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Abstract We prove the existence of C∞ local solutions to a class of mixed type Monge–
Ampère equations in the plane. More precisely, the equation changes type to finite order across
two smooth curves intersecting transversely at a point. Existence of C∞ global solutions to
a corresponding class of linear mixed type equations is also established. These results are
motivated by and may be applied to the problem of prescribed Gaussian curvature for graphs,
the isometric embedding problem for 2-dimensional Riemannian manifolds into Euclidean
3-space, and also transonic fluid flow.

Mathematics Subject Classification 35M10 · 53A05

1 Introduction

In this paper, we will study a class of Monge–Ampère equations of mixed-type. One source
of interest in these equations arises from the equation of prescribed Gaussian curvature. Let
u be a C2 function defined in a domain� ⊂ R

2 and suppose that the graph of u has Gaussian
curvature K (x) at the point (x, u(x)), x ∈ �. It follows that u satisfies the equation

det D2u = K (x)(1 + |Du|2)2.
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826 Q. Han, M. Khuri

This equation is elliptic if K is positive and hyperbolic if K is negative, and hence is of mixed
type when K changes sign. Another source of Monge–Ampère equations comes from the
isometric embedding problem for 2-dimensional Riemannian manifolds into R

3. See chapter
three in [8] for details. In [21], Lin proved the existence of local isometric embeddings of
surfaces into R

3 if the Gaussian curvature changes sign cleanly. In other words, the Gaussian
curvature changes sign to first order across a curve. In this case the Darboux equation, a
basic equation associated with the isometric embedding problem is elliptic on one side of the
curve and hyperbolic on the other. Such a result was generalized by the first named author
in [5] and [6]. Recently, we [9] discussed a case in which the Gaussian curvature changes
sign in a more complicated way and proved the existence of sufficiently smooth isometric
embeddings. For further results on this and related problems see [4–17], [20], and [21].

Mixed type equations also arise naturally in many other areas. Recently, there have been
several survey articles on this subject. In [22], Morawetz gives a detailed account of the
historical background and known results on mixed type equations and transonic flows. In
[23], Otway presents a detailed review on mixed type equations and Riemannian–Lorentzian
metrics. The most intensively studied equation of mixed type is the Tricomi equation [24]

uyy + yuxx = f.

The plane is divided into two parts by the x-axis. The Tricomi equation is elliptic in the upper
half plane and hyperbolic in the lower half plane. Many results have been obtained in vari-
ous settings for this equation. Nonetheless, beyond the equations of the Tricomi family, the
theory of mixed type equations is fairly underdeveloped. However this lack of development
is not due to a lack of applications or well-motivated problems. Mixed type equations which
change type in a way more complicated than that of the Tricomi case also arise naturally
in many circumstances. For instance, as far back as in 1929, Bateman [1] presented several
models for the 2-dimensional motion of compressible fluids. One of these models is given by
a class of elliptic-hyperbolic equations in the unit disk which change type in the following
way. The unit disk is divided into four regions by two straight lines through the origin. These
equations are elliptic in a pair of opposing regions and hyperbolic in another pair of opposing
regions. (See Fig. 1 on p. 612 in [1].)

In this paper, we study smooth solutions to a class of mixed type Monge–Ampère equa-
tions in the plane which change type in a way similar to that in [1]. The model equation has
the following form

uxx uyy − u2
xy = (x2 − y2)ψ(x, y, u, ux , uy), (1.1)

where ψ is a positive smooth function in B1 ×R×R
2. Here B1 is the unit disk in R

2. We are
interested in the question of whether or not (1.1) admits a smooth solution u, defined in some
neighborhood of the origin. We note that (1.1) is a Monge–Ampère type equation of mixed
type. The unit ball B1 ⊂ R

2 is divided into four components by {|x | = |y|}. The equation
(1.1) is elliptic in {|x | > |y|} and hyperbolic in {|x | < |y|}.

The following result is a special case of a more general result that we will prove in Sect. 6.

Theorem 1.1 Letψ be a positive smooth function in B1 ×R×R
2. Then there exists a smooth

solution u of (1.1) in Br for some r ∈ (0, 1).

We should point out that x2 − y2 can be replaced by any function with a similar behavior,
such as y2 − x2. This is due to the invariance of the Monge–Ampère operator by orthogonal
transformations.
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A class of mixed type equations 827

In order to prove Theorem 1.1, it is essential to analyze the corresponding linear equation.
It turns out that it suffices to consider

uyy + (x2 − y2)uxx = f. (1.2)

Again, the plane is divided into four components by {|x | = |y|}. The equation (1.2) is elliptic
in {|x | > |y|} and hyperbolic in {|x | < |y|}. The lines of degeneracy {|x | = |y|} are non-
characteristic. Moreover, the boundaries ∂{y > |x |} and ∂{y < −|x |} are space-like for the
corresponding hyperbolic regions {y > |x |} and {y < −|x |}, respectively. Hence equation
(1.2) is considerably more complicated than the Tricomi equation, however we are still able
to establish the following theorem, which is a special case of a more general result proven in
Sect. 5.

Theorem 1.2 Let f be a smooth function in B̄1 ⊂ R
2. Then there exists a smooth solution

u of (1.2) in B1. Moreover, for any positive integer s, u satisfies

‖u‖Hs (B1) ≤ Cs‖ f ‖Hs+5(B1)
, (1.3)

where Cs is a positive constant depending only on s.

We point out that (1.2) is a small perturbation of the linearization for (1.1), at a suitably
chosen approximate solution. It should be emphasized that the form of the degenerate coef-
ficient x2 − y2 plays an important role in the solvability of (1.2). If x2 − y2 is replaced by
other quadratic functions, then it may not be possible to solve the new equation. For instance,
the approach and methods used in this paper do not yield solutions of

uyy + (y2 − x2)uxx = f. (1.4)

This equation is different from (1.2), in that (1.4) is elliptic in {|x | < |y|} and hyperbolic
in {|x | > |y|}. We note that the y-direction, which may be considered as the time direction,
does not always point into the hyperbolic regions. In this sense, the linear Eq. (1.2) is more
rigid than the nonlinear Eq. (1.1).

The proof of Theorem 1.2 consists of two steps. In the first step, we construct a smooth
solution in the elliptic regions {|y| < x} and {|y| < −x}. This is achieved by solving the
homogeneous Dirichlet problem. Such a solution then naturally yields Cauchy data for the
hyperbolic regions along the lines of degeneracy. In the second step, we construct a smooth
solution in the hyperbolic regions {y > |x |} and {y < −|x |}, by solving the Cauchy problem.
The solution constructed in Theorem 1.2 vanishes along the degenerate set {|x | = |y|} ∩ B1.
It is clear from the proof in this paper that one can prescribe the solution arbitrarily (as a
smooth function) on {|x | = |y|} ∩ B1. A similar idea was used by Han [7] in the discussion
of higher dimensional Tricomi equations and related Monge–Ampère equations.

