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THE LOCAL ISOMETRIC EMBEDDING IN R3 OF
TWO-DIMENSIONAL RIEMANNIAN MANIFOLDS
WITH GAUSSIAN CURVATURE CHANGING SIGN TO
FINITE ORDER ON A CURVE

MaRrcus A. KHURI

Abstract

We consider two natural problems arising in geometry which are
equivalent to the local solvability of specific equations of Monge-
Ampere type. These two problems are: the local isometric em-
bedding problem for two-dimensional Riemannian manifolds, and
the problem of locally prescribed Gaussian curvature for surfaces
in R3. We prove a general local existence result for a large class of
Monge-Ampere equations in the plane, and obtain as corollaries
the existence of regular solutions to both problems, in the case
that the Gaussian curvature vanishes to arbitrary finite order on
a single smooth curve.

0. Introduction

Let (M?,ds?) be a two-dimensional Riemannian manifold. A well-
known problem is to ask when can one realize this, locally, as a small
piece of a surface in R®. This question has only been partially answered.

Suppose that the first fundamental form, ds?> = Edu? + 2Fdudv +
Gdv?, is given in the neighborhood of a point, say (u,v) = 0. Let K
be the Gaussian curvature; then the known results are as follows. The
question is answered affirmatively in the case that ds? is analytic or
K (0) # 0; these classical results can be found in [8], [16], and [17]. In
the case that K > 0 and ds? is sufficiently smooth, or K(0) = 0 and
VK(0) # 0, C.-S. Lin provides an affirmative answer in [12] and [13]
(a simplified proof of the later result has been given by Q. Han [4]). If
K <0 and VK possesses a certain nondegeneracy, Han, Hong, and Lin
[6] show that an embedding always exists. Furthermore, if (u,v) = 0
is a nondegenerate critical point for K and ds? is sufficiently smooth,
then the author provides an affirmative answer in [11]. However, A.
V. Pogorelov has given a counterexample in [15], where he constructs a
C?! metric with no C? isometric embedding in R3. More recently, other
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counterexamples for metrics with low regularity have been proposed by
Nadirashvili and Yuan [14], and local nonexistence results for smooth
Monge-Ampere equations have been obtained in [10]. In this paper we
prove the following:

Theorem 0.1. Letds? € C", r > 60, and suppose that o is a geodesic
passing through the origin. If K vanishes to finite order on o, then there
exists a C"35 local isometric embedding into R3.

Remark. The geodesic hypothesis on ¢ is actually unnecessary, and
is only included so that Theorem 0.1 arises as a corollary of our main
result, Theorem 0.3 below. Please see the appendix for the justification.
Also, a similar result has been obtained independently by Q. Han [5].

We begin by deriving the appropriate equations for study. Our goal
is to find three functions z(u,v), y(u,v), 2(u,v), such that ds? = dx? +
dy? + dz?. The following strategy was first used by J. Weingarten [21].
We search for a function z(u,v), with |Vz| sufficiently small, such that
ds®> — dz? is flat in a neighborhood of the origin. Suppose that such a
function exists; then since any Riemannian manifold of zero curvature
is locally isometric to Euclidean space (via the exponential map), there
exists a smooth change of coordinates z(u,v), y(u,v) such that dz? +
dy? = ds* — dz?, that is, ds®> = dz? + dy? 4+ dz>. Therefore, our problem
is reduced to finding z(u,v) such that ds? —dz? is flat in a neighborhood
of the origin. A computation shows that this is equivalent to the local
solvability of the following equation,

(1) (211 — D11 20) (222 — Thyzi) — (212 — Tip2)?
= K(EG — F* — Bz — G2} + 2F 21 ),

where z1 = 0z/0u, 2o = 0z/0v, z;; are second derivatives of z, and F;k
are Christoffel symbols.

Equation (1) is a second order Monge-Ampere equation. Another
well-known and related problem, which is equivalent to the local solv-
ability of a second order Monge-Ampere equation, is that of locally
prescribing the Gaussian curvature for surfaces in R3. That is, given
a function K (u,v) defined in a neighborhood of the origin, when does
there exist a piece of a surface z = z(u,v) in R3 having Gaussian cur-
vature K7 This problem is equivalent to the local solvability of the
equation

(2) zi1200 — 215 = K(1 4 |Vz[})2
For this problem we obtain a result similar to that of Theorem 0.1.

Theorem 0.2. Let o be a smooth curve passing through the origin.
If K € C", r > 58, and K wvanishes to finite order on o, then there
exists a piece of a O3 surface in R3 with Gaussian curvature K.
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With the goal of treating both problems simultaneously, we will study
the local solvability of the following general Monge-Ampere equation

(3) det(zij + aij(u, v, 2, Vz)) = K f(u,v,2,Vz),

where a;;(u,v,p, q) and f(u,v,p,q) are smooth functions of p and ¢, f >
0, K vanishes to finite order along a smooth curve ¢ passing through the
origin, and a;; vanishes along o to an order greater than or equal to one
degree less than that of K. Clearly equation (2) is of the form (3), and
equation (1) is of the form (3) if F;k vanishes to the order of one degree
less than that of K along o, which we assume without loss of generality.
More precisely, since o is a geodesic we can introduce geodesic parallel
coordinates, such that o becomes the v-axis and ds? = du? + h?dv?, for
some h € C"! satisfying

hyw = —Kh, h(0,v) =1, hy(0,v)=0.

It then follows that the Christoffel symbols vanish to the appropriate
order along the v-axis. We will prove

Theorem 0.3. Let 0 be a smooth curve passing through the origin.
If K, a;;, f € C", r > 58, K wvanishes to finite order along o, and a;;
vanishes to an order greater than or equal to one degree less than that
of K along o, then there exists a C™~3* local solution of (3).

Equation (3) is elliptic if K > 0, hyperbolic if K < 0, and of mixed
type if K changes sign in a neighborhood of the origin. If K(0) = 0 and
VK (0) # 0 [13], then (3) is a nonlinear type of the Tricomi equation.
While if the origin is a nondegenerate critical point for K [11], then (3) is
a nonlinear type of Gallerstedt’s equation [3]. In our case, assuming that
K vanishes to some finite order n+ 1 € Z~( along o (i.e., all derivatives
up to and including order n vanish along o), and a;; vanishes at least
to order n along o, the linearized equation for (3) may be put into the
following canonical form after adding suitable first and second order
perturbation terms and making an appropriate change of coordinates,

(4) Lu = y" " Ay, + uyy + y" Aguy + Azuy, + Agu,

where the A; are smooth functions and 47 > 0 or 4; < 0. It will be
shown that this special canonical form is amenable to the making of
estimates, even in the case that (4) changes type along the line y = 0.
From now on we assume that n > 0 is even, since the case when n is
odd may be treated by the results in [12] and [6] where K is assumed
to be nonnegative or nonpositive, and the case n = 0 may be treated by
the methods of [13]. Furthermore, we assume without loss of generality
that the curve o is given by an equation H (u,v) = 0, where H e C™®
and I;Tv|g > My for some constant M7 > 0. Let € be a small parameter
and set u = €2z, v = €2y, z = u?/2 + >w (the z,y used here are not
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the same as those appearing in (4)). Substituting into (3), we obtain
(5) ®(w) := (1 + cwyy + a11)(Ewyy + az) — (ewyy + a12)* — K f = 0.
By the assumptions of Theorem 0.3 we may write
aij = e H"(x,y) Pij (e, x,y, w, Vw)
and
Kf =" H"  (a,y)Ple, 2.y, w, Vu),
where B
H=¢2H, Hyl,>M, P>DM

for some constant My > 0 independent of €, and Pj;, P are C" with
respect to x,y and C° with respect to the remaining variables. Then
(5) becomes

(6) O(w) = (14 cwgs + 52"H"P11)(£wyy + 52”H”P22)
o (S?U:z:y + EQanP12)2 - 62(n+1)Hn+1P
= 0.

Choose xg,yo > 0 and define the rectangle X = {(x,v) | |z| < zo, |y| <
yo}. Then solving ®(w) = 0 in X, is equivalent to solving (3) locally at
the origin.

In the following sections, we shall study the linearization of (6) about
some function w. In Section 1 the linearization will be reduced to the
canonical form (4). Existence and regularity for the modified linearized
equation will be obtained in Section 2. In Section 3 we make the appro-
priate estimates in preparation for the Nash-Moser iteration procedure.
Finally, in Section 4 we apply a modified version of the Nash-Moser pro-
cedure and obtain a solution of (6). An appendix is included in Section
5 in order to justify removing the geodesic hypothesis from Theorem
0.1.

Acknowledgments. This is a revised portion of my dissertation [9]
conducted at the University of Pennsylvania under the direction of Pro-
fessor Jerry Kazdan. I would like to thank Jerry Kazdan, Dennis De-
Turck, Herman Gluck, and Stephen Shatz for their suggestions and
assistance. Also a special thanks for very useful discussions is due to
Qing Han, who has obtained a similar result [5] independently for the
isometric embedding problem, Theorem 0.1.

1. Reduction to Canonical Form

In this section we will bring the linearization of (6) into the canonical
form (4). This shall be accomplished by adding certain perturbation
terms and making appropriate changes of variables. The process will
entail defining a sequence of linear operators L;, 1 <7 < 7, where L1 is
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the linearization of (6) and L7 is of the form (4); furthermore, L;;; will
differ from L; by a perturbation term or by a change of variables.

