ‖2

)
.

In addition, since Dx, Ax, Axx have compact support and both Dm =

O(mnε2nyn−1), and mDx + m(m−1)
2 Axx = O(m2nε2n) near the origin, if

ε = ε(m) is sufficiently small then the coefficients of Lm have the same
properties as those of L so that Lemma 2.1 applies to yield

(20) θm(aw + bwy, Lmw) ≥ θmC1(‖ γwy ‖2 + ‖ w ‖2).

Furthermore, integrating by parts produces
(

a∂m
x u + b∂m

x uy,
m−1∑

i=0

∂i
x(Ex∂m−1−i

x uy + ∂xFm−1−i∂
m−1−i
x u)

)
(21)

=

∫ ∫

R2

[em−1(∂
m−1
x u)2 + em−2(∂

m−2
x u)2 + · · · + e0u

2

+ fm−1(∂
m−1
x uy)

2 + fm−2(∂
m−2
x uy)

2 + · · · + f0u
2
y

+ gm−1∂
m
x u∂m−1

x uy + gm−2∂
m−1
x u∂m−2

x uy + · · · + g0uxuy],

for some functions ei, fi, gi depending on the derivatives of A, D, E and
F up to and including order m + 2.

Observe that the power of θ in the third term on the right of (18)
is sufficiently large to guarantee that the right-hand side of (21) may
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be absorbed into the combined right-hand sides of (19) and (20), for all
θ < θ(m) if θ(m) is sufficiently small. Thus, we obtain

〈au + buy, Lu〉m ≥ Cm

(
‖ u ‖2

(m,0) +

m∑

s=0

θs ‖ γ∂s
xuy ‖2

)
,

completing the proof by induction. q.e.d.

Let f ∈ L2(R2), and consider the equation

(22) Lu = f.

A function u ∈ L2(R2) is said to be a weak solution of (22) if

(u, L∗v) = (f, v), for all v ∈ C∞
c (R2),

where L∗ is the formal adjoint of L. The estimate of Theorem 2.1 shall
serve as the basis for establishing the existence of weak solutions via the
method of Galerkin approximation. That is, we shall construct certain
finite-dimensional approximations of (22), and then pass to the limit to
obtain a solution.

Let {φl}
∞
l=1 be a basis of H2m+2

θ (R) that is orthonormal in Hm
θ (R).

Such a sequence may be constructed by applying the Gram-Schmidt
process to a basis of H2m+2

θ (R). Choose a positive integer N . We seek

an approximate solution, uN , of equation (22) in the form

uN (x, y) =
N∑

l=1

dN
l (y)φl(x),

where the functions dN
l are to be determined from the relations

(23)

∫

R

m∑

s=0

θs dsφl

dxs
∂s

xLuNdx =

∫

R

m∑

s=0

θs dsφl

dxs
∂s

xfdx, l = 1, . . . , N.

The following lemma will establish the existence of the dN
l .

Lemma 2.2. Suppose that ε = ε(m) and θ(m) are sufficiently small,

and f ∈ H
(m,0)
θ (R2), m ≤ r−2. Then there exist functions dN

l ∈ H2(R),
l = 1, . . . , N , satisfying (23) in the L2(R)-sense.

Proof. Choose ε and θ so small that Theorem 2.1 is valid. Since
{φl}

∞
l=1 is an orthonormal set in Hm

θ (R), (23) becomes

(dN
l )

′′

+
N∑

i=1

m∑

s=0

(∫

R

θs dsφl

dxs
∂s

x(Eφi)dx

)
(dN

i )
′

(24)

+
N∑

i=1

m∑

s=0

θs

(∫

R

dsφl

dxs
∂s

x(Aφ
′′

i ) +
dsφl

dxs
∂s

x(Dφ
′

i) +
dsφl

dxs
∂s

x(Fφi)dx

)
dN

i
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=

∫

R

m∑

s=0

θs dsφl

dxs
∂s

xfdx, l = 1, . . . , N.

By the theory of ordinary differential equations, it is sufficient to prove
uniqueness to obtain existence of a solution to system (24).

We now establish the uniqueness of solutions to (24) in the space

H2(R). Multiply (23) by a(y)dN
l (y) + b(y)(dN

l )
′
(y), sum over l from 1

to N , and then integrate with respect to y over R to obtain

〈auN + buN
y , LuN 〉m = 〈auN + buN

y , f〉m.

It now follows from Theorem 2.1 that

(25) Cm

(
‖ uN ‖2

(m,0) +
m∑

s=0

θs ‖ γ∂s
xuN

y ‖2

)
≤ 〈auN + buN

y , f〉m,

for some constant Cm > 0 independent of N . Again using the orthonor-
mal properties of {φl}

∞
l=1, we find

(26)
N∑

l=1

(‖ dN
l ‖2

R
+ ‖ γ(dN

l )
′

‖2
R
) =‖ uN ‖2

(m,0) +
m∑

s=0

θs ‖ γ∂s
xuN

y ‖2 .

Uniqueness for solutions of (23) in the space of functions for which the
left-hand side of (26) is finite, now follows from (25) and (26). Thus,
existence of a solution in this space is guaranteed; furthermore, since
we can solve for (dN

l )
′′

in (24), it follows that this solution is in H2(R).
q.e.d.

Before proving the existence of a weak solution to equation (22), we
will need one more lemma.

Lemma 2.3. Let v ∈ C∞
c (R2). Then there exists a unique solution,

v̂ ∈ H(∞,0)(R2) ∩ C∞(R2), of the equation

(27) (−θ)m∂2m
x v̂ + (−θ)m−1∂2(m−1)

x v̂ + · · · + v̂ = v.

Proof. By the Riesz Representation Theorem, there exists a unique
v̂ ∈ H(m,0)(R2), such that

(28) 〈v̂, w〉m = (v, w), for all w ∈ C∞
c (R2).

Thus v̂ is a weak solution of (27), and by the theory of ordinary differ-
ential equations with parameter, we have v̂ ∈ C∞(R2).

We now show that v̂ ∈ H(∞,0)(R2). It follows from (28) and the result
of Friedrichs [2] on the identity of weak and strong solutions that there

exists a sequence {v̂k}∞k=1 ⊂ C∞
c (R2) such that v̂k → v̂ in H(m,0)(R2),

and

(−θ)m∂2m
x v̂k + · · · + (−θ)

m0+2
2 ∂m0+2

x v̂k → v − (−θ)
m0
2 ∂m0

x v̂ − · · · − v̂
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in L2(R2), where m0 = m if m is even, and m0 = m − 1 if m is odd.
Therefore∫ ∫

R2

v2

=

∫ ∫

R2

[(−θ)m∂2m
x v̂ + · · · + (−θ)

m0+2
2 ∂m0+2

x v̂]2

+

∫ ∫

R2

2[(−θ)m∂2m
x v̂ + · · · + (−θ)

m0+2
2 ∂m0+2

x v̂]

· [(−θ)
m0
2 ∂m0

x v̂ + · · · + v̂]

+

∫ ∫

R2

[(−θ)
m0
2 ∂m0

x v̂ + · · · + v̂]2

≥ lim
k→∞

∫ ∫

R2

2[(−θ)m∂2m
x v̂k + · · · + (−θ)

m0+2
2 ∂m0+2

x v̂k]

· [(−θ)
m0
2 ∂m0

x v̂k + · · · + v̂k]

+ lim
k→∞

∫ ∫

R2

[(−θ)
m0
2 ∂m0

x v̂k + · · · + v̂k]2.

Integrating by parts yields
∫ ∫

R2

v2 ≥ lim
k→∞

∫ ∫

R2

θm+1(∂m+1
x v̂k)2 + · · · + (v̂k)2,

if m > 1. Since bounded sets in Hilbert spaces are weakly compact,
v̂kl ⇀ v weakly in H(m+1,0)(R2), for some v ∈ H(m+1,0)(R2), where
{v̂kl}∞l=1 is a subsequence of {v̂k}. For simplicity, we denote v̂kl by v̂k.

We now show that v̂ ≡ v. By the Riesz Representation Theorem,
there exists w ∈ H(m+1,0)(R2) such that

〈w, z〉m+1 = 〈v̂ − v, z〉m, for all z ∈ H(m+1,0)(R2).