The difficulty in solving both the Dirichlet problem in the elliptic regions and the Cauchy
problem in the hyperbolic regions arises from two distinct aspects of this problem. First, the
equation is degenerate on the boundary. Second, there is an angular point (i.e., the origin) on
the boundary of each domain.

Boundary value problems for (strictly) elliptic differential equations in domains with
angular points have been studied extensively. The regularity results are in fact not encourag-
ing. Well known examples of harmonic functions in sector domains demonstrate that these
solutions are not necessarily smooth. Furthermore, in general, solutions of degenerate ellip-
tic differential equations exhibit worse regularity than those of (strictly) elliptic differential
equations. Hence, it seems unrealistic to expect, at first glance, that solutions of the degener-
ate elliptic equation studied here should be smooth in domains with angular points. However,
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828 Q. Han, M. Khuri

it is precisely due to the degeneracy at the angular points that we are able to prove that the
solutions have this high degree of regularity up to the boundary. The degeneracy plays an
important positive role. In fact, we are not aware of any other cases where degeneracy actually
improves the regularity.

In contrast to the extensive studies of elliptic equations in nonsmooth domains, little is
known about the Cauchy problem for hyperbolic equations when the initial curve is non-
smooth. Our first task here is to prove that the Cauchy problem is well posed for (strictly)
hyperbolic equations in domains whose initial curves contain angular points. Compatibility
conditions are needed at the angular points in order to ensure the regularity of solutions. (See
Lemma 3.3 for details.) As in the elliptic case, the degeneracy along the initial curve surpris-
ingly plays a positive role in passing the existence and regularity result from strict hyperbolic-
ity to degenerate hyperbolicity. In fact, it demonstrates that any such initial curve is space-like
for the hyperbolic regions. This plays an important role in the proof of the well-posedness
of degenerate hyperbolic equations in domains whose initial curves have angular points.

This paper is organized as follows. In Sect. 2, we will construct smooth solutions for the
Dirichlet problem in the elliptic regions and derive necessary estimates. Smooth solutions
to the Cauchy problem for uniformly hyperbolic equations in domains with angular points
on the boundary will be established in Sect. 3. Estimates independent of the hyperbolicity
constant will then be derived in Sect. 4. In Sect. 5, we will state and prove a general the-
orem of which Theorem 1.2 is a special case. Finally in Sect. 6, we will discuss a class of
Monge–Ampère type equations and study the appropriate iterations to prove a result which
generalizes Theorem 1.1.

2 Elliptic regions

In this section, we will study a class of degenerate elliptic differential equations in planar
domains with angular singularities. We will construct smooth solutions if the degeneracy
occurs at angular points.

For any κ > 0, let Cκ be a cone in R
2 with vertex at the origin given by

Cκ = {(x, y); 0 < |y| < κx}.
Let �κ be a bounded domain in R

2 such that

�κ ∩ B1 = Cκ ∩ B1,

and

∂�κ \ {0} is smooth.

Consider the equation

uyy + K uxx + b1ux + b2uy + cu = f in �κ, (2.1)

where K , bi and c are smooth functions in �̄κ . In the following, we assume

K > 0 in �κ and K = 0 on ∂�κ ∩ B1. (2.2)

There are two major difficulties in studying (2.1). First, (2.1) is degenerate on a portion of
the boundary ∂�κ ∩ B1. Second, there is an angular singularity on the boundary. Usually,
solutions of degenerate elliptic differential equations exhibit a worse regularity than those
of (strictly) elliptic differential equations. It is well known that solutions of (strictly) elliptic
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A class of mixed type equations 829

differential equations in domains with angular singularities are in general not smooth. The
regularity depends on the angle in an essential way; the smaller the angle, the better the
regularity of solutions. However, it is entirely different for equations which are degenerate at
angular points. In our case, we are able to construct smooth solutions of (2.1). Moreover, we
can prove that any solutions of (2.1) are in fact smooth if its Dirichlet value on the boundary
is smooth and satisfies a compatibility condition up to infinite order at the angular point. The
degeneracy plays an important positive role in the proof of the smoothness of solutions at
the angular point.

We will prove the following result.

Theorem 2.1 Let K , bi , c and f be smooth functions in �̄κ satisfying (2.2), c ≤ 0 in �κ
and

|b1| ≤ Cb

(√
K + |∂x K |

)
in �κ. (2.3)

Then (2.1) admits a smooth solution in �̄κ with u = 0 on ∂�κ . Moreover, for any integer
m ≥ 1, u satisfies

‖u‖Hm (�κ ) ≤ Cm‖ f ‖Hm+1(�κ )
, (2.4)

where Cm is a positive constant depending only on Cb and the Cm-norms of K , bi and c.

To prove Theorem 2.1, we regularize (2.1) by replacing K by K + δ for any δ > 0. Then
the new equation is uniformly elliptic and hence admits a unique solution uδ ∈ H1

0 (�κ).
In order to pass limit as δ → 0, we need to derive estimates of uδ independent of δ. The
condition (2.3) is introduced to overcome the degeneracy of K along ∂�κ ∩ B1.

In the following, we consider

Lu ≡ uyy + auxx + b1ux + b2uy + cu = f in �κ, (2.5)

where a, bi and c are smooth functions in �̄κ . We assume

a0 ≤ a ≤ 1 in �κ, (2.6)

for a positive constant a0 ∈ (0, 1).
It is obvious that (2.5) is uniformly elliptic. Hence (2.5) admits a solution u ∈ H1

0 (�κ)

and classical results for uniformly elliptic differential equations on smooth domains apply in
any subdomains of �̄κ away from the origin. Specifically, for any r ∈ (0, 1) and any k ≥ 2,
there holds

‖u‖Hk (�κ\Br )
≤ Ck,r‖ f ‖Hk−2(�κ )

,

where Ck,r is a positive constant depending on k, r , a0 and Ck−2-norms of a, bi and c. In
general, Ck,r → ∞ as r → 0 or a0 → 0. Therefore, we need to derive an estimate which is
independent of the lower bound of a. Moreover, the regularity of u close to the origin needs
special attentions.

We first consider boundary points away from the origin. We set for any ε > 0

Dε = {(x, y); |x | < 1, 0 < y < ε} ⊂ R
2. (2.7)

We denote by ∂+
h Dε , ∂

−
h Dε and ∂vDε the horizontal top, horizontal bottom and vertical bound-

aries respectively. By an appropriate transform, a neighborhood of any point on ∂�κ \ {0} is
changed to Dε for an ε > 0. We consider (2.5) in Dε and assume

|b1| ≤ Cb(
√

a + |∂x a|) in Dε, (2.8)

for some positive constant Cb.
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830 Q. Han, M. Khuri

Lemma 2.2 and Corollary 2.3 below provide energy estimates of solutions in narrow
domains.