Fix a constant C' > 0, and let w € C°°(R?) be such that |w|c1s < C.
Then the linearization of (6) evaluated at w is given by

(7) Li(w) =Y b0z, + Y b}Os, + 1,
,J 7

where r1 =z, xo =y and
by = e(cwyy + 2" H" (2, y) Paa(e, z,y, w, Vw)),
biy = by = —e(ewyy + " H" (2, y) Pia(e, , y, w, Vw)),
by = (1 + cwpe 4+ 2" H™(x,y) P11 (€, x, y, w, Vw)),
bl = e H"(z,y)Pi(e, z,y, w, Vw),
by = " H"(z,y)Ps(e, z,y, w, Vw),
bt = H™(z,y)P3(e, z,y, w, Vw),

for some Py, P>, P3. If € is sufficiently small, we may solve for ew,, +
2" H" P55 in equation (6) to obtain
(8)

EWyy+eX H" Pyy = [(ewey+e H" Ppo)2 42D H L P (w)],

1
1+eQ
where Q(g,z,y,w, Vw, V2w) = wy, + e 'H"P;;. Plugging (8) into
(7), we have
~ eP(w)

1+eQ Tx

= 00u; + Y ;0w + 1,
%,J %

La(w) : = L1 (w)

where
y2. _ E(EWey + e H Prp)® + M HM P
11 — 1 + 6@
Next define L3(w) by
1
9 L =——L
(9) 3(w) S0+ :0) 2(w)

= 000, + Y 30, + 1.
i,j i

To simplify (9), we will make a change of variables that will eliminate
the mixed second derivative term. In constructing this change of vari-
ables we will make use of the following lemma from ordinary differential
equations.
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Lemma 1.1 ([1]). Let G(z,t) be a C' real valued function in the
closed rectangle |v — s| < T, [t| < Ty. Let T = sup|G(x,t)| in this
domain. Then the initial value problem dz/dt = G(z,t), ©(0) = s,
has a unique C'*1 solution defined on the interval |t| < min(Ty, T1/T).
Moreover, x(s,t) is C' with respect to s.

We now construct the desired change of variables. For any domain
Q C R?, and constant p, let uQ = {u(z,y) | (z,y) € Q}.

Lemma 1.2. For e sufficiently small, there exists a C" diffeomor-
phism
§=¢&(x,y), n=y,
of a domain X1 onto u1 X, where 1 > 1, such that in the new variables
(&,m), Ls(w) is denoted by Ly(w) and is given by

La(w) =Y bi0ua; + bl + b,
2,J )

where x1 =&, xo =1, and
by = <D,
bly = by =0,
byy = 1,

béll — €2anP141 + n€2an—1P142

4 *3[3 (asap) * aireay) &
bh — b3,

b4 — b3,

for some Py, P, P2, and P, > Cy for some constant C1 > 0 inde-
pendent of € and w. Furthermore ]b§j|c12 + 6|12 + |b| 12 < Cs, for
some Co independent of € and w.

Proof. Using the chain rule we find that b}y = b3,&, + b3s&,. There-
fore, we seek a smooth function £(z,y) such that

(10) bly = Do, + 0326, =0 in Xy, £&(2,0) =,

where X; will be defined below. Since b3, = 1, the line y = 0 will be
non-characteristic for (10). Then by the theory of first order partial

differential equations, (10) is reduced to the following system of first
order ODE:

i="b, x(0)=s, —pmzo<s< o,
y=1, y(0)=0,
£=0, ¢&(0)=s,
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where z = z(t), y = y(t), £(t) = E(z(t),y(t)) and &, g, £ are derivatives
with respect to t.

Choose p1 > 1. We first show that the characteristic curves, given
parametrically by (x,y) = (z(t),t), exist globally for —u1y0 <t < p1yo.
We apply Lemma 1.1 with 77 = 2u1x0, and T3 = p1yo, to the initial-
value problem i = b3,, 2(0) = s. Let T be as in Lemma 1.1. Since
|lw|cis < C, we have

T = sup [b},| < £C3,
X1

for some C3 independent of €. Then for € small, T' < %, implying that
min(T, T1/T) = p1yo-
Then Lemma 1.1 gives the desired global existence.

Let X7 be the domain with boundary consisting of the two lines
y = £u1yo, and the two characteristics passing through +pj329. Then
the mapping (£,n) takes 9X; onto du1 X. We now show that the map
p: X — X given by (s,t) — (x(s,t),y(s,t)) = (z(s,1),t), is a diffeo-
morphism. It will then follow that the map (z,y) — ({(z,y),n(z,y)) =
(s(z,y),y) = p~(z,y) is a diffeomorphism of X onto p;X. To show
that p is 1-1, suppose that p(s1,t1) = p(s2,t2). Then t; = to and
x(s1,t1) = x(s2,t2), which implies that s; = s2 by uniqueness for
the initial-value problem for ordinary differential equations. To show
that p is onto, take an arbitrary point (z1,y1) € Xi, and we will show
that there exists s € [—u12o, t12o] such that p(s,y1) = (z(s,y1),y1) =
(z1,y1). Since the map

z(s,y1) : [=mzo, prwo] — [2(—pawo, y1), z(r1zo, y1)]
is continuous, and z(—p1xo,y1) < x1 < x(u120,y1) by definition of
X1, the intermediate value theorem guarantees that there exists s €
[— 1o, p1xo] with (s, y1) = x1. Therefore, p has a well-defined inverse
pti X1 - mX.
To show that p~! is smooth it is sufficient, by the inverse function
theorem, to show that the Jacobian of p does not vanish at each point

of u1 X. Since
o Ts Tt

this is equivalent to showing that x; does not vanish in pu; X. Differen-
tiate the equation for x with respect to s to obtain %(ms) = (b35)2s,
25(0) = 1. Then by the mean value theorem
js(s.t) = 1] = |as(s,t) — x5(s,0)] < pryo sup |(ba)a| sup |as|
X1 X
for all (s,t) € u1 X. Thus, since |w|gis < C,

1 — ep1yoCysup |xg| < x5(s,t) < epryoCasup x| + 1
n1X p1X
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for all (s,t) € u1 X. Hence for ¢ sufficiently small, z5(s,t) > 0 in 1 X.
We have now shown that p is a diffeomorphism. Moreover, by Lemma
1.1 and the inverse function theorem p, p~! € C".

We now calculate b}; and bf. We have

» 2n fn p )2 2(n+1)Hn+1P
(1) billz(awy+€ 12)° +¢€ e
(14+eQ)?

2(ewgy + e2"H"Pyo)

2
- 1 +5Q facgy +§y'

Since &, = —b3,&,, plugging into (11) we obtain

2(n+1) grn+1 pe2
bill _ g gx — 82(n+1)Hn+1P141.

(1+eQ)?

To show that P}y > O, we now estimate ;. By differentiating (10)
with respect to x, we obtain

b?2(£:r:)x + (fﬂﬁ)y = _(b§2)x€xa a(2,0) = 1.
As above let (z(t),y(t)) be the parameterization for an arbitrary char-

acteristic, then &,(t) = &, (z(t),y(t)) satisfies & = —(b3y)p&e, £(0) = 1.
By the mean value theorem

[€a(t) = 1] = [&(t) — £2(0)] < pyosup |(bYy)z] sup &
X1 X1
Therefore

(12) 1 — ep1yoCs Sup €2 < &a(t) < ep1yoCs SUp €2 + 1.
1 1

Thus for e small &, > Cg > 0, showing that P}, > C; for some C; > 0
independent of € and w.

We now calculate b}. We have
(13) b1 = bhr&ew + 26a€ny + Uiy + V1o + 3Gy,
From (10) we obtain

(14) g:ry = _(b?Q)xfm - b?Q&xm» gyy = _(b?Q)ygx - b?Zfzy-
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Plugging into (13) produces

(15)
2(n+1) grn+1
4 _ € 3 3
= Tx T b
bl (1 + EQ)2 5 + blg + 2£y
i n n n n 2
+a, EWgy + 2N H" Py _ 1890 EWgy + 2" H" Py £
1+¢eQ 2 1+¢eQ

— EQanQl + neQ”H”_ng

i 2
EWgy 1 EWgy
0, — =0 | ——=
w10 (5%5) 2x<l+e@>]5”
for some @1, Q2. We now calculate the last term of (15). From (6) we
have

—8271192%,  —ewyy(14+eQ) + e2"H"Q3 + ®(w)
(1+eQ)? (1+2Q)? ’
for some Q3. Then plugging (16) into (15), we obtain

ay EWgy B lax EWgy 2
1+eQ 2 14+e@Q
— EWzy \ _ 1 EWyy
_ay<1—|—£Q> 289:(1—1-5@)
2n rrn 2n ryn—1 ‘I)('IU)
+ e H Q4 —+ ne H Q5 + 51 m

_ €/2Wayy (1 + ewyy) — s2wxywmy + 52/2wyywxm

(1+eQ)?
+82anQ6 +’I’L€2an_1Q7 + az |:

(16)

D (w) }
2(1+:Q)
T 2(1+2Q)

+€2anQ6 + n€2an—1Q7 + 62 |:

__0:%(w) ®(w)
= S veor O |t 27
+ €2anQ8 + nsZ”H”_ng,

[ewyy (1 + ewyy) — 52wiy]

D (w) }
2(1+2Q)

for some Qy, ..., Qq. It follows from (15) that b] has the desired form.

To complete the proof of Lemma 1.2, we now show that ) |bfj|012 +
b} 12 + [b%] 12 < Ca, for some constant C independent of £ and w. In
view of the fact that |w|-16 < C, this will be accomplished by showing
that [£]|c1a < C7 for some C7 independent of e and w. By (12) we find
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that
1
sup &) < ———— = Ck.
X1 o 1 —eCspu1yo

It follows from (10) that

sup [§y| < Cy,
X3

where Cy is independent of € and w.
We now estimate ;. Differentiate (10) two times with respect to z
to obtain

b?Z(&cm)z + (fzx)y = _Q(b?Q)xfxx - (bi’Z)x:cfa:v §oz(2,0) = 0.
Then the same procedure that yielded (12) produces

sup £z | < e1yoCrosup [Eza| + e1y0C11Cs,
X1 X1

implying that

ep1yoC11Cs
1 —emyoCio
Furthermore, in light of (14), we can use the estimates for &, and &, to
estimate £, and then subsequently &,,. Clearly, we can continue this
procedure to yield |£|q1a < C. q.e.d.

Sup‘§xw| < = 012.
X1

We now continue defining the sequence of linear operators L;(w).
To simplify the coefficient of ¢ in Ls(w), we remove the portion of b}

involving ®(w) and define
® 0, P
(w) > (w)

Ls(w): = La(w) = [a@ (2(1 +2Q)2) T 21 + Q)2
= 050, + Y0}, + 1,
2,7 7
where r1 =&, o = 1.

To bring Ls(w) into the canonical form (4), we shall need one more
change of variables.