In particular, setting z = v̂k − v we have

(29) lim
k→∞

〈w, v̂k − v〉m+1 = lim
k→∞

〈v̂ − v, v̂k − v〉m =‖ v̂ − v ‖2
(m,0) .

Furthermore, since v̂k ⇀ v we have

(30) lim
k→∞

〈w, v̂k − v〉m+1 = 0.

Combining (29) and (30) we obtain v̂ ≡ v in H(m,0)(R2), implying that

v̂ ∈ H(m+1,0)(R2). Recall that we assumed that m > 1; however, if

m = 1 we still obtain v̂ ∈ H(m+1,0)(R2) by solving for ∂xxv̂ in (27). A

boot-strap argument can now be used to show that v̂ ∈ H(∞,0)(R2).
q.e.d.

We are now ready to establish the existence of a weak solution of
equation (22), having regularity in the x-direction.
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Theorem 2.2. If ε = ε(m) and θ(m) are sufficiently small, then for

every f ∈ H
(m,0)
θ (R2), m ≤ r − 2, there exists a unique weak solution

u ∈ H
(m,1)
θ (R2) of (22).

Proof. For each N ∈ Z>0, let uN ∈ H
(m,2)
θ (R2) be given by Lemma

2.2. Then applying Cauchy’s inequality (pq ≤ κp2 + 1
4κq2, κ > 0) to the

right-hand side of (25), we obtain

(31) ‖ uN ‖(m,1)≤ C
′

m ‖ f ‖(m,0),

where C
′

m is independent of N . Since bounded sets in Hilbert spaces are
weakly compact, there exists a subsequence {uNi}∞i=1 such that uNi ⇀ u

in H
(m,1)
θ (R2), for some u ∈ H

(m,1)
θ (R2).

We now show that u is a weak solution of (22). Let v ∈ C∞
c (R2) and

let v̂ ∈ H(∞,0)(R2) ∩ C∞(R2) be the solution of

(−θ)m∂2m
x v̂ + (−θ)m−1∂2(m−1)

x v̂ + · · · + v̂ = v,

given by Lemma 2.3. Since {φl(x)}∞l=1 forms a basis in H2m+2
θ (R), we

can find eN∗

l (y) ∈ H∞(R) such that vN∗ :=
∑N∗

l=1 eN∗

l (y)φl(x) → v̂ in

H
(2m+2,2)
θ (R2) as N∗ → ∞. Then multiply (23) by eN∗

l , sum over l from
1 to N∗, and integrate with respect to y over R to obtain

〈vN∗ , LuNi〉m = 〈vN∗ , f〉m.

Integrating by parts and letting Ni → ∞ produces

(u, L∗(vN∗ + · · · + (−θ)m∂2m
x vN∗)) = (f, vN∗ + · · · + (−θ)m∂2m

x vN∗).

Furthermore, by letting N∗ → ∞ we obtain

(u, L∗v) = (f, v).

Uniqueness of the weak solution follows from (31). q.e.d.

We now prove regularity in the y-direction for the weak solution given
by Theorem 2.2, in the case that f ∈ Hm(R2). The following standard
lemma concerning difference quotients will be needed.

Lemma 2.4. Let w ∈ L2(R2) have compact support, and define

wh =
1

h
(w(x, y + h) − w(x, y)).

If ‖ wh ‖≤ C8 where C8 is independent of h, then w ∈ H(0,1)(V ) for

any compact V ⊂ R
2. Furthermore, if w ∈ H(0,1)(R2) then

‖ wh ‖≤ C9 ‖ wy ‖,

for some C9 independent of h.

Theorem 2.3. Suppose that the hypotheses of Theorem 2.2 are ful-

filled and that f ∈ Hm(R2); then u ∈ Hm(µ2X).
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Proof. If m = 0, 1, then the desired conclusion follows directly from
Theorem 2.2, so assume that m ≥ 2. Let ζ ∈ C∞(R2) be a cut-off
function such that

ζ(x, y) =

{
1 if (x, y) ∈ µ2X,

0 if (x, y) ∈ (µ2 + 1)X.

Let u ∈ H
(m,1)
θ (R2) be the weak solution of (22) given by Theorem 2.2.

Set w = ζu, then since u is a weak solution of (22) we obtain

[w, v] : =

∫ ∫

R2

wyvy − Ewyv − Fwv

=

∫ ∫

R2

−f̃v, for all v ∈ C∞
c (R2),

where f̃ = ζf − Aζuxx + ζyyu + 2ζyuy − Dζux + Eζyu.

Using Lemma 2.4 and the fact that f̃ ∈ L2(R2), we have

|[wh, v]| ≤ |[w, v−h]| + C10 ‖ v ‖(0,1)(32)

=

∣∣∣∣
∫ ∫

R2

f̃v−h

∣∣∣∣ + C10 ‖ v ‖(0,1)

≤ C11 ‖ v ‖(0,1),

for some constants C10, C11 independent of h. Furthermore, integrating
by parts yields

(33) C12 ‖ v ‖2
(0,1)≤ |[v, v]| + C13 ‖ v ‖ .

The estimates (32) and (33) also hold if v = wh. Therefore

C12 ‖ wh ‖2
(0,1) ≤ C11 ‖ wh ‖(0,1) +C13 ‖ wh ‖

≤ C11 ‖ wh ‖(0,1) +C14,

for some constant C14 independent of h. It follows that ‖ wh ‖(0,1)≤ C15

independent of h. Hence, by Lemma 2.4 w ∈ H(0,2)(V ) for any compact

V ⊂ R
2. Since w ≡ u in µ2X, we have u ∈ H(0,2)(µ2X).

By differentiating Lu = f with respect to x, s = 1, . . . , m − 2 times,
we obtain

(34) Lsz = ∂s
xf −

s−1∑

i=0

∂i
x(Ex∂s−1−i

x uy + ∂xFs−1−i∂
s−1−i
x u),

where z = ∂s
xu and Ls, Fs were defined in (18). We may then apply

the above procedure to equation (34) and obtain ∂s
xu ∈ H(0,2)(µ2X),

s = 1, . . . , m − 2.
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Lastly denote the right-hand side of (34) by fs, then the following
equation holds in L2(µ2X):
(35)

zyy = fs − Azxx − (D + sAx)zx − Ezy −

(
F + sDx +

s(s − 1)

2
Axx

)
z.

Since the right-hand side of (35) is in H(0,1)(µ2X), it follows that zyy ∈

H(0,1)(µ2X). Then by differentiating (35) with respect to y, we may
apply a boot-strap argument to obtain u ∈ Hm(µ2X). q.e.d.

3. The Moser Estimate

Having established the existence of regular solutions to a small per-
turbation of the linearized equation for (6), we intend to apply a Nash-
Moser type iteration procedure in the following section, to obtain a
smooth solution of (6) in X. In the current section, we shall make
preparations for the Nash-Moser procedure by establishing a certain a
priori estimate. This estimate, referred to as the Moser estimate, will
establish the dependence of the solution u of (22), on the coefficients of
the linearization as well as on the right-hand side, f . If the linearization
is evaluated at some function w ∈ C∞(µ2X), then the Moser estimate
is of the form

(36) ‖ u ‖Hm≤ Cm(‖ f ‖Hm + ‖ w ‖Hm+m1‖ f ‖H2),

for some constants Cm and m1 independent of ε and w.
Estimate (36) will first be established in the coordinates (α, β), which

we have been denoting by (x, y) for convenience, and later converted
into the original coordinates (x, y) of the introduction. We will need
the Gagliardo-Nirenberg estimates contained in the following lemma.