Lemma 2.2 Suppose a, b1, b2 and c are smooth functions in Dε satisfying (2.6) and (2.8)
and u is a smooth solution of (2.5) with u = 0 on ∂−

h Dε . If

ε(|c+|L∞(Dε) + |axx |L∞(Dε) + |b1,x |L∞(Dε) + |b2,y |L∞(Dε) + 1)
1
2 < 1,

then for any cutoff function ϕ = ϕ(x) on (−1, 1)

‖ϕu‖L2(Dε) + ‖ϕuy‖L2(Dε) + ‖ϕ√
aux‖L2(Dε)

≤ C0

(
‖u‖L2(∂+

h Dε)
+ ‖uy‖L2(∂+

h Dε)
+ ‖√ϕau‖L2(Dε) + ‖ϕ f ‖L2(Dε)

)
, (2.9)

where C0 is a positive constant depending only ϕ, a,Cb and the supnorm of b2.

Proof For convenience, we set

M = |c+|L∞(Dε) + |axx |L∞(Dε) + |b1,x |L∞(Dε) + |b2,y |L∞(Dε) + 1. (2.10)

Multiplying (2.5) by ϕ2u and integrating over Dε , we obtain
∫

Dε

(ϕ2u2
y + ϕ2au2

x ) =
∫

Dε

(
ϕ2auux − 1

2
(ϕ2a)x u2 + 1

2
ϕ2b1u2

)

x

+
∫

Dε

(
ϕ2uuy + 1

2
ϕ2b2u2

)

y
+

∫

Dε

ϕ2
(

c + 1

2
axx − 1

2
b1,x − 1

2
b2,y

)
u2

+
∫

Dε

(
(ϕϕxx + ϕ2

x )a + ϕϕx (2ax − b1)
)

u2 −
∫

Dε

ϕ2u f.

(2.11)

We first note that there is no boundary integral over ∂vDε since ϕ = 0 there and there is no
boundary integral on ∂−

h Dε since u = 0 there. Next, we note that ϕ2
x ≤ Cϕϕ on (−1, 1) for

some positive constant Cϕ . Since a ≥ 0 in D1, we also have

|∂x a| ≤ Ca
√

a in suppϕ × (−1, 1), (2.12)

for some positive constant Ca depending only on suppϕ and the C2-norm of a. Then by (2.8),
(2.12) and the Cauchy inequality, we have

(ϕϕxx + ϕ2
x )a + ϕϕx (2ax − b1) ≤ ϕ2 + C0ϕa,

where C0 is a positive constant depending only on ϕ, Ca and Cb. With (2.10), we get
∫

Dε

(ϕ2u2
y + ϕ2au2

x ) ≤ C0

∫

y=ε
ϕ2(u2 + u2

y)+ C0

∫

Dε

ϕau2

+M
∫

Dε

ϕ2u2 +
∫

Dε

ϕ2 f 2,

where C0 is a positive constant depending only ϕ, Ca,Cb and the supnorm of b2. A simple
integration over y yields

u2(x, y) ≤ y

ε∫

0

u2
y(x, t)dt,
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A class of mixed type equations 831

and then
∫

Dε

ϕ2u2 ≤ 1

2
ε2

∫

Dε

ϕ2u2
y .

By a simple substitution, we get
∫

Dε

(ϕ2u2
y + ϕ2au2

x ) ≤ C0

∫

y=ε
ϕ2(u2 + u2

y)+ C0

∫

Dε

ϕau2

+1

2
ε2 M

∫

Dε

ϕ2u2
y +

∫

Dε

ϕ2 f 2.

With ε
√

M ≤ 1, we then obtain
∫

Dε

(ϕ2u2
y + ϕ2au2

x ) ≤ C0

{ ∫

y=ε
ϕ2(u2 + u2

y)+
∫

Dε

ϕau2 +
∫

Dε

ϕ2 f 2
}
,

and hence
∫

Dε

(ϕ2u2 + ϕ2u2
y + ϕ2au2

x ) ≤ C0

{ ∫

y=ε
ϕ2(u2 + u2

y)+
∫

Dε

ϕau2 +
∫

Dε

ϕ2 f 2
}
.

This implies (2.9) easily. �


Corollary 2.3 Suppose a, b1, b2 and c are smooth functions in Dε satisfying (2.6) and (2.8)
and u is a smooth solution of (2.5) with u = 0 on ∂−

h Dε . If for an integer s ≥ 1,

sε(|c+|L∞(Dε) + |axx |L∞(Dε) + |b1,x |L∞(Dε) + |b2,y |L∞(Dε) + 1)
1
2 < 1,

then for any cutoff function ϕ = ϕ(x) on (−1, 1)

‖ϕu‖Hs (Dε) ≤ Cs

(
s+1∑
k=0

‖Dku‖L2(∂+
h Dε)

+ ‖u‖L2(Dε) + ‖ f ‖Hs (Dε)

)
, (2.13)

where Cs is a positive constant depending on ϕ, Cb and the Cs-norms of a, b1, b2 and c.

We emphasize that Cs is independent of inf a.

Proof We first claim for any integer s ≥ 0

‖ϕ∂s
x u‖L2(Dε) + ‖ϕ∂y∂

s
x u‖L2(Dε) + ‖ϕ√

a∂s+1
x u‖L2(Dε)

≤ C

(
‖∂s

x u‖L2(∂+
h Dε)

+ ‖∂y∂
s
x u‖L2(∂+

h Dε)
+ ‖√ϕa∂s

x u‖L2(Dε)

+
s−1∑
k=0

‖ϕ∂k
x u‖L2(Dε) +

s−1∑
k=0

‖ϕ∂y∂
k
x u‖L2(Dε) + ‖ϕ∂s

x f ‖L2(Dε)

)
, (2.14)

where C is a positive constant depending on ϕ, Cb and the Cs-norms of a, b1, b2 and c.
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We first assume (2.14) for any s ≥ 0 and prove (2.13). By (2.14)s−1 and (2.14)s , with
different cutoff functions, we obtain

‖ϕ∂s
x u‖L2(Dε) + ‖ϕ∂y∂

s−1
x u‖L2(Dε)

≤ C

( s∑
k=s−1

‖∂k
x u‖L2(∂+

h Dε)
+

s∑
k=s−1

‖∂y∂
k
x u‖L2(∂+

h Dε)
+ ‖ 4

√
ϕ
√

a∂s−1
x u‖L2(Dε)

+
s−1∑
k=0

‖√ϕ∂k
x u‖L2(Dε) +

s−2∑
k=0

‖√ϕ∂y∂
k
x u‖L2(Dε) +

s∑
k=s−1

‖√ϕ∂k
x f ‖L2(Dε)

)
.

Note by (2.5)

∂yyu = −a∂xx u − b1∂x u − b2∂yu − cu + f in Dε.