Lemma 1.3. For ¢ sufficiently small, there exists a C" diffeomor-
phism

a = a(fﬂ?)a B = H(&an%

of a domain Xo C 1 X onto pa X, 1 < s < p1, such that us X properly
contains the image of p~1(X) (where p~! is the diffeomorphism given
by Lemma 1.2), for some p3, 1 < ug < p2. In the new variables (o, 3),
Ls(w) is denoted by Le(w) and is given by

Lo(w) = 030z, + 000, + 15,
- -
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where r1 = o, To = 3, and
b?l _ 82(n+1)/6»n+1pl617
by =05, =0,
bgz = P2627
b? _ 82nﬂnP161 + n62nﬁn—1P162,
S = e P! 4 ne?n gL g2,
b6 — 62nﬁnp36’

for some PPy, PS,, PPt P82 PS1 P82 PO such that PP, P$, > Cis
for some constant Ci13 > 0 independent of € and w. Furthermore
> |b%\012 + 68|12 + 6% cn2 < Cha, for some Chy independent of € and

w.

Proof. Using the chain rule we find that b, = b9, Bcae + 0358,
Therefore, we seek a smooth function a(,n) such that

(17) b8y = b3, Beag + b3oBya, =0 in X2, a(€,0)=¢,

where X5 will be defined below. By our original assumption on H made
in the introduction, H, > Ci5 for some Ci5 > 0 independent of e.
Therefore

Oz oy
H,=H,=— + H,~~ =
n 17877 Yy

0 = —fo—y +Hy > eCip+ C15 > C17 >0,
an &
for some Cyg, C17 independent of . Since b3, = 1, it follows that the
line 7 = 0 is noncharacteristic for (17). Therefore, the methods used in
the proof of Lemma 1.2 show that the desired function a(&,n) exists.
We now define X5. Since H, > Ci7 > 0, we may choose p; >
po > 1 such that the curves H(&,m) = +pusyo are properly contained
in the strips {({,7) | vo < 7 < o}, {(&n) | —vo = 1 = —pyo}-
Then define Xo C p1 X to be the domain in the &, 7 plane bounded
by the curves H(§,n) = +psyo and the characteristic curves of (17)
passing through the points (4pu2x0,0). Then the methods of the proof of
Lemma 1.2 show that the mapping 7 : (£,7) — («(&,n),8(&,n)) isa C”
diffeomorphism from X, onto poX. Furthermore, since p~!(X) C Xo,
if y13 is chosen large then 7(p~1(X)) C usX.
We now compute the coefficients b?j, b?, b5. We have
B, = 62(n+1)5n+1P{11a§ i a727
2
— 62(n+1)ﬁn+lpﬁa§ + E4(n+1)ﬁ2(n+1) (P141)2%Oég
n
_ 2(n+1) gn+1 4 2(n+1) pn+1/ p4 25752 2
=€ &) Py +e BT (Pry) 32 Qe
n
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. _ 22(n+1) gn+1 p6
= gAntlg Py

As in the proof of Lemma 1.2, ae > C1g for some C1g > 0 independent

of € and w. Thus, if ¢ is sufficiently small the properties of Pp; imply
that PIG1 > ('3 for some Ci3 > 0 independent of € and w. Next we
calculate bS,:

b9y = 52(n+1)5n+lpf11552 + ﬁ% = Py

Since H,, > Ci7, if € is sufficiently small then P262 > (C13. Furthermore,
by (17)

b = by age + auy + blag + biay,

62(n—‘,—1) n+1P4
= b e — O, ( ﬂﬂ nfeae ) | Bae + bjay
n

- €2n,3nP161 + n€2nﬁn—1P162.

Lastly since 3, = Hz(_é—iy) + H, = O(e) + Hy, we have

By = O(€) + Hyy = O(e) + €2 H,, = O(e).
Thus
b = 5?1555 + By + b?ﬂﬁ + bgﬁn
: = ePSL 4 petnn—lps2,

We complete the proof by noting that the methods of the proof of
Lemma 1.2 show that > \b?j\cm + [69] 12 + B9 12 < Cha, for some Chy
independent of € and w. q.e.d.

To obtain the canonical form (4), we define

1
by

= 00u; + Y b[On, + 1,
%,J %

where 1 = o, 9 = 3, and
i, = 200
bis = b3 =0,
b;z =1,
b = "B P + ne® g P2,
by = ePJ! + ne?pniP]?,

b7 — €2nﬁnP:;77

Lz(w) : Lg(w)
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for some P}, P/t, P[?, P, PJ* PI, such that P]; > Cig for some
constant C1g > 0 independent of € and w. In the following section, we
shall study the existence and regularity theory for the operator L7 (w).

2. Linear Theory

In this section we study the existence and regularity theory for the
operator Ly. More precisely, we will first extend the coefficients of L7
onto the entire plane in a manner that facilitates an a priori estimate,
and then prove the existence of weak solutions having regularity in the
a-direction. It will then be shown that these weak solutions are also
regular in the g-direction via a boot-strap argument.

For simplicity of notation, put # = o, y = 3, and L = Ly(w). Then

L= 52(”“)y”+1318m + Oyy + (e2"y" By 4 ne®y" 1 B3)0,
+ (eBy + nEQ”y”*IBg,)E)y + £2"y" By
= Ayy + Oyy + DOy + EOy + F

for some By,...,Bg € C" such that By > M and |B;|c1z < M', for
some constants M, M > 0 independent of ¢ and w. By Lemma 1.3
A,D,E, and F are defined in the rectangle psX. We will modify these
coefficients on R? — 115X, so that they will be defined and of class C"
on the entire plane.

Choose values y1,...,ys such that 0 < y; < --+ < yg and y1 = usyo,
Y6 = payo- Let d, My > 0 be constants, where § will be chosen small.

Fix a nonnegative cut-off function ¢ € C*°(R) such that

1 if y| < ys,
o(y) =4+ TlI<us
0 if |y| > vs.

Furthermore, define functions v, 12,13 € C*°(R) with properties:

i) i(y) =9 -1 ify < —ys,
1 ify>ys,

i) 4y <0ify <0, >0ify >0, and ¢ >0,

0 lfy Z —Ys5,
—y — S(LEE) if y < —yg,

iii) P2 (y) = {

iv) 19 >0, and —0 §¢/2 <0,
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0 if |y| < ys,
v) P3(y) = My ify < —ya,
=My ify >y,

vi) 93 > 0if y <0, 93 <0 if y > 0, and 5 < 0.

Now define smooth extensions of A, D, E, and F to the entire plane by

A =11(y) + ¢(z)d(y) 4,
D = ¢(z)p(y)D,

E = a(y) + o(z)o(y) E,
F=13(y) + o(2)o(y) F,

e

and set
L = AOyy + Oyy + DOy + EOy + F.

Before making estimates for L, we must define the function spaces
that will be utilized. For m,l € Z>g, let

CmD(R?) = {u:R? - R | 9500u € C(R?), s <m, t <1},
and
Cc(m l)(R2) ={ue ctm (R?) | u has compact support}.

Let # > 0 be a small parameter, and define the norm

lwllm, = Y, 6| 9505u |72@e)">

s<m, t<l

Then define He(m’ ) (R?) to be the closure of cfm (R?) in the norm
| - ll(m, 1)- Furthermore, let H™(R?) be the Sobolev space with square
1ntegrable derivatives up to and including order m, with norm || - [,.
Lastly, denote the L?(R?) inner product and norm by (-,-) and || - ||
respectively.

We are now ready to establish a basic estimate for the operator L
on R?. This estimate will be used to establish a more general estimate,
which will in turn be used as the foundation for the proof of the existence
of weak solutions.

Lemma 2.1. If ¢ is sufficiently small, then there exists a constant
Cy > 0 independent of €, and functions a(y),b(y),v(y) € C°(R) where
v=0(1) as y — oo, and v = O(|y|) as y — —oo such that

(@ + by, L) = Cr(|| yuy 2+ | [?), for all ue C2(R?).

Proof. We first define the functions a and b. Let My, M3, My > 0
be constants satisfying Mz < My and %M4 — My > 1. Then choose
a,b € C®°(R) and My, M3, My such that:
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1) a(y) — y2 - M2 if |y’ S Ys,
—M;3 if |y| > e,

ii)a<—Ms,d <0ify<0,a >0ify >0, and a’ > —4,

1 if y >0,
—Myy+1 ify < —yo,

i) b(y) — {
iv) b> 1, and b <o.
Now let u € C2°(R?), and integrate by parts to obtain
(au + buy, Lu) = // Ilui + 2huguy, + Igu§ + Iyu?,
R2
where
1., 1
Il = (56 - a> A+ §bAy,
1 1

1,
Iy=—a— 50 +VE,

1
—a —
2

1

1 1 1. 1
I4 = §G/Axx + §CLDI — §(aE)y — (5[) — CL) F — §be

We now estimate I;. If |y| < y3 then

1
hz[wb—ﬁkm“@“%h+@§J§““W%l

1
+ 562(”+1)y"+1b8y31} o(x)

(n+1)
2

1
_ 82(n+1)yn [(]\42 _ y2)y31 + By + §yb5y31 P(x)

> 2 Cyyn () > 0,

for some constants Cy > 0, if y3 is chosen sufficiently small. Moreover,
if |y| > y3 we have

1 . > 3
§M4*M2 lfy<0

Il > 0(62(n+1)) + {

for some C'3 > 0, if € is small.
To estimate I3, we observe that for |y| < ye,

I3 > M3 + O(e).
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Furthermore, if |y| > yg then
0 ify >0,
Iy > My + , e
oMyy= ify <O.

Hence, I3 > 72(y) for some v € C°°(R) such that v = O(1) as y — oo,
and v = O(Jy|) as y — —o0.
Next we show that

//}1{2 L2 + 2Iugzu, + Iguf/ > Oy || yuy |I%,

for some Cy > 0. From our estimates on I; and I3, this will follow if
I1I3 — 213 > 0. A calculation shows that when |y| < yg, we have

NIy — 213 > 2D Csyg(x) + O(ne™y" (x) + 2"y"|¢ (x)])?
= 2y Os + 220y 2o (w) + 470 ()P0 ()
+ny" g (2))]e()
>0,

for some C5 > 0 independent of ¢, if € is sufficiently small. Moreover, if
lyl > y then
NIy —2I2 = I3 > 0,
from which we obtain the desired conclusion.
Lastly, we estimate I4. In the strip |y| < y4, we obtain

I41 > 14 0(e).
Furthermore, if |y| > y4 then
7> M M3+ O(e + 6) if y >0,
P MMy~ M)+ O(e +6) ify <0.