Lemma 3.1. Let u, v ∈ Ck(Ω).

i) If σ and ̺ are multi-indices such that |σ|+ |̺| = k, then there exist

constants M1 and M2 depending on k, such that

‖ ∂σu∂̺v ‖L2(Ω)≤ M1(|u|L∞(Ω) ‖ v ‖Hk(Ω) + ‖ u ‖Hk(Ω) |v|L∞(Ω)),

and

|∂σu∂̺v|C0(Ω) ≤ M2(|u|C0(Ω)|v|Ck(Ω) + |u|Ck(Ω)|v|C0(Ω)).

ii) If σ1, . . . , σl are multi-indices such that |σ1| + · · · + |σl| = k, then

there exists a constant M3 depending on l and k, such that

‖ ∂σ1u1 · · · ∂
σlul ‖L2(Ω)

≤ M3

l∑

j=1

(|u1|L∞(Ω) · · · |̂uj |L∞(Ω) · · · |ul|L∞(Ω)) ‖ uj ‖Hk(Ω),

where |̂uj |L∞(Ω) indicates the absence of |uj |L∞(Ω).
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iii) Let B ⊂ R
N be compact and contain the origin, and let G ∈

C∞(B). If u ∈ Hk+2(Ω, B) and ‖ u ‖H2(Ω)≤ C for some fixed C,

then there exist constants M,Mk > 0 such that

‖ G ◦ u ‖Hk(Ω)≤ M + Mk ‖ u ‖Hk+2(Ω),

where M =Vol(Ω)|G(0)|.

Proof. These estimates are standard consequences of the interpola-
tion inequalities, and may be found in, for instance, [20]. q.e.d.

Estimate (36) will follow by induction from the next two propositions.
The first shall establish an estimate for the x-derivatives only, while the
second deals with all remaining derivatives.

Proposition 3.1. Suppose that the linearization, L1, is evaluated

at some function w ∈ C∞(R2) with |w|C16 ≤ C1, as in (7). Let f ∈

Hm(R2) and u ∈ H(m,1)(R2) ∩Hm(µ2X), m ≤ r − 7, be the solution of

(22). If ε = ε(m) is sufficiently small, then

‖ ∂m
x u ‖ + ‖ ∂m

x uy ‖

≤ Cm(‖ f ‖m + ‖ u ‖Hm−1(µ2X) + ‖ w ‖Hm+7(µ2X)‖ f ‖H2(µ2X)),

for some constant Cm independent of ε and w.

Proof. We proceed by induction on m. The case m = 0 is given by
Lemma 2.1. Now assume that the estimate holds for all positive integers
less than m. Differentiate L(w)u = f m-times with respect to x and
put v = ∂m

x u, then

Lmv = ∂m
x f −

m−1∑

i=0

∂i
x(Ex∂m−1−i

x uy + ∂xFm−1−i∂
m−1−i
x u) := fm,

where Lm and Fm were defined in (18). If ε = ε(m) is sufficiently small,
we can apply Lemma 2.1 to obtain

(37) ‖ ∂m
x u ‖ + ‖ ∂m

x uy ‖≤ M ‖ fm ‖ .

We now estimate each term of fm. Let ‖ ·‖m, µ2X denote ‖ ·‖Hm(µ2X),
and | · |∞ denote | · |L∞(µ2X). A calculation shows that

m−1∑

i=0

∂i
x(Ex∂m−1−i

x uy) = mEx∂m−1
x uy +

m−1∑

i=1

i∑

j=1

(
i
j

)
∂j+1

x E∂m−1−j
x uy.
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Then using Lemma 3.1 (i) and (iii), and recalling that Ex vanishes on
R

2 − µ2X, we obtain
∥∥∥∥∥

m−1∑

i=0

∂i
x(Ex∂m−1−i

x uy)

∥∥∥∥∥
≤ M1 ‖ ∂m−1

x uy ‖

+ M2(|∂
2
xE|∞ ‖ u ‖m−1, µ2X + ‖ ∂2

xE ‖m−1, µ2X |u|∞)

≤ M1 ‖ ∂m−1
x uy ‖

+ M3(|E|C2(µ2X) ‖ u ‖m−1, µ2X + ‖ w ‖m+6,µ2X‖ u ‖2, µ2X).

Using the fact that |E|C2(µ2X) ≤ C
′

14 (Lemma 1.3), and the induction

assumption, we have
∥∥∥∥∥

m−1∑

i=0

∂i
x(Ex∂m−1−i

x uy)

∥∥∥∥∥(38)

≤ C
′

m−1(‖ f ‖m−1 + ‖ u ‖m−1, µ2X + ‖ w ‖m+6, µ2X‖ u ‖2, µ2X).

In a similar manner, we may estimate
∥∥∥∥∥

m−1∑

i=0

∂i
x(∂xFm−1−i∂

m−1−i
x u)

∥∥∥∥∥(39)

≤ C
′′

m−1(‖ f ‖m−1 + ‖ u ‖m−1, µ2X + ‖ w ‖m+7, µ2X‖ u ‖2, µ2X).

Furthermore, the methods used above can be made to show that

‖ u ‖2, µ2X≤ M4 ‖ f ‖2, µ2X .

Then (38) and (39) yield

‖ ∂m
x u ‖ + ‖ ∂m

x uy ‖

≤ Cm(‖ f ‖m + ‖ u ‖m−1, µ2X + ‖ w ‖m+7, µ2X‖ f ‖2, µ2X),

completing the proof by induction. q.e.d.

We now estimate the remaining derivatives.

Proposition 3.2. Let u, w, f , ε, and m be as in Proposition 3.1.
Then

‖ ∂s
x∂t

yu ‖µ2X

≤ Cm(‖ f ‖m, µ2X + ‖ u ‖m−1, µ2X + ‖ w ‖m+7, µ2X‖ f ‖2, µ2X),

for 0 ≤ s ≤ m − t, 0 ≤ t ≤ m, where Cm is independent of ε and w.

Proof. The cases t = 0, 1 are given by Proposition 3.1. We will pro-
ceed by induction on t. Assume that the desired estimate holds for
0 ≤ s ≤ m − t, 0 ≤ t ≤ k − 1, 0 ≤ k ≤ m.
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Solving for uyy in the equation L(w)u = f , we obtain

(40) uyy = f − Auxx − Dux − Euy − Fu := f.

Differentiate (40) with respect to ∂s
x∂k−2

y where 0 ≤ s ≤ m − k, then

(41) ∂s
x∂k

yu = ∂s
x∂k−2

y f.

We now estimate each term on the right-hand side of (41). Using
Lemma 3.1 (i) and (iii), we have

‖ ∂s
x∂k−2

y (Auxx) ‖µ2X

≤ M5


‖ ∂s+2

x ∂k−2
y u ‖µ2X +

∑

p≤s, q≤k−2
(p,q) 6=(0,0)

‖ ∂p
x∂q

yA∂s−p
x ∂k−2−q

y uxx ‖µ2X




≤ M
′

5(‖ ∂s+2
x ∂k−2

y u ‖µ2X +|A|C1(µ2X) ‖u‖m−1, µ2X + ‖A‖m, µ2X |u|∞)

≤ M
′′

5 (‖ ∂s+2
x ∂k−2

y u ‖µ2X + ‖ u ‖m−1, µ2X + ‖ w ‖m+4, µ2X‖ f ‖2,µ2X).

Furthermore, since s ≤ m − k the induction assumption implies that

‖ ∂s+2
x ∂k−2

y u ‖µ2X

≤ M6(‖ f ‖m, µ2X + ‖ u ‖m−1, µ2X + ‖ w ‖m+7, µ2X‖ f ‖2, µ2X).

Thus

‖ ∂s
x∂k−2

y (Auxx) ‖µ2X

≤ M7(‖ f ‖m, µ2X + ‖ u ‖m−1, µ2X + ‖ w ‖m+7, µ2X‖ f ‖2, µ2X).

The remaining terms on the right-hand side of (41) may be estimated
in a similar manner. Therefore

‖ ∂s
x∂k

yu ‖µ2X

≤ M8(‖ f ‖m, µ2X + ‖ u ‖m−1, µ2X + ‖ w ‖m+7, µ2X‖ f ‖2, µ2X),

for 0 ≤ s ≤ m − k. The proof is now complete by induction. q.e.d.

By combining the previous two propositions, we obtain the following
Moser estimate.

Theorem 3.1. Let u, w, f , ε, and m be as in Proposition 3.2. Then

‖ u ‖m, µ2X≤ Cm(‖ f ‖m, µ2X + ‖ w ‖m+7, µ2X‖ f ‖2, µ2X),

where Cm is independent of ε and w.

Proof. This follows by induction on m, using Proposition 3.2. q.e.d.