It is obvious that derivatives of u of order s can be obtained easily in terms of ∂s
x u and lower

order derivatives of u. Hence we obtain

∑
i+ j=s

‖ϕ∂ i
x∂

j
y u‖L2(Dε) ≤ C

( s∑
k=s−1

‖∂k
x u‖L2(∂+

h Dε)
+

s∑
k=s−1

‖∂y∂
k
x u‖L2(∂+

h Dε)

+
∑

i+ j≤s−1

‖√ϕ∂ i
x∂

j
y u‖L2(Dε) +

∑
i+ j≤s

‖√ϕ∂ i
x∂

j
y f ‖L2(Dε)

)
.

This implies (2.13) by a simple induction.
Next, we prove (2.14). Applying ∂s

x to (2.5), we get

∂2
y∂

s
x u + a∂2

x ∂
s
x u + b̃1∂x∂

s
x u + b2∂y∂

s
x u + c̃∂s

x u = fs, (2.15)

where

b̃1 = b1 + sax ,

c̃ = c + s(b1)x + 1

2
s(s − 1)axx ,

and

fs = ∂s
x f +

s−1∑
i=0

(
cs,i−2∂

s−i+2
x a + cs,i−1∂

s−i+1
x b1 + cs,i∂

s−i
x c

)
∂ i

x u +
s−1∑
i=0

cs,i∂
s−i
x b2∂y∂

i
x u,

where cs,i is a positive constant for i = 0, 1, . . . , s − 1 with cs,−2 = cs,−1 = 0. Note that
(2.15) has the same structure as (2.5). So we can proceed as in the proof of Lemma 2.2 to get
an estimate of ∂s

x u. We only need to note that the corresponding coefficient for ϕ2(∂s
x u)2, as

compared with that for ϕ2u2 in (2.11), is given by

c̃ + 1

2
axx − 1

2
b̃1,x − 1

2
b2,y = c + 1

2
(s − 1)2axx + (s − 1

2
)b1,x − 1

2
b2,y .

By Lemma 2.2, we have for ε ≤ (s
√

M)−1

‖ϕ∂s
x u‖L2(Dε) + ‖ϕ∂y∂

s
x u‖L2(Dε) + ‖ϕ√

a∂s+1
x u‖L2(Dε)

≤ C
(‖∂s

x u‖L2(∂+
h Dε)

+ ‖∂y∂
s
x u‖L2(∂+

h Dε)
+ ‖√ϕa∂s

x u‖L2(Dε)‖ + ‖ϕ fs‖L2(Dε)

)
.

With the explicit expression of fs , we get (2.14) easily. �
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A class of mixed type equations 833

Next, we study solutions in a neighborhood of the origin. We first recall some results
for (strictly) elliptic differential equations in domains with an angular singularity on the
boundary. Main references are [18], Chapter 4 and Chapter 5 in [3] or Chapter 6 in [19].

For any nonnegative integer m, define the space V m(Cκ ) as the closure of C∞
0 (C̄κ \ {0})

with respect to the norm

‖u‖V m (Cκ ) =
( ∑

|α|≤m

∫

Cκ

r2(|α|−m)|Dαu|2
)1/2

.

To illustrate how the regularity depends on the angle of the cone, we consider


u = f in Cκ ,
u = 0 on ∂Cκ . (2.16)

Let κ = tan(α/2) for an α ∈ (0, π). Obviously, u = r
π
α cos(πθ/α) is a solution of the

homogeneous (2.16). It is easy to check that such a u is in V m(Cκ ∩ B1) provided

(m − 1)α < π.

In general, the regularity u ∈ V m(Cκ ) cannot be improved if (m − 1)α/π is not an integer.
Hence solutions of (2.16) exhibit a better regularity in smaller cones. This turns out to be a
general result.

We consider a slightly more general case. For a constant a > 0, we consider

uyy + auxx = f in Cκ ,
u = 0 on ∂Cκ .

(2.17)

By introducing

x = √
as, y = t,

we have

utt + uss = f in C√
aκ ,

u = 0 on ∂C√
aκ .

Lemma 2.4 Let κ, a > 0 be constants and u ∈ H1
0 (Cκ ) be the unique solution of (2.17) for

an f ∈ L2(Cκ ). Then for any integer m ≥ 2 satisfying

2(m − 1) arctan(
√

aκ) < π, (2.18)

if f ∈ V m−2(Cκ ), then u is in V m(Cκ ) and satisfies

‖u‖V m (Cκ ) ≤ C‖ f ‖V m−2(Cκ ),

where C is a positive constant depending only on m, a and κ .

Note that (2.18) always holds for m = 2.

Remark 2.5 If (2.18) is violated, then u is not necessarily in V m(Cκ ). To illustrate this, we
consider (2.16), or (2.17) with a = 1. We write κ = tan(α/2) for an α ∈ (0, π) and let
m > 2 be an integer such that (m − 1)α/π is not an integer. If f ∈ V m−2(Cκ ), then any
solution u of (2.16) admits a decomposition

u =
∑

j

c j r
jπ
α cos

jπθ

α
+ w,
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834 Q. Han, M. Khuri

where w ∈ V m(Cκ ) and the summation is extended over all integer j in the interval
(α/π, (m − 1)α/π).

For solutions of (2.5), the regularity is governed by the corresponding result for the con-
stant coefficient operator ∂yy + a(0)∂xx .

Lemma 2.6 Let κ be a constant, a, b1, b2 and c be smooth functions in �κ satisfying (2.6)
and u ∈ H1

0 (�κ) be a solution of (2.5) for an f ∈ L2(�κ). Then for any integer m ≥ 2
satisfying

2(m − 1) arctan(
√

a(0)κ) < π, (2.19)

if ξ f ∈ V m−2(Cκ ), then ηu is in V m(Cκ ) and satisfies

‖ηu‖V m (Cκ ) ≤ C(‖ξu‖L2(�κ )
+ ‖ξ f ‖V m−2(Cκ )),

where ξ and η are two arbitrary cutoff functions in B1 with ξ = 1 on the support of η and C
is a positive constant depending only on m, a(0), κ , ξ , η and Cm−2-norms of a, bi and c.

Later on, we will only use the regularity assertion, instead of estimates, in Lemma 2.6.
Now we begin to derive estimates of u close to the origin independent of inf a. The main
result for this part is the following lemma.

Lemma 2.7 Let m be an integer, f ∈ Hm(Cκ ∩ B1) and u be an H1-solution of (2.23) in
C1 ∩ B1 satisfying u = 0 on θ = ±α. Then there exist constants δm and κm such that, if
κ ≤ κm and

√
a(0)κ ≤ δm, then u ∈ Hm(C1 ∩ B1) and

‖u‖Hm (Cκ∩{x< 1
2 }) ≤ Cm

(
m+1∑
i=0

‖Di u‖L2(Cκ∩{x= 1
2 }) + ‖ f ‖Hm (Cκ∩B1)

)
, (2.20)

where δm is a positive constant depending only on m, κm is a positive constant depending only
on the C2-norms of a, bi , c and Cm is a positive constant depending only on the Cm-norms
of a, bi and c.