Therefore, Iy > Cg for some Cg > 0 independent of . q.e.d.

Having established the basic estimate, our goal shall now be to es-
tablish a more general estimate that involves derivatives of higher order
in the z-direction. Let (,-),, denote the inner product on He(m’o) (R2)

that is,
(U, V) = //RQ Zesa;ua;v, for all u,v € He(,m’o) (R?).
=0

Theorem 2.1. If e = e(m) is sufficiently small, then for each m <
r — 2, there exist constants 6(m) > 0 and C,, > 0, both depending on
|Alomi2(m2), |D]om+2m2ys |Elomi2gey, and |F|om+2 g2y, such that for all
0 <6(m)

(au + by, L)y > Cpn <|| w By + 0% | 105w, H2> ;
s=0
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for all u € C2°(R?).

Proof. We shall prove the estimate by induction on m. The case
m = 0 is given by Lemma 2.1. Let m > 1, and assume that the estimate
holds for all integers less than m.

Let u € C°(R?) and set w = 97u; then

(18)

(au + buy, Lu)y,
= (au + buy, Lu)ym—1 + 6™ (aw + bwy, Lpw)

m—1
+ 6™ (aa;;lu + 00wy, Y O (B0 gy + ame”a;n—l—iu)> :
=0
where
Ly, = AOyy + Oyy + DOy + EOy + Fy,
-1
D,, = D+mA,, F, :F+mDI+%

We now estimate each term on the right-hand side of (18). By the
induction assumption,

Az

m—1

(19) (au + buy, Lu)m—1 > Cpa (H wlfmoro) + D 0 | 135y !!2) :
s=0

In addition, since D,, A;, Az have compact support and both D,, =

O(mne?y"1), and mD, + WAM = O(m?ne®") near the origin, if

e = e(m) is sufficiently small then the coefficients of L,, have the same
properties as those of L so that Lemma 2.1 applies to yield

(20) 0™ (aw + bwy, Lyyw) > 0™ C1 (|| ywy |2 + || w [|?).
Furthermore, integrating by parts produces
m—1
(21) (w;nu + 00wy, > OL(EL 07y + 833Fm_1_2-8;”_1_’u)>
i=0
= // [em—1(0™ u)? 4 ey 2 (07 2u)? + - + equ?
R2
+ fmfl(agcn_luz)2 + fm72(8gcn_2uy)2 +oee fouf,
+ gmflagluag%_luy + gmea;n_lua;n_zuy + -+ goucpuy]a

for some functions e;, f;, g; depending on the derivatives of A, D, F and
F up to and including order m + 2.

Observe that the power of ¢ in the third term on the right of (18)
is sufficiently large to guarantee that the right-hand side of (21) may
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be absorbed into the combined right-hand sides of (19) and (20), for all
6 < 0(m) if (m) is sufficiently small. Thus, we obtain

(au + buvau>m > Cm (H u H?m,O) +ZQS I ’y@iuy H2> ’

s=0
completing the proof by induction. q.e.d.
Let f € L?(R?), and consider the equation
(22) Lu=f.
A function u € L?(R?) is said to be a weak solution of (22) if
(u, L*v) = (f,v), for all v € C>°(R?),

where L* is the formal adjoint of L. The estimate of Theorem 2.1 shall
serve as the basis for establishing the existence of weak solutions via the
method of Galerkin approximation. That is, we shall construct certain
finite-dimensional approximations of (22), and then pass to the limit to
obtain a solution.

Let {¢}7°, be a basis of H;™"?(R) that is orthonormal in HJ*(R).
Such a sequence may be constructed by applying the Gram-Schmidt
process to a basis of Hgm“(R). Choose a positive integer N. We seek
an approximate solution, u”, of equation (22) in the form

N
Na,y) =Y & (y)i(x)
=1

where the functions dN are to be determined from the relations

(23) /Zesd@ LuNdx /295d¢l85fd l=1,...,N.

The following lemma will establish the existence of the d{v .

Lemma 2.2. Suppose that ¢ = €(m) and 8(m) are sufficiently small,
and f € Hém’o) (R?), m < r—2. Then there exist functions d¥ € H*(R),
l=1,...,N, satisfying (23) in the L*(R)-sense.

Proof. Choose ¢ and 6 so small that Theorem 2.1 is valid. Since
{#1}72, is an orthonormal set in Hy*(R), (23) becomes

21
> ([ o Gmortmais)

(/ ds(ﬁzas(A@) S¢185(D¢Z) ¢185(F¢1)da:)

3
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m ds
Z/ZHS (ilﬁj,fda:, l=1,...,N.
Rs:(] d.’IJ

By the theory of ordinary differential equations, it is sufficient to prove
uniqueness to obtain existence of a solution to system (24).

We now establish the uniqueness of solutions to (24) in the space
H2(R). Multiply (23) by a(y)d} (y) + b(y)(d¥) (y), sum over I from 1
to N, and then integrate with respect to y over R to obtain

<auN + bué\], LUN>m = <auN + bugj;va f>m

It now follows from Theorem 2.1 that
(25)  Cn (! uN G0y + D0 1 105y H2> < (au™ +bul), fim,
s=0

for some constant C), > 0 independent of N. Again using the orthonor-
mal properties of {¢;}7°,, we find
N m
(26) Y (I & + 11 (d) 1B) =l w™ Fn0) + D 0% 705y |-
=1 s=0
Uniqueness for solutions of (23) in the space of functions for which the
left-hand side of (26) is finite, now follows from (25) and (26). Thus,
existence of a solution in this space is guaranteed; furthermore, since
we can solve for (d)" in (24), it follows that this solution is in H?(R).
q.e.d.

Before proving the existence of a weak solution to equation (22), we
will need one more lemma.

Lemma 2.3. Let v € C°(R?). Then there exists a unique solution,
v € H0(R?) N C™(R?), of the equation

(27) (~O)" 2D+ (~)" R IT  p B =,

Proof. By the Riesz Representation Theorem, there exists a unique
v € H™0)(R?), such that

(28) (B, W) = (v, w), for all w € C(R?).

Thus v is a weak solution of (27), and by the theory of ordinary differ-
ential equations with parameter, we have v € C>°(R?).

We now show that o € H(9(RR?). It follows from (28) and the result
of Friedrichs [2] on the identity of weak and strong solutions that there
exists a sequence {0F}2°, C C°(R?) such that o% — ¥ in H™O)(R2),
and

mo

(—O) 2T 4+ (—0) " AP 0 — () F T~
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in L?(R?), where mg = m if m is even, and mg = m — 1 if m is odd.
Therefore

[

//R2 ma2m’\_|_ o4 (_9) m02+2 8;”0+2@\]2

/ / —O)"PTD -+ (—0) " 9ot
]RQ
—0) 89T+ 4]
// 0)5 mo 4 .. 4 )
RQ
> lim / —O)mAZMGE 1 (—0) " gmot2gh]
k—o0 R2

—0)2 70T 4 -+ + ]

+ lim // R omonk 4 ... 4 oM.
RQ

Integrating by parts yields

// v? > lim oM IR 4 (08)2,

R2 k—oo R2

if m > 1. Since bounded sets in Hilbert spaces are weakly compact,

oM — T weakly in H("t1LO/(R?), for some 5 € H™+1.0)(R?), where

{p*1}22, is a subsequence of {0*}. For simplicity, we denote 9" by o*.
We now show that ¥ = . By the Riesz Representation Theorem,

there exists w € H(™+t10)(R?) such that

(W, 2Ymy1 = (0 — 7T, 2)m, for all z € HMHLO(R?),

In particular, setting z = 9% — T we have
. e . ~ o~k ~
(29) klgg()(w, VY = Ty = kh_)r&(v —T0,0° = V) =[| V=7 H%mm

Furthermore, since 7% — T we have

(30) lim (w, 5" — )41 = 0.
k—o0
Combining (29) and (30) we obtain ¥ = 7 in H(")(R?), implying that
7 € HmH1LO0)(R?). Recall that we assumed that m > 1; however, if
m = 1 we still obtain 7 € H™*T1L9(R?) by solving for d,,0 in (27). A
boot-strap argument can now be used to show that v € H(0)(R?).
q.e.d.

We are now ready to establish the existence of a weak solution of
equation (22), having regularity in the z-direction.
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Theorem 2.2. Ife = ¢(m) and 0(m) are sufficiently small, then for
every f € H(Sm,o) (R2), m < r — 2, there exists a unique weak solution
u e H™Y(R2) of (22).

Proof. For each N € Zg, let vV € Hg(m’2) (R?) be given by Lemma
2.2. Then applying Cauchy’s inequality (pg < rkp? + ﬁqQ, k > 0) to the
right-hand side of (25), we obtain

(31) ™ lm 1)< Con L f im0

where C;n is independent of N. Since bounded sets in Hilbert spaces are
weakly compact, there exists a subsequence {uN }22, such that u Ni sy

in Hb(,m’l)(]RQ), for some u € Hém’l)(RQ).
We now show that u is a weak solution of (22). Let v € CS°(R?) and
let o € H(0(R?) N C*°(R?) be the solution of
(—0)m2G 4+ (=)™ 12T 4 4 T =0,
given by Lemma 2.3. Since {¢;(z)};2, forms a basis in H)""*(R), we
can find e, *(y) € H*(R) such that o™+ := ;" 161 “(y)pi(x) — v in
H(g2m+2’2) (R?) as N, — oo. Then multiply (23) by e;"*, sum over [ from
1 to N,, and integrate with respect to y over R to obtain
(W™, L) = (0™, f)m
Integrating by parts and letting N; — oo produces
(1, L (0 o (0" RN) = (F0™ 4k (<02,
Furthermore, by letting N, — oo we obtain
(u, L*v) = (£, v).