The Moser estimate of Theorem 3.1 is in terms of the variables (α, β)
of Lemma 1.3. Since the Nash-Moser iteration procedure of the fol-
lowing section will be carried out in the original variables, (x, y), of
the introduction, we will now obtain an analogous Moser estimate in
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these original coordinates. Let ‖ · ‖m, Ω, ‖ · ‖
′

m, Ω, and ‖ · ‖
′′

m, Ω de-

note the Hm(Ω) norm with respect to the variables (x, y), (ξ, η), and
(α, β) respectively; a similar notation will be used for the Cm(Ω) norms.
The following estimates will be needed in transforming the estimate of
Theorem 3.1 into the original variables.

Lemma 3.2. If ε = ε(m) is sufficiently small, then

‖ ξx ‖m, X1≤ Cm(1+ ‖ w ‖m+7, X1),

and

‖ αξ ‖
′

m, X2
≤ C

′

m(1+ ‖ w ‖
′

m+7, X2
),

where Cm and C
′

m are independent of ε and w, and X1, X2 were defined

in Lemmas 1.2 and 1.3.

Proof. We shall only prove the first estimate, since a similar argument
yields the second. The estimate will be proven by induction on m. From
the proof of Lemma 1.2 we have

|ξx|C0(X1) ≤ M9,

which gives the case m = 0. Now assume that the following estimate
holds:

|ξx|Cm−1(X1) ≤ Cm−1|b
3
12|Cm(X1).

We will first estimate the x-derivatives. Differentiate the equation

(42) b3
12(ξx)x + (ξx)y = −(b3

12)xξx,

m-times with respect to x to obtain

b3
12(∂

m
x ξx)x + (∂m

x ξx)y = −∂m
x [(b3

12)xξx] −
m−1∑

i=0

∂i
x[(b3

12)x∂m−i
x ξx] := g.

Then estimating ∂m
x ξx along the characteristics of (42) as in the proof

of Lemma 1.2, we find

|∂m
x ξx|C0(X1) ≤ µ1y0|g|C0(X1).

Using the second half of Lemma 3.1 (i) in the same way that the first
half was used in Proposition 3.1, and recalling that |b3

12|C2(X1) ≤ εM10,

produces

|g|C0(X1)

≤ (m + 1)εM10|∂
m
x ξx|C0(X1)

+ M
′

10(|(b
3
12)xx|C0(X1)|ξx|Cm−1(X1) + |(b3

12)xx|Cm−1(X1)|ξx|C0(X1)).

Therefore if ε is small enough to guarantee that (m + 1)µ1y0εM10 < 1
2 ,

we can bring

(m + 1)µ1y0εM10|∂
m
x ξx|C0(X1)
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to the left-hand side:

(43) |∂m
x ξx|C0(X1) ≤ M11(|ξx|Cm−1(X1) + |b3

12|Cm+1(X1)).

By solving for (ξx)y in equation (42), and differentiating the result
with respect to ∂s

x∂t−1
y , 0 ≤ s ≤ m − t, 0 ≤ t ≤ m, we can use the

techniques of Proposition 3.2, combined with Lemma 3.1 (i) and (43),
to obtain

(44) |∂s
x∂t

yξx|C0(X1) ≤ M12(|ξx|Cm−1(X1) + |b3
12|Cm+1(X1)).

By the induction assumption on m, (44) implies that

|ξx|Cm(X1) ≤ M13|b
3
12|Cm+1(X1).

Then the Sobolev Embedding Theorem gives

‖ ξx ‖m, X1≤ M14 ‖ b3
12 ‖m+3, X1 .

Thus, by Lemma 3.1 (iii) we have

‖ ξx ‖m, X1≤ M15(1+ ‖ w ‖m+7, X1).

q.e.d.

Theorem 3.2. Let u, w, and f be as in Theorem 3.1, and m ≤ r−25.
If ε = ε(m) is sufficiently small, then

‖ u ‖m, X≤ Cm(‖ f ‖m, X1 + ‖ w ‖m+25, X1‖ f ‖2, X1),

where Cm is independent of ε and w.

Proof. We first prove an analogue of the desired estimate in terms of
the variables (ξ, η). Observe that

(45) ξα =
1

αξ

(
β2

η

β2
η + β2

ξ b5
12

)
≥ M16

for some M16 > 0, if ε is sufficiently small. Let G(b5
12) = β2

η/(β2
η+β2

ξ b5
12),

and s = m − t, 0 ≤ t ≤ m. A calculation shows that

‖ ∂s
ξ∂

t
ηu ‖

′

X2
≤ M17

m∑

k=0

k∑

i=0

‖ Rik∂
k−i
α ∂i

βu ‖
′′

µ2X ,

where the Rik are polynomials in the variables ∇σ1
α,βξα, ∇σ2

α,βξ−1
α , ∇σ3

α,βb5
12,

∇σ4
α,βG(b5

12), ∇
σ5+1
ξ,η β, such that |σj | ≤ m − k, 1 ≤ j ≤ 5, and

∑
ν |σν | ≤

m − k, where
∑

ν |σν | represents the sum over all σj appearing in an
arbitrary term of Rik. Then using Lemma 3.1 (ii) and (iii), we find
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that

‖ ∂s
ξ∂

t
ηu ‖

′

X2
(46)

≤ M18[‖ u ‖
′′

m, µ2X

+ (‖ ξα ‖
′′

m, µ2X + ‖ ξ−1
α ‖

′′

m, µ2X + ‖ b5
12 ‖

′′

m+2, µ2X)|u|∞]

≤ M
′

18[‖ u ‖
′′

m, µ2X +(‖ ξα ‖
′′

m+2, µ2X + ‖ w ‖
′′

m+6, µ2X)|u|∞].

Similarly,
(47)

‖ ∂s
α∂t

βu ‖
′′

µ2X≤ M19[‖ u ‖
′

m, X2
+(‖ αξ ‖

′

m+2, X2
+ ‖ w ‖

′

m+6, X2
)|u|∞].

Then by Theorem 3.1, the Sobolev Lemma, and (46) we have

‖ ∂s
ξ∂

t
ηu ‖

′

X2
≤ M20(‖ f ‖

′′

m, µ2X + ‖ w ‖
′′

m+7, µ2X‖ f ‖
′′

2, µ2X)

(48)

+ M
′

20(‖ ξα ‖
′′

m+2, µ2X + ‖ w ‖
′′

m+6, µ2X) ‖ f ‖
′

2, X2
.

We now estimate the terms on the right-hand side of (48). Using
Lemma 3.1 (i), (iii), Lemma 3.2, (45), and (47) we have

‖ ξα ‖
′′

m+2, µ2X

≤ M21[‖ ξα ‖
′

m+2, X2
+(‖ αξ ‖

′

m+4, X2
+ ‖ w ‖

′

m+8, X2
)|ξα|∞]

≤ M22[‖ α−1
ξ G(b5

12) ‖
′

m+2, X2
+ ‖ αξ ‖

′

m+4, X2
+ ‖ w ‖

′

m+8, X2
]

≤ M23[|G(b5
12)|∞ ‖ α−1

ξ ‖
′

m+2, X2
+ ‖ G(b5

12) ‖
′

m+2, X2
|α−1

ξ |∞

+ ‖ αξ ‖
′

m+4, X2
+ ‖ w ‖

′

m+8, X2
]

≤ M24[‖ αξ ‖
′

m+4, X2
+ ‖ w ‖

′

m+8, X2
]

≤ M25[1+ ‖ w ‖
′

m+11, X2
].

Furthermore by (47), Lemma 3.2, and the Sobolev Lemma,

‖ f ‖
′′

m, µ2X

≤ M26[‖ f ‖
′

m, X2
+(‖ αξ ‖

′

m+2, X2
+ ‖ w ‖

′

m+6, X2
) ‖ f ‖

′

2, X2
]

≤ M
′

26[‖ f ‖
′

m, X2
+ ‖ w ‖

′

m+9, X2
‖ f ‖

′

2, X2
].

Also, the same method yields

‖ w ‖
′′

m+7, µ2X ≤ M27(‖ w ‖
′

m+7, X2
+ ‖ w ‖

′

m+16, X2
‖ w ‖

′

2, X2
)

≤ M
′

27 ‖ w ‖
′

m+16, X2
.