We emphasize that Cm is independent of inf a. The proof of Lemma 2.7 is complicated.
We first establish some auxiliary lemmas.

Lemma 2.8 Let m be a nonnegative integer, a, b1, b2 and c be smooth functions in �κ sat-
isfying (2.6) and u be an H2-solution of (2.5) with u = 0 on ∂�κ ∩ B1. Then there exists a
positive constant ηm depending only on m such that, if

κ2a(0) ≤ ηm, (2.21)

then there exists a polynomial Pm(u) of degree m such that Pm(u) = 0 on ∂�κ ∩ B1, any
coefficient ck in the homogeneous part of degree k, for any k ≤ m, in Pm(u) satisfies

|ck | ≤ Ck

∑
|α|≤k−2

|Dα f (0)|,

and

L(
u − Pm(u)

) = (m − 2)-th remainder of f − L̃(Pm(u)),

where Ck is a positive constant depending only on δm, κ , and the Ck−1-norms of a, bi and
c, and L̃ = (a − a(0))∂xx + b1∂x + b2∂y + c.
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A class of mixed type equations 835

It is easy to see from the proof below that Pm(u) is the m-th Taylor polynomial of u at 0
if u is Cm in a neighborhood of the origin.

Proof We first consider the transform (x, y) �→ (x/κ, y). Then (2.5) has the form

uyy + κ2auxx + κb1ux + b2uy + cu = f in �̃1,

for a domain �̃1 ⊂ R
2 with �̃1 ∩ B1 = C1 ∩ B1. In the following, we simply assume κ = 1.

Let L0 = ∂yy + a(0)∂xx . We first note ∂x u(0) = ∂yu(0) = 0 since u = 0 on y = ±κx .
Set

u = Pm(u)+ Rm(u) = Q2 + · · · + Qm + Rm(u),

where Qk is a homogeneous polynomial of degree k for k = 2, . . . ,m, with Q2 = · · · =
Qm = 0 on ∂�1 ∩ B1. Hence for k = 2, . . . ,m, Qk has the form

Qk = (x2 − y2)

k−2∑
i=0

ck−2,i xk−2−i yi .

Then

L(Rm(u)
) + L0 Q2 + · · · + L0 Qm = f̃ ,

where

f̃ = f − (L − L0)
(Pm(u)

) = f −
m∑

k=2

(L − L0)Qk .

Note that L0 Qk is a homogeneous polynomial of degree k − 2. We set

L0 Qk = the (k − 2)-th homogeneous part of f̃ , for each k = 2, . . . ,m. (2.22)

Then

L(Rm(u)
) = (m − 2)-th remainder of f − (L − L0)(Pm(u)).

We claim that we can solve successively Q2, Q3, . . . , Qm . In fact, a simple calculation shows

L0 Qk =
k−2∑
i=0

(
(k − i)(k − i − 1)a(0)− (i + 2)(i + 1)

)
ck−2,i

−
k−2∑
i=2

(k − i)(k − i − 1)a(0)ck−2,i−2 +
k−4∑
i=0

(i + 2)(i + 1)ck−2,i+2.

If we write (2.22) as a linear system for ck−2,0, ck−2,1, . . . , ck−2,k−2, the (k − 1)× (k − 1)
coefficient matrix is obviously invertible if a(0) = 0 and hence invertible if a(0) is small.
It is easy to see that ck−2,0, ck−2,1, . . . , ck−2,k−2 solving (2.22) is a linear combination of
Dα f (0), |α| ≤ k. �


To discuss the regularity of solutions close to the origin, we need to consider (2.5) in polar
coordinates. We note

x = r cos θ, y = r sin θ.
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836 Q. Han, M. Khuri

It is easy to see that any Dαu, for some |α| = m, is a linear combination of

1

rm−i
∂ i

r∂
j
θ u, 1 ≤ i + j ≤ m,

with coefficients given by smooth functions of θ .
In polar coordinates, (2.5) has the form

ã11r2urr + 2ã12rurθ + uθθ + b̃1rur + b̃2uθ + c̃u = f̃ , (2.23)

where

ã11 = sin2 θ + a cos2 θ

cos2 θ + a sin2 θ
,

ã12 = (1 − a) sin θ cos θ

cos2 θ + a sin2 θ
,

b̃1 = cos2 θ + a sin2 θ + b1r cos θ + b2r sin θ

cos2 θ + a sin2 θ
,

b̃2 = −2(1 − a) cos θ sin θ − b1r sin θ + b2r cos θ

cos2 θ + a sin2 θ
,

c̃ = r2c

cos2 θ + a sin2 θ
,

and

f̃ = r2 f

cos2 θ + a sin2 θ
.

Lemma 2.9 Let u be a Cm-solution of (2.23). Then for any integer k, l with 1 ≤ k + l ≤ m

1

rm−k
∂k

r ∂
l
θu =

m∑
i=0

1

rm−i

(
ci∂

i
r u + di∂

i
r∂θu

) +
m∑

i=2

m−i∑
j=0

1

rm−i
ei j∂

i−2
r ∂

j
θ f̃ ,

where dm = 0 and all coefficients ci , di and ei j are functions depending on derivatives of
ã11, ã12, b̃1, b̃2 and c̃ (with respect to r and θ ) up to the order m − 2.

The proof is by a simple induction based on (2.23) and hence omitted. Therefore, in order
to estimate Dmu, we only need to estimate

1

rm−i
∂ i

r∂
j
θ u, 0 ≤ j ≤ 1, 0 ≤ i + j ≤ m.

In the following, we assume κ ≤ 1 and consider (2.5) in

R = {(x, y) ∈ �κ ; x < 1/2},
or the equivalent (2.23) in

R = {(r, θ); 0 < r < r(θ),−α < θ < α},
where α ∈ (0, π/2) with tan α = κ and r = r(θ) corresponds to x = 1/2, hence
r(θ) = 1/(2 cos θ).
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A class of mixed type equations 837

Lemma 2.10 Let μ be a positive constant and u be a C2-solution of (2.5) in R satisfying
u = 0 on θ = ±α and

∫

R

(
u2

rμ
+ u2

r

rμ−2

)
< ∞.

Then there exists a sufficiently small κ0 such that, if

κ(|a|C2 + |bi |C1 + |c| + 1)
1
2 < κ0,

then
∫

R

(
u2

rμ
+ 1

rμ−2 (ur sin θ + 1

r
uθ cos θ)2

)
≤ C0

∫

∂+
v R

(u2 + u2
r )+

∫

R

f 2

rμ−4 , (2.24)

where C0 is a positive constant depending only on the C1-norm of a and the L∞-norm of bi .