Uniqueness of the weak solution follows from (31). q.e.d.

We now prove regularity in the y-direction for the weak solution given
by Theorem 2.2, in the case that f € H™(R?). The following standard
lemma concerning difference quotients will be needed.

Lemma 2.4. Let w € L?(R?) have compact support, and define

wh = %(w(x,y—{— h) —w(x,y)).

If | wh ||< Cs where Cy is independent of h, then w € HOV(V) for
any compact V. C R2. Furthermore, if w € H(O 1(R?) then

I w™ (1< Co || wy |,
for some Cy independent of h.

Theorem 2.3. Suppose that the hypotheses of Theorem 2.2 are ful-
filled and that f € H™(R?); then u € H™(u2X).
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Proof. If m = 0,1, then the desired conclusion follows directly from
Theorem 2.2, so assume that m > 2. Let ¢ € C*°(R?) be a cut-off
function such that

x _ 1 if (xvy) € X,
SEH {0 if (z,y) € (p2 + 1)X.

Let u € H(gm’l)(RQ) be the weak solution of (22) given by Theorem 2.2.
Set w = (u, then since u is a weak solution of (22) we obtain

[w,v] : = //Rwavy Ewyv — Fuwv

—/ —fu, forall ve C®(R?),
R2

where f: Cf — ACuga + Cyyu + 2¢yuy - DCu, + ECyu.
Using Lemma 2.4 and the fact that f € L?(R?), we have
(32) ", o] < |[w, o™+ C1o || v 01y

-/ L

<Cu || v l0,);

+Cio [l vl

for some constants Cig, C11 independent of h. Furthermore, integrating
by parts yields

(33) Cua || 0 171 < v, 0]| + Cuz [ v ||
The estimates (32) and (33) also hold if v = w”. Therefore

Cua || w [If1y < Cui [ w" [l0,1) +Caz | " |
< O || w" [|0.1) +Cha,

for some constant C4 independent of h. It follows that || w" ||g1)< Cis
independent of h. Hence, by Lemma 2.4 w € H%? (V) for any compact
V C R2. Since w = u in pp X, we have u € HO? (pyX).
By differentiating Lu = f with respect to x, s = 1,...,m — 2 times,

we obtain

s—1
(34)  Lez=05f — Y OL(E.05 " uy + 0. Fe 1305 M),

i=0

where z = 0%u and Lg, Fs were defined in (18). We may then apply
the above procedure to equation (34) and obtain d3u € HO®?) (uyX),
s=1,....,m—2.
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Lastly denote the right-hand side of (34) by fs, then the following
equation holds in L?(u2X):
(35)

-1
Zyy = fo — Azga — (D + sA3) 2, — Ezy — (F +sD, + %AMJ z.

Since the right-hand side of (35) is in HV (uyX), it follows that z,, €
HOD(15X). Then by differentiating (35) with respect to y, we may
apply a boot-strap argument to obtain u € H™(u2X). q.e.d.

3. The Moser Estimate

Having established the existence of regular solutions to a small per-
turbation of the linearized equation for (6), we intend to apply a Nash-
Moser type iteration procedure in the following section, to obtain a
smooth solution of (6) in X. In the current section, we shall make
preparations for the Nash-Moser procedure by establishing a certain a
priori estimate. This estimate, referred to as the Moser estimate, will
establish the dependence of the solution u of (22), on the coefficients of
the linearization as well as on the right-hand side, f. If the linearization
is evaluated at some function w € C*(usX), then the Moser estimate
is of the form

(36) I |zrm < Conlll £ lzrm + [ w [ gmsma || f [[12),

for some constants C,, and m1 independent of € and w.

Estimate (36) will first be established in the coordinates («, 3), which
we have been denoting by (z,y) for convenience, and later converted
into the original coordinates (z,y) of the introduction. We will need
the Gagliardo-Nirenberg estimates contained in the following lemma.

Lemma 3.1. Let u,v € C*(Q).
i) If o and o are multi-indices such that |o|+ |g| = k, then there exist
constants My and My depending on k, such that
| 97u0% || 20y < Mu(Julpe) [| v |ar@) + I w lar@) [vlL=(@));
and
’aouagﬂ(ﬁ@) < M2(|U100(§)|U‘ck(§) + |U’ck(§)|U|CO(§))-
ii) If o1,...,0;, are multi-indices such that |o1| + -+ - + |oy| = k, then
there exists a constant Ms depending on I and k, such that
| 07 uy -+~ 0%y || p2(q)
l
< M3 Z(|UI|L°°(Q) gl ey o Tl oo ) I g (o)
j=1

—

where |uj]Loo(Q) indicates the absence of [u;|pe(q)-
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iii) Let B ¢ RN be compact and contain the origin, and let G €
C>®(B). Ifu € H**2(Q, B) and || u | 72 < C for some fized C,
then there exist constants M, My > 0 such that

| Goullgroy< M+ Mg |l ullgrez),
where M =Vol(Q)|G(0)].

Proof. These estimates are standard consequences of the interpola-
tion inequalities, and may be found in, for instance, [20]. q.e.d.

Estimate (36) will follow by induction from the next two propositions.
The first shall establish an estimate for the x-derivatives only, while the
second deals with all remaining derivatives.

Proposition 3.1. Suppose that the linearization, Ly, is evaluated
at some function w € C™(R?) with |w|ce < C1, as in (7). Let f €
H™R?) and v € H™D(R2) N H™ (12X ), m < r— 17, be the solution of
(22). If e = e(m) is sufficiently small, then

107w || + 1| 9 uy ||
< Ol f Ml + 1w =y x) + 1w [ amer o) | F 1200 x))s

for some constant Cy, independent of € and w.

Proof. We proceed by induction on m. The case m = 0 is given by
Lemma 2.1. Now assume that the estimate holds for all positive integers
less than m. Differentiate L(w)u = f m-times with respect to z and
put v = 97'u, then

m—1
Lo =00'f = Y OL(E07 " "ty + O P10 ) o= fon,
i=0
where L, and F,,, were defined in (18). If ¢ = e(m) is sufficiently small,
we can apply Lemma 2.1 to obtain
(37) 105 u | + | 5 uy |< M| fon || -

We now estimate each term of fp,. Let || ||, 4o x denote ||- ||Hm(u2x),
and | - | denote | - |L<x>(M2X). A calculation shows that

m—1 1

m—1 ‘
S an(e.a ) =yt + 05 (1 )oir g
=0

i=1 j=1
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Then using Lemma 3.1 (i) and (#47), and recalling that E, vanishes on
R? — ;@X we obtain

Zaz 6m 1—12 y)
S M1 | Oy ||

+ Mo (|07 oo || t [lm—1, pox + | OZE [lim—1, pax |uloo)
< My || 97y ||

+ M3(1El o) 1t lm—1, jox 4 | w ;6o x [ 2 [l2, u2x)-

Using the fact that |E|qz,,5x) < O}, (Lemma 1.3), and the induction
assumption, we have

m—1
Z 8;(Emagkliiuy)
=0

/
< Copa(1f =1 A 1 1, pox + 1w s, o x Il 12, p2x)-

In a similar manner, we may estimate

m—1

> 0L (OnFin1-i07 )

1=0

1
< Crpa (I F M1+ [ lmt, o x 4 1w llnr, poxll @ ll2, o x)-

Furthermore, the methods used above can be made to show that
[ wll2, pox < My || f ll2, pox -
Then (38) and (39) yield
107w (| + | 97 uy ||
S Cnlll f llm + e llm—1, pox + [0 gz, pox ] f ll2, p2x),

completing the proof by induction. q.e.d.

We now estimate the remaining derivatives.

Proposition 3.2. Let u, w, f, €, and m be as in Proposition 3.1.
Then
| 950y u [l x
< O ),

for0<s<m—t, 0<t<m, where Cy, is independent of € and w.

Proof. The cases t = 0,1 are given by Proposition 3.1. We will pro-
ceed by induction on ¢t. Assume that the desired estimate holds for
0<s<m—-t,0<t<k—-1,0<k<m.
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Solving for w,, in the equation L(w)u = f, we obtain

(40) Uyy = [ — Augy — Duy — Buy — Fu = f.
Differentiate (40) with respect to 9504572 where 0 < s < m — k, then
(41) D50k = 0505

We now estimate each term on the right-hand side of (41). Using
Lemma 3.1 (¢) and (i4i), we have

1020y (Atae) flusx

< Ms | 105720 Pulluox + Y (1 9005A0; PO Mgy [|px
p<s, g<k—2
(p,a)#(0,0)
< My (|| 857205 o x +1 Al e o) 10 + [ All |uloo)
= My z Oy UllpeX C (e X) W llm=1, p2 X m, paX |Uloo
" k*
< My (1| 83720y || ppx + 11t 1, pox + 1| @ [t pox | f 2,0 )-
Furthermore, since s < m — k the induction assumption implies that
k—
195720, u || x
< Mo(ll f Ml pox 4w lmet, pox + [0 gz, pox [ f ll2, pax)-
Thus
1 95052 (Augy) |
¥y Ugy p2X

S Mr(|| f llm, pox + 11 1, pox + W (a7, pox |l f

2, 12X )-

The remaining terms on the right-hand side of (41) may be estimated
in a similar manner. Therefore

k
[ReHeATRIS
< Ms(ll f llm, pox + [ lm—t, pox + [ @0 [l 7, o x || F {2, 42X,

for 0 < s < m — k. The proof is now complete by induction. q.e.d.

By combining the previous two propositions, we obtain the following
Moser estimate.

Theorem 3.1. Let u, w, f, €, and m be as in Proposition 3.2. Then

| w Hm, o X S Cu(|] f ”m, e X | w ||m+7, uzXH f ”2, M2X)7

where Cy, 1s independent of € and w.

Proof. This follows by induction on m, using Proposition 3.2. q.e.d.