Therefore, from (48) and the above estimates we obtain

(49) ‖ u ‖
′

m, X2
≤ M28(‖ f ‖

′

m, X2
+ ‖ w ‖

′

m+16, X2
‖ f ‖

′

2, X2
).
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We can now apply the same procedure to obtain the following analogue
of (49) in terms of the original variables (x, y),

‖ u ‖m, X≤ M29(‖ f ‖m, X1 + ‖ w ‖m+25, X1‖ f ‖2, X1).

q.e.d.

4. The Nash-Moser Procedure

In this section we will carry out a Nash-Moser type iteration proce-
dure to obtain a solution of

(50) Φ(w) = 0 in X.

Instead of solving the linearized equation at each iteration, we shall solve
a small perturbation of the modified linearized equation L7(v)u = f , and
then estimate the error at each step. However, the theory of sections §2
and §3 requires that v and f be defined on the whole plane. Therefore,
we will need the following extension theorem.

Theorem 4.1 ([19]). Let Ω be a bounded convex domain in R
2, with

Lipschitz smooth boundary. Then there exists a linear operator TΩ :
L2(Ω) → L2(R2) such that:

i) TΩ(g)|Ω = g,
ii) TΩ : Hm(Ω) → Hm(R2) continuously for each m ∈ Z≥0.

As with all Nash-Moser iteration schemes we will need smoothing
operators, which we now construct. Fix χ̂ ∈ C∞

c (R2) such that χ̂ ≡ 1
inside X. Let χ(x) =

∫ ∫
R2 χ̂(η)e2πiη·xdη be the inverse Fourier trans-

form of χ̂. Then χ is a Schwartz function and satisfies
∫ ∫

R2 χ(x)dx ≡ 1,∫ ∫
R2 xβχ(x)dx = 0 for any multi-index β, β 6= 0. If g ∈ L2(R2) and

µ ≥ 1, we define smoothing operators S
′

µ : L2(R2) → H∞(R2) by

(S
′

µg)(x) = µ2

∫ ∫

R2

χ(µ(x − y))g(y)dy.

Then we have (see [18]),

Lemma 4.1. Let l, m ∈ Z≥0 and g ∈ H l(R2); then

i) ‖ S
′

µg ‖Hm(R2)≤ Cl,m ‖ g ‖Hl(R2), m ≤ l,

ii) ‖ S
′

µg ‖Hm(R2)≤ Cl,mµm−l ‖ g ‖Hl(R2), l ≤ m,

iii) ‖ g − S
′

µg ‖Hm(R2)≤ Cl,mµm−l ‖ g ‖Hl(R2), m ≤ l.

Furthermore, we obtain smoothing operators on X, Sµ : L2(X) →

H∞(X), by setting Sµg = (S
′

µTg)|X , where T is the extension operator
given by Theorem 4.1 with Ω = X. Moreover, it is clear that the
corresponding results of Lemma 4.1 hold for Sµ.

We now set up the underlying iterative procedure. Let µk = µk,
S

′

k = S
′

µk
, Sk = Sµk

, and w0 = 0. Suppose that functions w0, w1, . . . , wk
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have been defined on X, and put vj = S
′

jTwj , 0 ≤ j ≤ k. Let L(vk)

denote the linearization of (50) evaluated at vk, and let L8(vk) be a
small perturbation (on X) of L7(vk) to be given below, where L7(vk) is
as in section §1. Then define wk+1 = wk + uk where uk is the solution,
restricted to X, of

(51) L8(vk)uk = fk,

given by Theorem 2.2 (see Lemma 4.2 below), and where fk will be
specified below.

Let Qk(wk, uk) denote the quadratic error in the Taylor expansion of
Φ at wk. Then using the definition of L7 we have

Φ(wk+1)

(52)

= Φ(wk) + L(wk)uk + Qk(wk, uk)

= Φ(wk) + Ak(wk)∂xxuk + Qk(wk, uk)

+ ε(1+ ε(wk)xx+ ε2nHnP11(wk))(P
6
22(wk)L7(wk)uk+ Dk(wk)∂xuk)

= Φ(wk)+ε(1 + ε(vk)xx + ε2nHnP11(vk))|XP 6
22(vk|X)L8(vk|X)uk

+ ek,

where

ek = ε(Pk(wk)L8(wk) − Pk(vk|X)L8(vk|X))uk + Ak(wk)∂xxuk

+ Qk(wk, uk) − εP k(wk)(P
6
22(wk)Ak∂ααuk − (SkDk(wk))∂xuk),

Pk(wk) = (1 + ε(wk)xx + ε2nHnP11(wk))P
6
22(wk),

P k(wk) = 1 + ε(wk)xx + ε2nHnP11(wk),

Ak(wk) = εP
−1
k (wk)Φ(wk), Ak = εnµ−4

k βφ(α)φ(β) + ψ1(β),

Dk(wk) =
1

2
∂x[P

−2
k (wk)Φ(wk)] +

1

2
P

−2
k (wk)∂xΦ(wk),

L8(wk)uk = L7(wk)uk + Ak∂ααuk

+ φ(α)φ(β)T [(P 6
22(wk))

−1(I − Sk)Dk(wk)]∂xuk,

the functions φ and ψ1 are as in section §2, (α, β) are the coordinates
of Lemma 1.3; note also that we use φ|X ≡ 1 and T (·)|X = I in (52).

We now define fk. In order to solve (51) with the theory of section
§2, we require fk to be defined on all of R

2. Furthermore, we need
the right-hand side of (52) to tend to zero sufficiently fast, to make up
for the error incurred at each step by solving (51) instead of solving the

unmodified linearized equation. Therefore we set E0 = 0, Ek =
∑k−1

i=0 ei,
and define

f0 = −T [(εP0(v0))
−1S0Φ(w0)],

fk = T [(εPk(vk))
−1(Sk−1Ek−1 − SkEk + (Sk−1 − Sk)Φ(w0))].
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It follows that

Φ(wk+1) = Φ(w0) +
k∑

i=0

εPi(vi|X)(fi|X) + Ek + ek(53)

= (I − Sk)Φ(w0) + (I − Sk)Ek + ek.

In what follows, we will show that the right-hand side of (53) tends
to zero sufficiently fast to guarantee the convergence of {wk}

∞
k=0 to a

solution of (50).
Let b be a positive number that will be chosen as large as possible,

set δ = εn−1, and µ = ε
1−n
b+1 . Furthermore, let m∗ ∈ Z≥0 be such that

Φ(w0) ∈ Hm∗(X). For convenience we will denote the Hm(X) and
Hm(R2) norms by ‖ · ‖m and ‖ · ‖m, R2 , respectively. The convergence
of {wk}

∞
k=0 will follow from the following eight statements, valid for

0 ≤ m ≤ m∗ − 25 unless specified otherwise, which shall be proven by
induction on j, for some constants C1, C2, C3, and C4 independent of j,
ε, and µ, but dependent on m.

Ij : ‖ uj−1 ‖m≤ δµm−b
j−1 ,

IIj : ‖ wj ‖m≤

{
C1δ if m − b ≤ −1/2,

C1δµ
m−b
j if m − b ≥ 1/2,

IIIj : ‖ wj ‖18≤ C1δ, ‖ vj ‖18, R2≤ C3δ,

IVj : ‖ wj − vj ‖m≤ C2δµ
m−b
j ,

Vj : ‖ vj ‖m, R2≤

{
C3δ if m − b ≤ −1/2,

C3δµ
m−b
j if m − b ≥ 1/2,

0 ≤ m < ∞,

VIj : ‖ ej−1 ‖m≤ εδ2µm−b
j−1 , 0 ≤ m ≤ m∗ − 30,

VIIj : ‖ fj ‖m, R2≤ C4δ
2(1 + µb−m)µm−b

j , 0 ≤ m ≤ m∗,

VIIIj : ‖ Φ(wj) ‖m≤ δµm−b
j , 0 ≤ m ≤ m∗ − 30.

Assume that the above eight statements hold for j = 0, . . . , k. Before
showing the induction step we will need the following preliminary lemma
which allows us to study equation (51).