The proof is similar to that of Lemma 2.2.

Proof We multiply (2.23) by −u/rμ and get by a straightforward calculation

− 1

2r

(
2ã11uur

rμ−3 − (
2ã12,θ + r ã11,r − (μ− 3)ã11 − b̃1

) u2

rμ−2

)

r

−
(

uuθ
rμ

+ 2ã12uur

rμ−1 + b̃2u2

2rμ

)

θ

+ 1

rμ−2

(
u2
θ

r2 + 2ã12uθur

r
+ ã11u2

r

)
= �

u2

rμ
− u f̃

rμ
,

(2.25)

where

� =1

2

(
2r ã12,θr − 2(μ− 2)ã12,θ + r2ã11,rr − 2(μ− 3)r ã11,r

+ (μ− 3)(μ− 2)ã11 − r b̃1,r + (μ− 2)b̃1 − b̃2,θ + 2c
)
.

(2.26)

A simple calculation shows

u2
θ

r2 + 2ã12uθur

r
+ ã11u2

r

= 1

cos2 θ + a sin2 θ

((
ur sin θ + 1

r
uθ cos θ

)2 + a
(

ur cos θ − 1

r
uθ sin θ

)2)

≥
(

ur sin θ + 1

r
uθ cos θ

)2 + a
(

ur cos θ − 1

r
uθ sin θ

)2 = u2
y + au2

x .

Now we integrate (2.25) with respect to rdrdθ in

Rr̄ = {(r, θ); r̄ < r < r(θ),−α < θ < α},
for any r̄ < 1/2. Since u = 0 on θ = ±α, there is no boundary integral on θ = ±α. By the
Cauchy inequality, we have

∫

Rr̄

1

rμ−2 (u
2
y + au2

x ) ≤ C0

α∫

−α

(
u2

rμ
+ u2

r

rμ−2

) ∣∣∣
r=r̄

dθ + C0

∫

r=r(θ)

(u2 + u2
r )

+
∫

Rr̄

(�+ 1)
u2

rμ
+

∫

Rr̄

f̃ 2

rμ
,
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where C0 depends on the L∞-norms of ã12,θ , r ã11,r , ã11 and b̃1. Next, we write

∫

R∩{r< 1
2 }

(
u2

rμ
+ u2

r

rμ−2

)
=

1
2∫

0

1

r

α∫

−α

(
u2

rμ−2 + u2
r

rμ−4

)
dθdr.

Then there exists a sequence ri → 0 such that

α∫

−α

(
u2

rμ−2 + u2
r

rμ−4

) ∣∣∣∣
r=ri

dθ → 0 as ri → 0.

By taking r̄ = ri → 0, we have

∫

R

1

rμ−2 (u
2
y + au2

x ) ≤ C0

∫

r=r(θ)

(u2 + u2
r )+

∫

R

(�+ 1)
u2

rμ
+

∫

R

f̃ 2

rμ
. (2.27)

For any (r, θ) ∈ R, the corresponding (x, y) satisfies |y| < κx and x < 1/2. Since
u(x,−κx) = 0, we have

u(x, y) =
y∫

−κx

uy(x, t)dt,

and

u2(x, y) ≤ 2κx

κx∫

−κx

u2
y(x, t)dt.

Note that x2 ≤ r2 = x2 + y2 ≤ (κ2 + 1)x2. This implies

u2(x, y)

(x2 + y2)
μ
2

≤ 2(κ2 + 1)
μ−2

2
κx

x2 + y2

κx∫

−κx

u2
y(x, t)

(x2 + t2)
μ−2

2

dt.

An integration in R = {(x, y) ∈ �κ ; x < 1/2} yields

∫

R

u2

rμ
≤ 4κ2(κ2 + 1)

μ−2
2

∫

R

u2
y

rμ−2 .

If κ is small so that

4κ2(κ2 + 1)
μ−2

2 (|�|L∞ + 1) ≤ 1

2
,

we then have by (2.27)

∫

R

(
u2

rμ
+ u2

y

rμ−2 + au2
x

rμ−2

)
≤ C0

∫

r=r(θ)

(u2 + u2
r )+

∫

R

f̃ 2

rμ
.

This implies (2.24). �
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A class of mixed type equations 839

Lemma 2.11 Let m be an integer and u be a Cm+2-solution of (2.23) in R satisfying u = 0
on θ = ±α and

∫

R

m+1∑
i=0

(∂ i
r u)2

r2(m−i)
< ∞.

If

mκ(|a|C2 + |bi |C1 + |c|L∞ + 1)
1
2 < κ0, (2.28)

then

∫

R

(
m∑

i=0

(∂ i
r u)2

r2(m−i)
+

m−1∑
i=0

(∂θ ∂
i
r u)2

r2(m−i)

)
≤ Cm

∫

∂+
v R

m+1∑
i=0

(∂ i
r u)2 +

∫

R

m∑
i=0

(∂ i
r f )2

r2(m−i−2)+ , (2.29)

where κ0 is as in Lemma 2.10 and Cm is a positive constant depending only on the Cm-norms
of a, bi and c.

Proof For any s = 0, 1, . . . ,m, we apply ∂s
r to (2.23) to get

ã11r2(∂s
r u)rr + 2ã12r(∂s

r u)rθ + (∂s
r u)θθ + b̃(s)1 r(∂s

r u)r + b̃(s)2 (∂s
r u)θ

+ c̃(s)∂s
r u = f̃ (s) − d̃(s)∂θ ∂

s−1
r u,

(2.30)

where

b̃(s)1 = b̃1 + s(r ã11,r + 2ã11),

b̃(s)2 = b̃2 + 2s(r ã12)r ,

c̃(s) = c + s∂r (r b̃1)+ 1

2
s(s − 1)(r2ã11)rr ,

d̃(s) = sb̃2,r + s(s − 1)(r ã12)rr ,

and

f̃ (s) = ∂s
r (r

2 f )−
s−2∑
i=0

(
2cs,i−1∂

s−i+1
r (r ã12)+ cs,i∂

s−i
r b̃2

)
∂θ ∂

i
r u

−
s−1∑
i=0

(
cs,i−2∂

s−i+2
r (r2ã11)+ cs,i−1∂

s−i+1
r (r b̃1)+ cs,i∂

s−i
r c

)
∂ i

r u,

where cs,i is a constant depending only on s and i with cs,−2 = cs,−1 = 0. Since (2.30) has
a similar structure as (2.23), we may apply Lemma 2.10 to (2.30). If

∫

R

(
(∂s

r u)2

rμ
+ (∂s+1

r u)2

rμ−2

)
< ∞,

and

4κ2(κ2 + 1)
μ−2

2 (|�s |L∞ + |d̃(s)|L∞ + 1) ≤ κ0,
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we obtain