The Moser estimate of Theorem 3.1 is in terms of the variables («, [3)
of Lemma 1.3. Since the Nash-Moser iteration procedure of the fol-
lowing section will be carried out in the original variables, (x,y), of
the introduction, we will now obtain an analogous Moser estimate in



THE LOCAL ISOMETRIC EMBEDDING ... 275

/

these original coordinates. Let || - [lm, o, || - [, o, and || - H;/n q de-
note the H™(2) norm with respect to the variables (z,y), (§,n), and

(c, B) respectively; a similar notation will be used for the C"™(£2) norms.
The following estimates will be needed in transforming the estimate of
Theorem 3.1 into the original variables.

Lemma 3.2. Ife = c(m) is sufficiently small, then

I €e llm, %, < Con(14 | w [lm7, x,),
and
| 0 llm, 3o < Con(1t 0 7, x,):
where Cy, and C’;n are independent of € and w, and X1, Xo were defined

in Lemmas 1.2 and 1.3.

Proof. We shall only prove the first estimate, since a similar argument
yields the second. The estimate will be proven by induction on m. From
the proof of Lemma 1.2 we have

|Selcoix,y < Mo,

which gives the case m = 0. Now assume that the following estimate
holds:

3
’éx‘Cmfl(Yl) S Cm—1’612‘cm(yl)-
We will first estimate the z-derivatives. Differentiate the equation

(42) b?Q(&l)w + (é:c)y - _(6?2)365937

m-times with respect to x to obtain
m—1
bl (9 Ea)e + (O€n)y = =07 [(010) el = D O4l(b2)e0y 6] = g
i=0

Then estimating 0)'¢, along the characteristics of (42) as in the proof
of Lemma, 1.2, we find
|a7$n€m’00(yl) < M1y0|g|00(y1)-

Using the second half of Lemma 3.1 () in the same way that the first
half was used in Proposition 3.1, and recalling that |b3,| c2(xy) < eMig,
produces

1910z,
<(m+ 1)5M10|8§;n§x\00(il)
+ Mio(‘(b?Q)xx|CO(Y1)|§I‘Cmfl(yl) + |(b:1))2)xx’0m71(Y1)’§x|CO(Y1)).

Therefore if € is small enough to guarantee that (m + 1)u1y0e M1p < %,
we can bring

(m + 1)M1y05M10|8;n£x|00(Y1)
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to the left-hand side:
(43) 10"l < Mua(elom i, + Waloms )

By solving for (&), in equation (42), and differentiating the result
with respect to 8;8?5_1, 0<s<m-—t 0<t<m, we can use the
techniques of Proposition 3.2, combined with Lemma 3.1 (7) and (43),
to obtain

(44) ‘8;8;&;’00(71) < M12(|§x’0m—1(y1) + ‘b?2’0m+1(fl))’
By the induction assumption on m, (44) implies that

|fx|cm(yl) < M13|b?2|cm+1(il)'
Then the Sobolev Embedding Theorem gives

I € llm, x,< Mia || b5 llm+s, x, -

Thus, by Lemma 3.1 (4i7) we have

| & Mlm, x2 < Mis(1+ || w [lma7, x1)-
q.e.d.

Theorem 3.2. Let u, w, and f be as in Theorem 3.1, and m < r—25.
If e = e(m) is sufficiently small, then

H u Hm, x< Cm(H f Hm, x; + H w Hm+257 X1H f H27 X1)7
where Cyy, is independent of € and w.

Proof. We first prove an analogue of the desired estimate in terms of
the variables (£, 7). Observe that

(45) f :i ﬁ—g > Mg
Cag \ B+ B0, ) T

for some Mg > 0, if € is sufficiently small. Let G(b5,) = B%/(ﬂ%—i—ﬂgb%),
and s=m —t, 0 <t <m. A calculation shows that

m k
’ k—ini 7
1 90 |Ix, < Miz D> || R0~ O [y

k=0 i=0
where the R;; are polynomials in the variables ngﬁga, ngﬁﬁoj 1 ngﬁb%,
VIG(bY,), VEEHB, such that |oj| <m —k, 1 <j <5, and 3, |oy| <
m — k, where ) |o,| represents the sum over all o; appearing in an
arbitrary term of R;;. Then using Lemma 3.1 (i7) and (ii7), we find
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that
(46) || 9zdu |x,
< Mig[|| u ”lrln, 2 X
+ (I € llm, pox + 162" o, o + 11 832 Iz, o) o)
< Ml @ M, ox (1 €a Iz, puax + 110 [hse, o) 1loo]-
Similarly,
(47)

” ’ ’ ’
1 9205w [l x < Mo[ll w llm, x, + (Il 0 lms2, xo + 11w lnps, x5)luloc].

Then by Theorem 3.1, the Sobolev Lemma, and (46) we have

(48)

/ " " "
H agaf]u HX2 < MQO(H f Hm, o X + ” w Hm+7, ,uQXH f H2, ,ng)

’ " ” ’
+ Moo (|| €ar llm2, pox + 1w s, o) I F 12, x, -

We now estimate the terms on the right-hand side of (48). Using
Lemma 3.1 (i), (i73), Lemma 3.2, (45), and (47) we have

I € llmse, jox

< Mor[ll € lhnsa, xo +(I e lonya, x5 + 10 lnss, x,)lEaloo]

< M| a7 G(532) s, x5 + Il @ s, x5 + 10 s, x)

< Mas[|G(0i)loo | g™ sz, x5 + 1| G(B32) g, x, log oo
+ 1 e lonya, x5 + 0 s, 5,

< Moa[l| ¢ llmga, x5 + 11w s, x,]

< Mos[14 || w H;n—l-ll, Xl

Furthermore by (47), Lemma 3.2, and the Sobolev Lemma,

"
H f ”m, poX
’ / /
< Mag[| f llm, x2 +(II @ lmt2, x5 + 10 lnrs, x2) 11 f

! ! ! !
< Mog[ll f llm, x5 + 10 [linto, xull f 12, x50

!
2, Xs)

Also, the same method yields

” ’ / ’
lw 7, o < Mozl w iz, x, + 1l w s, o0l w0 2, x,)

/ !
< Moz | w [l ms16, x5 -

Therefore, from (48) and the above estimates we obtain

(49)

! I ! ’
[t x, < Mas([l f I, x, + | @ llmt16, o1 F 2, x,)-
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We can now apply the same procedure to obtain the following analogue
of (49) in terms of the original variables (z,y),

| lm, x< Mao(|| f llm, x1 + | W llm+2s, x, | f 12, x1)-
q.e.d.

4. The Nash-Moser Procedure

In this section we will carry out a Nash-Moser type iteration proce-
dure to obtain a solution of

(50) O(w) =0 in X.

Instead of solving the linearized equation at each iteration, we shall solve
a small perturbation of the modified linearized equation L7(v)u = f, and
then estimate the error at each step. However, the theory of sections §2

and §3 requires that v and f be defined on the whole plane. Therefore,
we will need the following extension theorem.

Theorem 4.1 ([19]). Let Q be a bounded convexr domain in R?, with
Lipschitz smooth boundary. Then there exists a linear operator Tq :
L3(2) — L?(R?) such that:

i) Ta(g)la = g,

i) To : H™(Q) — H™(R?) continuously for each m € Zxg.

As with all Nash-Moser iteration schemes we will need smoothing
operators, which we now construct. Fix ¥ € C2°(R?) such that ¥ = 1
inside X. Let x(z) = [ [z2 X(n)e*™*dn be the inverse Fourier trans-
form of X. Then y is a Schwartz function and satisfies [ [po x(2)dz =1,
[ Jge #°x(x)dz = 0 for any multi-index 3, 8 # 0. If g € L?*(R?) and
i > 1, we define smoothing operators S;L : L2(R?) — H*°(R?) by

S = [ [ e =y
Then we have (see [18]),

Lemma 4.1. Let [,m € Z>q and g € H'(R?); then

i) | S;g [zm@®2)< Cim | 9 i r2), m <1,

i) | S,9 lm@2)< Cranpt™ " |l g llmirey, 1 < m,

i) || 9= S.9 lgm@2)< Cmpt™ " || 9 llgirey, m < 1.

Furthermore, we obtain smoothing operators on X, S, : L*(X) —
H*>(X), by setting S,,g = (S;Tg)|x, where T is the extension operator
given by Theorem 4.1 with @ = X. Moreover, it is clear that the
corresponding results of Lemma 4.1 hold for S,,.

k

We now set up the underlying iterative procedure. Let up = p”,

S,; = S;Lk, Sk = Sy, and wg = 0. Suppose that functions wg, w1, ..., wy
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have been defined on X, and put v; = S;-ij, 0 <j <k Let L(vg)
denote the linearization of (50) evaluated at v, and let Lg(vg) be a
small perturbation (on X)) of L7(vg) to be given below, where L7(vy) is
as in section §1. Then define wg11 = wy + ux where uy is the solution,
restricted to X, of

(51) Ls(v)ug = fr,
given by Theorem 2.2 (see Lemma 4.2 below), and where f; will be
specified below.

Let Qp(wg, uy) denote the quadratic error in the Taylor expansion of
® at wy. Then using the definition of L7 we have

(52)
P (wg+1)
= ®(wg) + L(wg)uk + Qp(w, ug)
= ®(wy) + Ap(wi)Ozzur + Qp (Wi, ur)
+ (14 e(wp) e+ 7 H™ Pra (wy)) (P (wi) Ly (wi Jug + Dy (wy) Opup)
= ®(wp)+e(1 + e(vp)ee + € H" Pry(v1))| x Py (vi] x ) L (vk| x )u
+ ek,
where
ex = e(Pr(wr) Ls(wr) — Pr(vi|x)Ls(vi|x))ur + Ag(wy) Opauy
+ Qu(wg, up) — eP(wi) (P (wi) ArOaatr — (Sk Dy (wi))Opur),
Py(wg) = (14 e(wp)ze + £ H™ Py1(wy,)) Poy(wy),
Pr(wi) = 1+ e(wy) g + " H" Py (wy),
Ap(wy) = ePy (we)®(wy),  Ap = " Be(@) () + 1(9),
Di(ug) = 50 P (i) ()] + 3 Py ()00 (),

Lg(wy)ug = Lr(wg)uy, + ApOaaun
+ ¢(a)p(B)T[(Pg(wr)) ' (I = Sk) D (wi))Dyur,

the functions ¢ and 1y are as in section §2, (a, ) are the coordinates
of Lemma 1.3; note also that we use ¢|x =1 and T'(:)|x = I in (52).