Lemma 4.2. If ε is sufficiently small, then the theory of sections §2
and §3 applies to the operators L8(vk) and L8(v0).
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Proof. We first show that Lemma 2.1 holds for L8(vk). Extend the
coefficients of L7(vk) to the entire αβ-plane and denote them by Ak,
Dk, Ek, Fk as in section §2. Write

L8(vk) = Ãk∂αα + ∂ββ + D̃k∂α + Ẽk∂β + F̃k,

let Ii, i = 1, 2, 3, 4, be as in the proof of Lemma 2.1, and let Ĩi be

analogous to Ii with Ak, Dk, Ek, Fk replaced by Ãk, D̃k, Ẽk, F̃k. Then
a calculation shows that

Ĩ1 ≥ I1 +

{
εδµ−4

k φ(α)(1
2 + O(|β|)) if |β| ≤ y3,

C + O(ε) if |β| ≥ y3,

for some constant C > 0 independent of ε and k, where y3 is as in the
proof of Lemma 2.1. Furthermore, using the definition of Φ, Lemma 3.1
(iii), and IIIk, we have

|(I − Sk)Dk(vk)|C0(X) ≤ C ‖ (I − Sk)Dk(vk) ‖2

≤ Cµ−5
k ‖ Dk(vk) ‖7

≤ Cµ−5
k (ε ‖ vk ‖12 +ε2n)

≤ Cεδµ−5
k

since Φ(0) = O(ε2n). It follows that

Ĩ3 ≥ I3 + O(εδµ−5
k φ(α)), Ĩ4 = I4 + O(ε),

Ĩ2 = I2 + O(εδµ−4
k |φ

′

(α)| + εδµ−5
k φ(α)),

from which we also find

Ĩ1Ĩ3 − 2Ĩ2
2 ≥ I1I3 − 2I2

2 + εδµ−4
k φ(α)(C + O(µ−1

k + ε)) ≥ 0,

if ε is sufficiently small. We then conclude that Lemma 2.1 holds for
L8(vk). Similarly, the proofs of the remaining results of sections §2 and
§3 need only slight modifications to show that they also hold for L8(vk).
Lastly, the same method applies to L8(v0) if we note that

|(I − S0)D0(v0)|C0(X) ≤ Cε2n.

q.e.d.

The next four propositions will show that the above eight statements
hold for j = k + 1. The case j = 0 will be proven shortly thereafter.

Proposition 4.1. If 27 ≤ b ≤ m∗ − 26, 0 ≤ m ≤ m∗ − 25, and ε is

sufficiently small, then Ik+1, IIk+1, IIIk+1, IVk+1, and Vk+1 hold.

Proof. Ik+1: First note that by IIIk,

|vk|C16(R2) ≤ C ‖ vk ‖18, R2≤ C
′

.

Therefore, we may apply Lemma 4.2 and the theory of section §2 to
obtain the solution uk of (51). We require m ≤ m∗ − 25 so that the
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hypotheses of Theorem 3.2 are fulfilled. If m + 25− b ≥ 1/2 then using
Theorem 3.2, Vk, VIIk, and b ≥ 27, we have

‖ uk ‖m ≤ Cm(‖ fk ‖m, R2 + ‖ vk ‖m+25, R2‖ fk ‖2, R2)

≤ Cm(C4δ
2(1 + µb−m)µm−b

k + C3C4δ
3(1 + µb−2)µm+25−b

k µ2−b
k )

≤ δµm−b
k ,

if ε is sufficiently small, since δµb−m = ε(n−1)(1− b−m
b+1

) ≤ ε
1

b+1 . If m+25−
b ≤ −1/2 and m ≥ 2, then using ‖ vk ‖m+25, R2≤ C3δ in the estimate
above gives the desired result. Furthermore, if 0 ≤ m < 2 then the
methods of Theorem 3.2 show that ‖ uk ‖m≤ M ‖ fk ‖m, R2 ; in which
case VIIk gives the desired result.

IIk+1: Since wk+1 =
∑k

i=0 ui, we have

‖ wk+1 ‖m≤
k∑

i=0

‖ ui ‖m≤ δ
k∑

i=0

µm−b
i .

Hence, if m − b ≤ −1/2

‖ wk+1 ‖m≤ δ
∞∑

i=0

(µi)−1/2 ≤ δ
∞∑

i=0

(2i)−1/2 := C1δ,

and if m − b ≥ 1/2,

‖ wk+1 ‖m≤ δµm−b
k+1

k∑

i=0

(
µi

µk+1

)m−b

≤ δµm−b
k+1

∞∑

i=0

(µ−i)1/2 ≤ C1δµ
m−b
k+1 .

IIIk+1: Since b ≥ 27 we have 18 − b ≤ −1/2. Therefore IIk+1 and
Vk+1 (proven below) imply that

‖ wk+1 ‖18≤ C1δ and ‖ vk+1 ‖18, R2≤ C3δ.

IVk+1: Since b ≤ m∗ − 26 we have m∗ − 25 − b ≥ 1/2. Therefore
Lemma 4.1 and IIk+1 yield

‖ wk+1 − vk+1 ‖m = ‖ (I − Sk+1)wk+1 ‖m

≤ Cmµ
m−(m∗−25)
k+1 ‖ wk+1 ‖m∗−25

≤ Cmµ
m−(m∗−25)
k+1 C1δµ

m∗−25−b
k+1

: = C2δµ
m−b
k+1 .

Vk+1: From Lemma 4.1 and b ≤ m∗ − 26 we have for all m ≥ 0,

‖ vk+1 ‖m, R2 = ‖ S
′

k+1Twk+1 ‖m, R2

≤ C
′

m ‖ T ‖

{
‖ wk+1 ‖b−1 if m − b ≤ −1/2,

µm−b−1
k+1 ‖ wk+1 ‖b+1 if m − b ≥ 1/2.

Vk+1 now follows from IIk+1. q.e.d.
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Write ek = e
′

k + e
′′

k + e
′′′

k , where

e
′

k = ε(Pk(wk)L8(wk) − Pk(vk|X)L8(vk|X))uk,

e
′′

k = −εP k(wk)(P
6
22(wk)Ak∂ααuk − (SkDk(wk))∂xuk) + Ak(wk)∂xxuk,

e
′′′

k = Qk(wk, uk).

Proposition 4.2. If the hypotheses of Proposition 4.1 hold and 0 ≤
m ≤ m∗ − 30, then VIk+1 holds.

Proof. We will estimate e
′

k, e
′′

k , and e
′′′

k separately. Denote

(Pk(wk)L8(wk) − Pk(vk|X)L8(vk|X))uk

=
∑

i,j

dij(uk)xixj
+

∑

i

di(uk)xi
+ duk;

then Lemma 3.1 (i) and (iii), Ik, and IVk show that

‖ e
′

k ‖m ≤ εCm,1





∑

i,j

‖ dij ‖m +
∑

i

‖ di ‖m + ‖ d ‖m


 ‖ uk ‖4

+


∑

i,j

‖ dij ‖2 +
∑

i

‖ di ‖2 + ‖ d ‖2


 ‖ uk ‖m+2




≤ εCm,2(‖ wk − vk ‖m+5‖ uk ‖4 + ‖ wk − vk ‖7‖ uk ‖m+2)

≤ Cm,3εδ
2µ9−b

k µm−b
k

≤
ε

3
δ2µm−b

k

if ε is sufficiently small, since µ9−b
k ≤ µ9−b = ε(9−b)( 1−n

b+1
) ≤ ε18/28. Note

that we have also used m ≤ m∗ − 30, which allows us to apply IVk.
We now estimate e

′′

k . By Lemma 3.1 (i) and (iii), Ik, IIk, and VIIIk,

‖ Ak∂xxuk ‖m

≤ Cm,4(‖ ∂xxuk ‖2‖ Ak ‖m + ‖ ∂xxuk ‖m‖ Ak ‖2)

≤ εCm,5[‖ uk ‖4 ((1+ ‖ wk ‖6) ‖ Φ(wk) ‖m + ‖ wk ‖m+4‖ Φ(wk) ‖2)

+ ‖ uk ‖m+2‖ Φ(wk) ‖2]

≤ εCm,6[δµ
4−b
k (δµm−b

k + δ2µm+4−b
k µ2−b

k ) + δ2µm+2−b
k µ2−b

k ]

≤ εCm,7µ
10−b
k δ2µm−b

k

≤
ε

9
δ2µm−b

k ,

if ε is sufficiently small and m + 4− b ≥ 1/2. If m + 4− b ≤ −1/2 then
we may use the estimate ‖ wk ‖m+4≤ C1δ to obtain the same outcome.