∫

R

(
(∂s

r u)2

rμ
+ 1

rμ−2

(
∂s+1

r u sin θ + 1

r
∂θ∂

s
r u cos θ)2

)

≤ C0

∫

∂+
v R

((∂s
r u)2 + (∂s+1

r u)2)+ s2
∫

R

(∂θ ∂
s−1
r u)2

rμ
+

∫

R

( f̃ (s))2

rμ
,

where�s is as� in (2.26) with ãi j , b̃i , c̃ replaced by ã(s)i j , b̃(s)i , c̃(s). For each s = 0, 1, . . . ,m,
we take μ = 2(m − s) and then obtain

∫

R

(
(∂s

r u)2

r2(m−s)
+ 1

r2(m−s−1)

(
∂s+1

r u sin θ + 1

r
∂θ∂

s
r u cos θ

)2)

≤ C0

∫

∂+
v R

((∂s
r u)2 + (∂s+1

r u)2)+ s2
∫

R

(∂θ ∂
s−1
r u)2

r2(m−s)
+

∫

R

( f̃ (s))2

r2(m−s)
.

Note that

( f̃ (s))2 ≤ Cs

(
s∑

i=s−2

r2(i−s+2)(∂ i
r f )2 +

s−1∑
i=0

(∂ i
r u)2 +

s−2∑
i=0

(∂θ ∂
i
r u)2

)
,

where Cs depends on the Cs-norms of ãi j , b̃i and c̃. Hence we have

∫

R

(
(∂s

r u)2

r2(m−s)
+ 1

r2(m−s−1)
(∂s+1

r u sin θ + 1

r
∂θ ∂

s
r u cos θ)2

)

≤ C0

∫

∂+
v R

((∂s
r u)2 + (∂s+1

r u)2)+ s2
∫

R

(∂θ ∂
s−1
r u)2

r2(m−s+1)

+
∫

R

(
s∑

i=s−2

(∂ i
r f )2

r2(m−i−2)
+

s−1∑
i=0

(∂ i
r u)2

r2(m−i)
+

s−2∑
i=0

(∂θ ∂
i
r u)2

r2(m−i)

)
. (2.31)

Now we claim for any k = 0, 1, . . . ,m

∫

R

(
(∂k

r u)2

r2(m−k)
+ (∂θ ∂

k−1
r u)2

r2(m−k+1)

)
≤ Cs

⎛
⎜⎝

∫

∂+
v R

k+1∑
i=0

(∂ i
r u)2 +

∫

R

k∑
i=0

(∂ i
r f )2

r2(m−i−2)+

⎞
⎟⎠. (2.32)

Note that (2.32)0 is simply a part of (2.31)0. Now we assume that (2.32) holds for k = 0, 1,
. . . , s ≤ m − 1 and prove (2.32) for k = s + 1. By (2.31)s and (2.32)0, · · ·, (2.32)s , we have

∫

R

1

r2(m−s−1)

(
∂s+1

r u sin θ + 1

r
∂θ∂

s
r u cos θ

)2

≤ Cs

⎛
⎜⎝

∫

∂+
v R

k+1∑
i=0

(∂ i
r u)2 +

∫

R

k∑
i=0

(∂ i
r f )2

r2(m−i−2)+

⎞
⎟⎠,
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or
∫

R

1

r2(m−s)
(∂θ ∂

s
r u)2 ≤ κ2

∫

R

1

r2(m−s−1)
(∂s+1

r u)2

+Cs

⎛
⎜⎝

∫

∂+
v R

k+1∑
i=0

(∂ i
r u)2 +

∫

R

k∑
i=0

(∂ i
r f )2

r2(m−i−2)+

⎞
⎟⎠, (2.33)

where we used | tan θ | ≤ tan α = κ for any |θ | < α. Next, by (2.31)s+1 and (2.32)0, · · ·,
(2.32)s , we have

∫

R

1

r2(m−s−1)
(∂s+1

r u)2 ≤ (s + 1)2
∫

R

1

r2(m−s)
(∂θ ∂

s
r u)2

+Cs+1

⎛
⎜⎝

∫

∂+
v R

s+2∑
i=0

(∂ i
r u)2 +

∫

R

s+1∑
i=0

(∂ i
r f )2

r2(m−i−2)+

⎞
⎟⎠. (2.34)

If κ(s + 1) < 1/2, (2.33) and (2.34) imply

∫

R

1

r2(m−s)
(∂θ ∂

s
r u)2 ≤ Cs+1

⎛
⎜⎝

∫

∂+
v R

s+2∑
i=0

(∂ i
r u)2 +

∫

R

s+1∑
i=0

(∂ i
r f )2

r2(m−i−2)+

⎞
⎟⎠.

This, together with (2.34), yields (2.32) for k = s + 1. �


Now we prove Lemma 2.7.

Proof of Lemma 2.7 We will only estimate the L2-norms of Dαu for |α| = m. We will first
subtract a polynomial of an appropriate degree from u. By Lemma 2.8, if κ2a(0) is small,
we may find a polynomial P of degree m − 1 such that P = 0 on ∂Cκ ∩ B1, any coefficient
ck of degree k, for k ≤ m − 1, in P satisfies

|ck | ≤ Ck

∑
|α|≤k−2

|Dα f (0)|,

and

L(
u − P

) = fm ≡ (m − 3)-th remainder of f − (L − (∂yy + a(0)∂xx ))P,

where Ck is a positive constant depending only on δm , κ , and the Cm−1-norms of a, bi and
c. Then the Sobolev embedding theorem yields

|ck | ≤ Cm−1‖ f ‖Hm−1(Cκ∩B1)
. (2.35)

Note that fm ∈ V m−2(Cκ ∩ B1) and ξ(u − P) ∈ H1
0 (B1) for any cutoff function ξ in B1. By

Lemma 2.6, if κ2a(0) is small, then u − P ∈ V m(Cκ ∩ B1). By Lemma 2.11, if (2.28) holds,
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then
∫

R

(
m∑

i=0

(∂ i
r (u − P))2

r2(m−i)
+

m−1∑
i=0

(∂θ ∂
i
r (u − P))2

r2(m−i)

)

≤ Cm

∫

∂+
v R

m+1∑
i=0

(∂ i
r (u − P))2 +

∫

R

m∑
i=0

(∂ i
r fm)

2

r2(m−i−2)+ .

Now we apply Lemma 2.9 to L(u − P) = fm to get

∫

R

∑
|α|=m

|Dα(u − P)|2 ≤ Cm

( ∫

∂+
v R

m+1∑
i=0

(
∂ i

r (u − P)
)2 +

∫

R

m∑
i=0

m−i−2∑
j=0

(
∂ i

r∂
j
θ fm

)2

r2(m−i−2)+

)
.