We now define fi. In order to solve (51) with the theory of section
§2, we require f; to be defined on all of R?. Furthermore, we need
the right-hand side of (52) to tend to zero sufficiently fast, to make up
for the error incurred at each step by solving (51) instead of solving the

unmodified linearized equation. Therefore we set Ey = 0, Ej, = Zf:_ol e,
and define

fo = =Tl(ePos(vo)) " So®(wo)],
fro = T1(ePe(v))  (Sk—1Ek—1 — Sk Bk + (Sk—1 — Sk)®(wp))].
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It follows that
k
(53) B(wyy1) = D(wo) + Y ePi(vilx)(filx) + By + ex
=0
= (I - Sk)q)(wo) + (I — Sk)Ek + €g.

In what follows, we will show that the right-hand side of (53) tends
to zero sufficiently fast to guarantee the convergence of {wy}?°, to a
solution of (50).

Let b be a positive number that will be chosen as large as possible,
set § =" ! and pu = 5%. Furthermore, let m, € Z>q be such that
®(wp) € H™(X). For convenience we will denote the H™(X) and
H™(R?) norms by || - ||m and [ - ||, g2, respectively. The convergence
of {wi}32, will follow from the following eight statements, valid for
0 < m < m, — 25 unless specified otherwise, which shall be proven by
induction on j, for some constants C1, Cy, C3, and Cy independent of j,
€, and u, but dependent on m.

m—b

Lo [ wjmt [ln< opi2y7

o) ifm—b<—1/2,

Crop" ™" ifm—b>1/2,

i || wj flm< {

Iz || wy [[18< €16, | vj [l1s, r2< C30,
WVji || wj = vj [lm< Codp'",

o) if m—b< —1/2,

Caop*™" if m—b>1/2,

Vit | v ||m,R2<{ 0 <m < oo,

VI;: || ej—1 ||m< 5(52,u§”:1b, 0<m < my— 30,
VH]': H fj Hm, R2< 0452(1 + /‘b_m)uz‘niﬂ 0 <m < my,
VIIL: || ®(w)) [lm< 6p5*", 0 < m < my — 30.

Assume that the above eight statements hold for j =0, ..., k. Before
showing the induction step we will need the following preliminary lemma
which allows us to study equation (51).

Lemma 4.2. If ¢ is sufficiently small, then the theory of sections §2
and §3 applies to the operators Lg(vi) and Lg(vo).
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Proof. We first show that Lemma 2.1 holds for Lg(vg). Extend the
coefficients of L7(vg) to the entire af3-plane and denote them by Ay,
Dy, Ei, Fj, as in section §2. Write

Lg(v) = ApBao + App + Do + Exds + Fy,
let I;, i = 1,2,3,4, be as in the proof of Lemma 2.1, and let I; be

analogous to I; with Ag, Dy, E, F} replaced by Ak, Dk, Ek, Fk Then
a calculation shows that

~ ey ‘o) (3 +O(I8))) if |8] < ys,
h Zh+{0+0(5) if |8] = ys,

for some constant C' > 0 independent of € and k, where y3 is as in the
proof of Lemma 2.1. Furthermore, using the definition of ®, Lemma 3.1
(iii), and IIIg, we have

|(I = Sk)D(vi)|coxy < C || (I = Sk)Dy(vi) |l2
< Cp” || Di(wr) |7
< Cup®(e |l og hz +™)
< Ceé,uf
since ®(0) = O(e?"). It follows that
Iy = I+ O °¢ar), L= Iy + Oe),
Iy = I + O(ebp *[¢ ()| + 0. d(),
from which we also find
NIz —2I3 > LIz — 213 + ey * () (C + O(uy ' +€)) > 0,

if ¢ is sufficiently small. We then conclude that Lemma 2.1 holds for
Lg(vg). Similarly, the proofs of the remaining results of sections §2 and
§3 need only slight modifications to show that they also hold for Lg(vg).
Lastly, the same method applies to Lg(vg) if we note that

’(I - SO)DO(UO)|CO(X) < C&“Qn.
q.e.d.

The next four propositions will show that the above eight statements
hold for j = k + 1. The case j = 0 will be proven shortly thereafter.

Proposition 4.1. If27 < b <m, — 26, 0 <m < my, — 25, and ¢ is
sufficiently small, then Igy1, Ugy1, Mgy, IVit1, and Vi1 hold.

Proof. 14+1: First note that by IIlg,
[velciemey < C' || vk |lis, r2< O

Therefore, we may apply Lemma 4.2 and the theory of section §2 to
obtain the solution ug of (51). We require m < m, — 25 so that the
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hypotheses of Theorem 3.2 are fulfilled. If m + 25 — b > 1/2 then using
Theorem 3.2, Vi, VIIg, and b > 27, we have

[k lm < Con(ll fi Nlm, w2 + | k 25, m2ll fi ll2, r2)
< Cn(Cad? (L4 p ™)™ + C3Ca0° (L =) 270 )

< oup,
if ¢ is sufficiently small, since §ub~™ = gn—H0- =) < ==y Ifm+25—
b < —1/2 and m > 2, then using || vg |[;495 r2< C30 in the estimate
above gives the desired result. Furthermore, if 0 < m < 2 then the
methods of Theorem 3.2 show that || uy [|;n< M || fi ||, g2; in which
case VII; gives the desired result.
II;41: Since wiq = Z?:o u;, we have

k k
l kit < D [ i < 6> "™
1=0 1=0
Hence, if m — b < —1/2
| Wit < 6 (u)~% < 52 2712 .= Oy,
= =0
and if m —b>1/2,

b
ki I 5 Z (

II;11: Since b > 27 we have 18 — b < —1/2. Therefore 111 and
Vi+1 (proven below) imply that

m—b 0
—b —iy1/2 —b
Mk+1> < Oppy Z(M O < Cvou

| wigr 18< C16 and || vpgr |lis, g2 < C36.

IVji1: Since b < m, — 26 we have m, — 25 — b > 1/2. Therefore
Lemma 4.1 and 14 yield

| i1 — Ok [lm =1 (I = Sk+1)Wrt1 [Im
< Cmﬂql;n+1(m* R | we+1 [lm.—25
m—(mx—25) +—25—b
< Cmbyiq Cho Z:Ll
= Cadp’.
Vis1: From Lemma 4.1 and b < m, — 26 we have for all m > 0,
| vE+1 ||m, g2 = || Skp1Twr41 ||m, R2
/ H Wk+1 Hb_1 1fm—b§ —1/2,
<C H T ” m—b—1 .
ppy wegr llopr ifm—02>1/2.

V41 now follows from Iy 4. q.e.d.
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Write e = e, + ¢, + ¢, , where

ey, = (Pr(wg) Lg(wy,) — Pi(vk|x) L (vk] x) Jur,
ep = —&Py(wy) (P8 (wi) Axdaaus — (SkDi(wy))dpuy,) + Ax(wy) Dz,
e;l = Qi (wg, ug).

Proposition 4.2. If the hypotheses of Proposition 4.1 hold and 0 <
m < my — 30, then Vg1 holds.

Proof. We will estimate e;c, e;;, and e;/ separately. Denote

(Pr(wy)Lg(wy) — Pr(vi|x)Ls(ve|x))u
= Z dij (uk)xzmj + Z dl(uk)xl + duy;

then Lemma 3.1 (i) and (iii), I, and IVy show that

ek llm < €Cn [ | D g llm + D I il + 1 d lln | 1 [l
1,J %

F (D Ndi 2+ Mdillz+ I dllz | Il g [l
i i
< eCma(ll wi — vk llmasll wr |4 + 1| we — vk [I7]] wg lm+2)
< Cr3edpy up ™
€ _
if € is sufficiently small, since ;Lz*b <t = £O-0GT) < '%/28 Note
that we have also used m < m, — 30, which allows us to apply IVy.
We now estimate e;;. By Lemma 3.1 (i) and (iii), Ix, I, and VIII,
< Cma(ll Ozavik ll2ll Ak llm + || Ozatir lmll Ak ll2)
< eCmplll wr |4 (A [ wi [l6) | D(wg) llm + || wi [lmall S(w) [2)
+ 1 g el @(wi) |[2]
g ECm’G[(S,Uéib((SMZnib _{_62”?4*4717#%7()) + 52M7kn+27b/lsz]
< SCm,m,lcO_b(SQM?_b
€2 m—b
< Ej(s /LZ? ’
if € is sufficiently small and m+4—b>1/2. if m+4—b < —1/2 then
we may use the estimate || wg ||;m+4< C1d to obtain the same outcome.
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Furthermore, the same methods combined with Lemma 4.1 show that
|| P (wi) (Sk D) Ot [|m
< €Cm,s(I| 0zt |2l Pr(Sk Di) llm + | Ozt [l || Pr(SkDi) [I2)
< eCpolllurlls (ux || Prll2l Di llm—1 + || P [l D 2)
+ [tk |1 Dy []2]
< eCmo[llur lls (pe | 2 (we) [ 41 (1+ [ wi [lmra) || R(wie) |[3)
+ [k [lms1 | 2(we) [Is]
< eChn 1[04 (S0 4 P00 0) 4 2 O]
< eCh 1oyt 087
€2 m—b
Similarly, since ¥1(8) = 0 in X it follows that
|| gpk(wk)zkaaauk ||m
< 20, Con 13 (Il e Nlall Wi s + 1| 0k lmre (14 || wi [l6))
< &0 Coma (0 0 o 02 7)
€2 m—b
Therefore

7 g —b
I < Soup,

. "
We now estimate e, . We have

" 1 52

Apply Lemma 3.1 (i) and (ii), as well as the Sobolev Lemma, to obtain

1
ey o < /0 S Vs (g + )0 usdug [ dt
lo],|v]<2

1
g/ S Conrs (Vs ®(wg + tug)loo | 07wd g ||
0
ohi<2

+ || Vag®(wg + tug) [|m [07ur0" ug|oo)dt

1
< / Crm6(|| V2@ (wy, + tug,) [|2]] wk ||all vk [lmse
0
+ | V2<I>(wk + tug) |lm ]| uk Hi)dt,

where @ = 0°(wy, + tuy) and 57 = 97(wy + tug). The notation V2@
represents the collection of second partial derivatives with respect to
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the variables @, ¥, so by (6) V2® = O(e?). Therefore using Lemma 3.1
(iii), Ix, and IIg, we have

"

ler llm < €2Crarl(1 || wi llo + ||k llo) | wr llall w lm-s2
+ (1 || wi flra + [ lonra) [ o [13]
< ggcmylg[ézﬂifb%msz X 52Mi(4_b) + 53lu2n+4fb'ui(4—b)]
€2 m—b
< 55 s
if € is sufficiently small, since b > 27. Combining the estimates of e;g,

e;;, and egl yields the desired result. q.e.d.