284 M.A. KHURI

Furthermore, the same methods combined with Lemma 4.1 show that

‖εP k(wk)(SkDk)∂xuk ‖m

≤ εCm,8(‖∂xuk ‖2‖P k(SkDk)‖m + ‖∂xuk ‖m‖P k(SkDk)‖2)

≤ εCm,9[‖uk ‖3 (µk ‖P k ‖2‖Dk ‖m−1 + ‖P k ‖m‖Dk ‖2)

+ ‖uk ‖m+1‖Dk ‖2]

≤ εCm,10[‖uk ‖3 (µk ‖Φ(wk)‖m +µk(1+‖wk ‖m+4)‖Φ(wk)‖3)

+ ‖uk ‖m+1‖Φ(wk)‖3]

≤ εCm,11[δµ
3−b
k (δµm+1−b

k + δ2µm+5−b
k µ3−b

k ) + δ2µm+1−b
k µ3−b

k ]

≤ εCm,12µ
11−b
k δ2µm−b

k

≤
ε

9
δ2µm−b

k .

Similarly, since ψ1(β) ≡ 0 in X it follows that

‖ εPk(wk)Ak∂ααuk ‖m

≤ ε2δµ−4
k Cm,13(‖ uk ‖4‖ wk ‖m+4 + ‖ uk ‖m+2 (1+ ‖ wk ‖6))

≤ ε2δµ−4
k Cm,14(δ

2µ4−b
k µm+4−b

k + δµm+2−b
k )

≤
ε

9
δ2µm−b

k .

Therefore

‖ e
′′

k ‖≤
ε

3
δ2µm−b

k .

We now estimate e
′′′

k . We have

e
′′′

k = Qk(wk, uk) =

∫ 1

0
(1 − t)

∂2

∂t2
Φ(wk + tuk)dt.

Apply Lemma 3.1 (i) and (ii), as well as the Sobolev Lemma, to obtain

‖ e
′′′

k ‖m ≤

∫ 1

0

∑

|σ|,|γ|≤2

‖ ∇σγΦ(wk + tuk)∂
σuk∂

γuk ‖m dt

≤

∫ 1

0

∑

|σ|,|γ|≤2

Cm,15(|∇σγΦ(wk + tuk)|∞ ‖ ∂σuk∂
γuk ‖m

+ ‖ ∇σγΦ(wk + tuk) ‖m |∂σuk∂
γuk|∞)dt

≤

∫ 1

0
Cm,16(‖ ∇2Φ(wk + tuk) ‖2‖ uk ‖4‖ uk ‖m+2

+ ‖ ∇2Φ(wk + tuk) ‖m‖ uk ‖2
4)dt,

where σ = ∂σ(wk + tuk) and γ = ∂γ(wk + tuk). The notation ∇2Φ
represents the collection of second partial derivatives with respect to
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the variables σ, γ, so by (6) ∇2Φ = O(ε2). Therefore using Lemma 3.1
(iii), Ik, and IIk, we have

‖ e
′′′

k ‖m ≤ ε2Cm,17[(1+ ‖ wk ‖6 + ‖ uk ‖6) ‖ uk ‖4‖ uk ‖m+2

+ (1+ ‖ wk ‖m+4 + ‖ uk ‖m+4) ‖ uk ‖2
4]

≤ ε2Cm,18[δ
2µ4−b

k µm+2−b
k + δ2µ

2(4−b)
k + δ3µm+4−b

k µ
2(4−b)
k ]

≤
ε

3
δ2µm−b

k

if ε is sufficiently small, since b ≥ 27. Combining the estimates of e
′

k,

e
′′

k , and e
′′′

k yields the desired result. q.e.d.

Assume that b ≤ m∗ − 31, then Ek ∈ Hb+1(X) by Theorem 2.3. The
following estimate of Ek will be utilized in the next proposition:

‖ Ek ‖b+1≤
k−1∑

i=0

‖ ei ‖b+1 ≤ εδ2
k−1∑

i=0

µi(54)

≤ ε

(
∞∑

i=0

µ−1
i

)
δ2µk

≤ ε

(
∞∑

i=0

2−i

)
δ2µk.

Proposition 4.3. If the hypotheses of Proposition 4.2 hold and b ≤
m∗ − 31, then VIIk+1 holds for all 0 ≤ m ≤ m∗.

Proof. By Lemma 3.1 (iii),

‖ fk+1 ‖m, R2(55)

≤ ε−1 ‖ T ‖ Cm,19(‖ SkEk − Sk+1Ek+1 + (Sk − Sk+1)Φ(w0) ‖m

+ ‖ vk+1 ‖m+4‖ SkEk − Sk+1Ek+1 + (Sk − Sk+1)Φ(w0) ‖2).

Furthermore, using (54) and the estimate ‖ Φ(w0) ‖b+1≤ Cbε
2n, we

obtain for all m ≥ b + 1,

‖ SkEk − Sk+1Ek+1 + (Sk − Sk+1)Φ(w0) ‖m(56)

≤ Cm,20(µ
m−b−1
k ‖ Ek ‖b+1 +µm−b−1

k+1 ‖ Ek+1 ‖b+1

+ (µm−b−1
k + µm−b−1

k+1 ) ‖ Φ(w0) ‖b+1)

≤ Cm,21εδ
2(1 + µb−m)µm−b

k+1 .

If m < b + 1, then applying similar methods along with VIk+1 to

‖ SkEk − Sk+1Ek+1 + (Sk − Sk+1)Φ(w0) ‖m

≤‖ (I − Sk)Ek ‖m + ‖ (I − Sk+1)Ek ‖m + ‖ Sk+1ek ‖m

+ ‖ (I − Sk)Φ(w0) ‖m + ‖ (I − Sk+1)Φ(w0) ‖m,
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yields the same estimate found in (56). Therefore plugging into (55)
produces

‖ fk+1 ‖m, R2 ≤ Cm,22[δ
2(1 + µb−m)µm−b

k+1 + δ3(1 + µb−2)µm+6−2b
k+1 ]

≤ Cm,23δ
2(1 + µb−m)µm−b

k+1 ,

if m + 4 − b ≥ 1/2. If m + 4 − b ≤ −1/2 and m ≥ 2, then using
‖ vk+1 ‖m+4≤ C3δ in the estimate above gives the desired result. More-
over, if 0 ≤ m < 2, then in place of (55) we use the estimate

‖ fk+1 ‖m, R2

≤ ε−1 ‖ T ‖ Cm,24 ‖ SkEk − Sk+1Ek+1 + (Sk − Sk+1)Φ(w0) ‖m

combined with the above method to obtain the desired result. Lastly,
if m + 4 − b = 0, then replace ‖ vk+1 ‖m+4 in (55) by ‖ vk+1 ‖m+5 and
follow the above method. q.e.d.

Proposition 4.4. If the hypotheses of Proposition 4.3 hold and b =
m∗ − 31, then VIIIk+1 holds for 0 ≤ m ≤ m∗ − 30.

Proof. By (53), VIk+1, and m ≤ b + 1 = m∗ − 30, we have

‖ Φ(wk+1) ‖m

≤‖ (I − Sk)Φ(w0) ‖m + ‖ (I − Sk)Ek ‖m + ‖ ek ‖m

≤ Cm,25(µ
m−b−1
k ‖ Φ(w0) ‖b+1 +µm−b−1

k ‖ Ek ‖b+1 +εδ2µm−b
k ).

Applying the estimate (54), ‖ Φ(w0) ‖b+1≤ Cbε
2n ≤ δ2, and δµb−m ≤

ε
1

b+1 produces

‖ Φ(wk+1) ‖m≤ Cm,26(δ
2µb−m + εδ2µb−m)µm−b

k+1 ≤ δµm−b
k+1 ,

if ε is sufficiently small. q.e.d.