Assume that b < m, — 31, then Ej € H**1(X) by Theorem 2.3. The
following estimate of Ej will be utilized in the next proposition:

k—1 k—1
(54) | Er o1 Yl ei llorn <262 i
i=0 i=0
o
<e (Z Mﬁ) 52
i=0
o .
<e (Z 2_’) 62 .
1=0

Proposition 4.3. If the hypotheses of Proposition 4.2 hold and b <
my — 31, then VIIg 1 holds for all 0 < m < m,.
Proof. By Lemma 3.1 (iii),
(55) |l fis1 llm, r2
< e T || Conao(ll SkBr — Sks1Ep41 + (S — Sky1)@(wo) [lm
+ 1 vkt l[mall SkEr — Skt Ergr + (Sk — Sky1)@(wo) [[2)-

Furthermore, using (54) and the estimate || ®(wo) ||pr1< Cre®™, we
obtain for all m > b+ 1,

(56) | SkEx — Sk+1Ek+1 + (Sk — Sk+1) @ (wo) [Im
< Con20( "M B o1 270 1 Bt o
(g Y | @ (wo) (o)
< Co1e6?(1 + ,ub_m)uzrlb.
If m < b+ 1, then applying similar methods along with VI, to
| SkEk — Sk+1Ek+1 + (Sk — Sk1)®(wo) [Im
<[ =S) Bk Nlm + | (I = Sk41) B llm + || Skrrex [Im
+ I (I = Se)@(wo) [lm + [| (I = Skt1)®(wo) [Im,
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yields the same estimate found in (56). Therefore plugging into (55)
produces

I Frst lm, 22 < Crnp2a[6° (14 1* ™) + 83 (14 p =) 072
< Co3d*(1+ Mb_m)ﬂzrlb,

ifm+4—-5b62>1/2. f m+4—0b < —1/2 and m > 2, then using
|| Vi1 ||m+4< C30 in the estimate above gives the desired result. More-
over, if 0 < m < 2, then in place of (55) we use the estimate

| fet1 [lm, w2

< e | T Crnza || SkErk — Set1Brs1 + (Sk — Skr1)@(wo) [|m
combined with the above method to obtain the desired result. Lastly,

if m+4 — b =0, then replace || vg4+1 ||lm+a in (55) by || vkt1 ||m+5 and
follow the above method. q.e.d.

Proposition 4.4. If the hypotheses of Proposition 4.3 hold and b =
my — 31, then VIIIx 1 holds for 0 < m < m, — 30.

Proof. By (53), VIgi1, and m < b+ 1 = m, — 30, we have

| ®(wis1) [lm
<[ (I = Sk)®(wo) [|m + | (I = Sk)Eg lm + 1| €& [Im

< Cros (7 || @(wo) o1+ " || B o1 +ed2u ).

Applying the estimate (54), || ®(wo) [[pr1< Cpe?™ < 82, and sub~™ <
1

eb+1 produces
| D(whs1) [lm< Com26(82 "™ + e8> < Spty

if € is sufficiently small. q.e.d.

To complete the proof by induction we will now prove the case k = 0.
Since wg = 0, Ilp, IIly, IVy, and Vg are trivial. Furthermore since
| ®(wo) ||m< 6% if ¢ = e(m) is sufficiently small and m < m.., VI
and VIIIy hold. In addition, by Lemma 4.2 we can apply Theorem 3.2
to obtain

| wo [[m< Cm || fo Hm, r2< C;néz <9

if § is small, so that I; is valid. Lastly, the proof of Proposition 4.2 now
shows that VI is valid. This completes the proof by induction.

In view of the hypotheses of Propositions 4.1-4.4, we require m, > 58
and choose b = m,—31. The following corollaries will complete the proof
of Theorem 0.3.

Corollary 4.1. wy, — w in H™32(X).
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Proof. For 0 <m < m, — 32 and ¢ > j, I, implies that

i1 i—1 i—1
lwi —wj < D lug lm< 8 p <6y u ™.
k=j k=j k=j

Hence, {wy} is Cauchy in H™(X) for all 0 < m < m, — 32. q.e.d.
Corollary 4.2. ®(w;) — 0 in C(X).
Proof. By the Sobolev Lemma and VIII,
D) o) < C || D) o= Cod ™,

The desired conclusion follows since b = m, — 31 > 27. q.e.d.

Let r, K, a;j, and f be as in Theorem 0.3. If K,a;;, f € C", r > 58,
then there exists a C" 34 solution of (50).

Remark. After completion of this manuscript, it was brought to the
author’s attention that the methods of [4] and [7] may be adapted to
help simplify the linear existence theory of sections §2 and §3.

5. Appendix

Here we shall show that Theorem 0.1 holds for an arbitrary smooth
curve o passing through the origin. This will be accomplished by uti-
lizing the special structure of the isometric embedding equation (1), to
show that the calculations of Lemma 1.2 can be refined in this case
so that the canonical form (4) may be achieved without requiring the
Christoffel symbols to vanish along . This observation is due to Qing
Han. Recall that the geodesic hypothesis on o was only used to obtain
a high degree of vanishing for the Christoffel symbols along o.

Let g = g;;du;du; be the given metric in local coordinates, and write
equation (1) as

det V2 = K|g|(1 — |Vy2|?),
where V;; are covariant derivatives, K is the Gaussian curvature, V is
the gradient operator with respect to g, and |g| = det g;;. Following the

set up of the introduction we set u; = €?z;, and z = u% /2 4 e’w. Then
as in (7) the linearization of (6) becomes

Li(w)v = Z bij”;z‘j + Z biv;i = Z b’}jvxifrj + Z b’}vlia
i, i i, i

where v,;;, v; denote covariant derivatives in x; coordinates (we will
denote covariant derivatives in u; coordinates by V;;v, V,v), b is the
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cofactor matrix given by
(57) b = bl = eVaoz = £20(1 + |Vuw| + |[V2w)),
b2 = p?! = bl, = bl = —eViaz = 20(1 + |Vu| + |[VZw)),
b?? = by, = eViiz = (1 + 0(1 + |Vuw| + |VZw))),
and
b = —b'*T%, 4+ b = =D, 4+ 2D Y (5 10) Pi(e, @1, 20, V)

for some P;, with ka Christoffel symbols for g in x; coordinates. Also
throughout this section the summation convention for raised and low-
ered indices will be used.

Continuing to follow the procedure of section §1, we find that (9)

produces
Ly(w)v =3 bvae, + > _ by,

where ’
(5) b= (72) 2((012)2 + 22 L),

biy = (b?) 710",

b3p =1,

B = (17) "L (—0HT, + 2R,
and

Klg|l(1 = |V2|?) = 20D B (g 20) P(e, a1, w9, V).
Let
{=¢&(z1,32), 0=z
be the change of coordinates of Lemma 1.2, so that £ satisfies (10):
(59) b8, + b7, = 0.

If as before bfj and b} denote the coefficients of Lz(w) in these new
coordinates, then all the conclusions of Lemma 1.2 hold. In fact the
proof requires no modification, except to justify the expression for bj
which we now show.

Using (13), (14), and (58) we obtain the analogue of (15):

(60) bil = Z b?jgxixj + Z b?fxz
1,J %

c2(n+2) gn+lp pl2 pl2 pl2
= (522)2 5001961 - 172_2 bﬁ + 1)2_2 fm
x1 z2

+) b,
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Calculating the second term on the right-hand side of (60) yields

v |(2) (=), (%),
1 2
_ b12b31£ _ (b22)_1(b12)2b§? + b22b£ _ b12b32£§
=b"2b2% — b2 + b*2b12 — b'Pp22
+ (67%) b2 (det b))
= —b,2b' + by b7 + 0770, — b2
+ (b22) 71022 (det b)) — (det b'7),, .
Therefore, (59) and (60) imply that
(61)
b2bf = —(bL! + b2 4 T, — 2TV EYL P — (072) 7 det b)), )&y,
— (082 + 2 TR - 2D g py)e,,
+ (b22) 12t grtipe
Lastly, from (57) we calculate
(62)
S8+ + 84T
= —I‘;ézmm + l“glzmgc2
+ (Fzﬁ,xg - Fé2,ml — 11D + 20Ty — Tl ) 2,
_ 53F§2b12 Jr5311;1[)11
+ (Plﬁ,xg - Féml — T Thy+ 2T,y — Dol — F§2P§2+ F§1P§2)2xi’
However, we see that the coefficient of z;, is in fact a curvature term.
More precisely, if we denote it by 2* then

(63) Q' =Ty, — T, + 00 —T5,1%
— —€4R512 — _€4gi1 ]g]K _ _62(n+3)Hn+1le

=i ;. . . .
for some Py, where R;'kl is the Riemann tensor for g in w; coordinates

(recall that I'i, are Christoffel symbols in z; coordinates). A similar
calculation shows that

(64) £3(012 + 022 4+ V'*TE) = 317,012 + 217,022 — 2 P,
for some ﬁ;. Then observing that

65 det b7 = 2@ (w) + 2D P

(65)

from (6), we may combine (59) and (61)-(65) to obtain the desired ex-
pression for b} as stated in Lemma 1.2 (note that the linear combination
of ®(w) and 9,, P(w) will appear slightly different than in Lemma 1.2).
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Having established Lemma 1.2, we can then apply the remainder of sec-
tion §1 as well as sections §2, §3, and §4 without change in order to
obtain Theorem 0.1 for an arbitrary smooth curve o.
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