To complete the proof by induction we will now prove the case k = 0.
Since w0 = 0, II0, III0, IV0, and V0 are trivial. Furthermore since
‖ Φ(w0) ‖m≤ εδ2 if ε = ε(m) is sufficiently small and m ≤ m∗, VII0
and VIII0 hold. In addition, by Lemma 4.2 we can apply Theorem 3.2
to obtain

‖ u0 ‖m≤ Cm ‖ f0 ‖m, R2≤ C
′

mδ2 ≤ δ

if δ is small, so that I1 is valid. Lastly, the proof of Proposition 4.2 now
shows that VI1 is valid. This completes the proof by induction.

In view of the hypotheses of Propositions 4.1–4.4, we require m∗ ≥ 58
and choose b = m∗−31. The following corollaries will complete the proof
of Theorem 0.3.

Corollary 4.1. wk → w in Hm∗−32(X).
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Proof. For 0 ≤ m ≤ m∗ − 32 and i > j, Ik implies that

‖ wi − wj ‖m≤

i−1∑

k=j

‖ uk ‖m≤ δ

i−1∑

k=j

µm−b
k ≤ δ

i−1∑

k=j

µ−k.

Hence, {wk} is Cauchy in Hm(X) for all 0 ≤ m ≤ m∗ − 32. q.e.d.

Corollary 4.2. Φ(wk) → 0 in C0(X).

Proof. By the Sobolev Lemma and VIIIk,

|Φ(wk)|C0(X) ≤ C ‖ Φ(wk) ‖2≤ Cδµ2−b
k .

The desired conclusion follows since b = m∗ − 31 ≥ 27. q.e.d.

Let r, K, aij , and f be as in Theorem 0.3. If K, aij , f ∈ Cr, r ≥ 58,
then there exists a Cr−34 solution of (50).

Remark. After completion of this manuscript, it was brought to the
author’s attention that the methods of [4] and [7] may be adapted to
help simplify the linear existence theory of sections §2 and §3.

5. Appendix

Here we shall show that Theorem 0.1 holds for an arbitrary smooth
curve σ passing through the origin. This will be accomplished by uti-
lizing the special structure of the isometric embedding equation (1), to
show that the calculations of Lemma 1.2 can be refined in this case
so that the canonical form (4) may be achieved without requiring the
Christoffel symbols to vanish along σ. This observation is due to Qing
Han. Recall that the geodesic hypothesis on σ was only used to obtain
a high degree of vanishing for the Christoffel symbols along σ.

Let g = gijduiduj be the given metric in local coordinates, and write
equation (1) as

det∇ijz = K|g|(1 − |∇gz|
2),

where ∇ij are covariant derivatives, K is the Gaussian curvature, ∇g is
the gradient operator with respect to g, and |g| = det gij . Following the
set up of the introduction we set ui = ε2xi, and z = u2

1/2 + ε5w. Then
as in (7) the linearization of (6) becomes

L1(w)v =
∑

i,j

bijv;ij +
∑

i

biv;i :=
∑

i,j

b1
ijvxixj

+
∑

i

b1
i vxi

,

where v;ij , v;i denote covariant derivatives in xi coordinates (we will
denote covariant derivatives in ui coordinates by ∇ijv, ∇iv), bij is the
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cofactor matrix given by

b11 = b1
11 = ε∇22z = ε2O(1 + |∇w| + |∇2w|),(57)

b12 = b21 = b1
12 = b1

21 = −ε∇12z = ε2O(1 + |∇w| + |∇2w|),

b22 = b1
22 = ε∇11z = ε(1 + εO(1 + |∇w| + |∇2w|)),

and

b1
i = −blkΓi

lk + bi = −blkΓi
lk + ε2(n+1)Hn+1(x1, x2)Pi(ε, x1, x2,∇w)

for some Pi, with Γi
lk Christoffel symbols for g in xi coordinates. Also

throughout this section the summation convention for raised and low-
ered indices will be used.

Continuing to follow the procedure of section §1, we find that (9)
produces

L3(w)v =
∑

i,j

b3
ijvxixj

+
∑

i

b3
i vxi

where

b3
11 = (b22)−2((b12)2 + ε2(n+2)Hn+1P ),(58)

b3
12 = (b22)−1b12,

b3
22 = 1,

b3
i = (b22)−1(−blkΓi

lk + ε2(n+1)Hn+1Pi),

and

K|g|(1 − |∇gz|
2) = ε2(n+1)Hn+1(x1, x2)P (ε, x1, x2,∇w).

Let

ξ = ξ(x1, x2), η = x2,

be the change of coordinates of Lemma 1.2, so that ξ satisfies (10):

(59) b12ξx1 + b22ξx2 = 0.

If as before b4
ij and b4

i denote the coefficients of L3(w) in these new
coordinates, then all the conclusions of Lemma 1.2 hold. In fact the
proof requires no modification, except to justify the expression for b4

1

which we now show.
Using (13), (14), and (58) we obtain the analogue of (15):

b4
1 =

∑

i,j

b3
ijξxixj

+
∑

i

b3
i ξxi

(60)

=
ε2(n+2)Hn+1P

(b22)2
ξx1x1 −

[(
b12

b22

) (
b12

b22

)

x1

+

(
b12

b22

)

x2

]
ξx1

+
∑

i

b3
i ξxi

.
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Calculating the second term on the right-hand side of (60) yields

(b22)2

[(
b12

b22

) (
b12

b22

)

x1

+

(
b12

b22

)

x2

]

= b12b12
x1

− (b22)−1(b12)2b22
x1

+ b22b12
x2

− b12b22
x2

= b12b12
x1

− b11b22
x1

+ b22b12
x2

− b12b22
x2

+ (b22)−1b22
x1

(det bij)

= −b12
x1

b12 + b11
x1

b22 + b22b12
x2

− b12b22
x2

+ (b22)−1b22
x1

(det bij) − (det bij)x1 .

Therefore, (59) and (60) imply that

b22b4
1 = −(b11

x1
+ b12

x2
+ blkΓ1

lk − ε2(n+1)Hn+1P1 − ((b22)−1 det bij)x1)ξx1

(61)

− (b12
x1

+ b22
x2

+ blkΓ2
lk − ε2(n+1)Hn+1P2)ξx2

+ (b22)−1ε2(n+2)Hn+1Pξx1x1 .

Lastly, from (57) we calculate

ε3(b11
x1

+ b12
x2

+ blkΓ1
lk)

(62)

= −Γj
j2zx1x2 + Γj

j1zx2x2

+ (Γi
12,x2

− Γi
22,x1

− Γ1
11Γ

i
22 + 2Γ1

12Γ
i
12 − Γ1

22Γ
i
11)zxi

= ε3Γj
j2b

12 + ε3Γj
j1b

11

+ (Γi
12,x2

− Γi
22,x1

− Γ1
11Γ

i
22+ 2Γ1

12Γ
i
12− Γ1

22Γ
i
11− Γj

j2Γ
i
12+ Γj

j1Γ
i
22)zxi

.

However, we see that the coefficient of zxi
is in fact a curvature term.

More precisely, if we denote it by Ωi then

Ωi = Γi
12,x2

− Γi
22,x1

+ Γj
12Γ

i
j2 − Γj

22Γ
i
j1(63)

= −ε4Ri
212 = −ε4gi1|g|K = −ε2(n+3)Hn+1P

i
1

for some P
i
1, where Ri

jkl is the Riemann tensor for g in ui coordinates

(recall that Γi
lk are Christoffel symbols in xi coordinates). A similar

calculation shows that

(64) ε3(b12
x1

+ b22
x2

+ blkΓ2
lk) = ε3Γj

j1b
12 + ε3Γj

j2b
22 − ε2(n+3)Hn+1P

i
2zxi

for some P
i
2. Then observing that

(65) det bij = ε2Φ(w) + ε2(n+2)Hn+1P

from (6), we may combine (59) and (61)-(65) to obtain the desired ex-
pression for b4

1 as stated in Lemma 1.2 (note that the linear combination
of Φ(w) and ∂x1Φ(w) will appear slightly different than in Lemma 1.2).
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Having established Lemma 1.2, we can then apply the remainder of sec-
tion §1 as well as sections §2, §3, and §4 without change in order to
obtain Theorem 0.1 for an arbitrary smooth curve σ.
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