Then we obtain by (2.35)

∑
|α|=m

‖Dαu‖L2(Cκ∩{x< 1
2 }) ≤ Cm

( m+1∑
i=0

‖Di u‖L2(Cκ∩{x< 1
2 }) + ‖ f ‖Hm (Cκ∩B1)

)
.

This ends the proof. �

Now, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 We first note that c ≤ 0 in �κ . For any δ > 0, we consider

Lδu ≡ uyy + (K + δ)uxx + b1ux + b2uy + cu = f in �κ. (2.36)

This is a uniformly elliptic differential equation in �̄κ . Hence there exists a solution uδ ∈
H1

0 (�κ). By the classical theory of uniform elliptic differential equations, we know u ∈
C∞(�̄κ \ {0}) ∩ C(�̄κ ). In the following, we derive estimates on uδ independent of δ. For
brevity, we simply write u = uδ .

We first estimate u itself. We claim

|u|L∞(�κ ) ≤ C | f |L∞(�κ ). (2.37)

To see this, we set

w(y) = eαd − eαy,

where d is chosen so that d > y for any (x, y) ∈ �̄κ and α > 0 is chosen so that Lδw ≤ −1.
Then (2.37) follows from a simple comparison of ±u with | f |L∞(�)w.

Next, we discuss derivatives of u. We note that (2.36) is elliptic in any subset �′ of �̄κ
away from the two rays θ = ± arctan κ . Then by the standard Hm-estimates for solutions of
elliptic differential equations (e.g., Theorem 8.10 in [2]), we have for any m ≥ 2

‖u‖Hm (�′) ≤ Cm
(‖u‖L2(�κ )

+ ‖ f ‖Hm−2(�κ )

)
, (2.38)

where Cm is a positive constant depending on the distance between ∂�′ and the two rays
θ = ± arctan κ , the ellipticity constant in �′ and the Cm−2-norms of K , bi and c.

Next, we claim for any p ∈ ∂�κ ∩ ∂Cκ and any m ≥ 1, there exists a neighborhood U of
p such that

‖u‖Hm (U∩�κ) ≤ Cm
(‖u‖L2(�κ )

+ ‖ f ‖Hm (�κ )

)
, (2.39)
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where Cm is a positive constant depending on the distance between U and the origin, and
the Cm-norms of K , bi and c. To see this, we introduce a transform which takes p to the
origin, the ray θ = arctan κ or θ = − arctan κ to the x-axis, and a neighborhood of p in �κ
to Dε = (−1, 1)× (0, ε). By Corollary 2.3, for any cutoff function ϕ = ϕ(x) in (−1, 1) and
any m ≥ 0, there holds

‖ϕu‖Hm (Dε) ≤ Cm

(
m+1∑
k=0

‖Dku‖L2(∂+
h Dε)

+ ‖u‖L2(Dε) + ‖ f ‖Hm (Dε)

)
,

as long as ε is small. In fact, we may apply Corollary 2.3 in Dt = (−1, 1) × (0, t) for any
t ∈ (ε/2, ε) and then integrate with respect to t in (ε/2, ε). Then we get

‖ϕu‖Hm (Dε/2) ≤ Cm

(
m+1∑
k=0

‖Dku‖L2(Dε\Dε/2) + ‖u‖L2(Dε) + ‖ f ‖Hm (Dε)

)
.

The first term in the right-hand side can be estimated by (2.38). Hence, we get (2.39) easily
for an appropriate U . We should note that U depends on m. It is obvious that U does not
contain the origin.

With (2.38) and (2.39) and a simple covering, we obtain for any r > 0 and

‖u‖Hm (�κ\Br ) ≤ Cm(‖u‖L2(�κ )
+ ‖ f ‖Hm (�κ )), (2.40)

where Cm depends only on r and the Cm-norms of K , bi and c. We emphasize that Cm does
not depend on δ.

Next, we discuss the regularity of u in �κ ∩ Br . We claim for any integer m there exists
an ε = ε(m) such that if δ < ε4 there holds

‖u‖Hm (�κ∩{x<ε5/2}) ≤ Cm

(
m+1∑
i=0

‖Di u‖L2(�κ∩{x=ε5/2}) + ‖ f ‖Hm (�κ∩{x<ε5/2})

)
, (2.41)

where Cm is a positive constant depending only on m and the Cm-norms of K , bi and c. To
prove this, we set

x = ε5s, y = ε4t.

Then

|y| < κx ⇔ |t | < εκs.

Let v(s, t) = u(ε5s, ε4t). Then v satisfies

vt t + aδvss + ε3b1vs + ε4b2vt + ε8cv = ε8 f in �εκ ∩ B1,

where aδ = (K + δ)ε−2 and K , bi and c are evaluated at (ε5s, ε4t). Note K (0, 0) = 0 and
hence for (s, t) ∈ �εκ ∩ B1

K (ε5s, ε4t) ≤ |DK |L∞
√
ε10s2 + ε8t2 ≤ ε4|DK |L∞ .

This implies

(εκ)2aδ(0, 0) = κ2δ,

and

aδ ≤ ε2|DK |L∞ + δ

ε2 in �εκ ∩ B1.
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844 Q. Han, M. Khuri

Now we take ε small so that κε2 ≤ δm and κε ≤ κm , where δm and κm are as in Lemma 2.7.
Then if δ < ε4, Lemma 2.7 implies v ∈ Hk(�εκ) and

‖v‖Hm (�εκ∩{s<1/2}) ≤ Cm

(
m+1∑
i=0

‖Div‖L2(�εκ∩{s=1/2})+ ‖ f ‖Hm (�εκ∩{s<1/2})

)
, (2.42)

where Cm is a positive constant depending only on m and the Cm-norms of K , bi and c.
Obviously, (2.42) implies (2.41). With a similar trick, we then get

‖u‖Hm (�κ∩{x<ε5/2}) ≤ Cm

(
m+1∑
i=0

‖Di u‖L2(�κ∩{ε5/2<x<ε5})+ ‖ f ‖Hm (�κ∩{x<ε5})

)
. (2.43)

With (2.40) and (2.43), we conclude the following result: For any integer m there exists
an ε = ε(m) such that the solution uδ of (2.36) with uδ = 0 on ∂�κ for δ < ε4 satisfies

‖uδ‖Hm (�κ ) ≤ Cm(‖u‖L2(�κ )
+ ‖ f ‖Hm+1(�κ )

),

where Cm is a positive constant depending only on m and the Cm-norms of K , bi and c. With
(2.37) and the Sobolev embedding theorem, we obtain for any m ≥ 1

‖uδ‖Hm (�κ ) ≤ Cm‖ f ‖Hm+1(�κ )
.

It is easy to get a sequence of δ → 0 and a u ∈ ∩∞
m=1 Hm(�κ) ∩ H1

0 (�κ) such that

uδ → u in Hm(�κ) for any m as δ → 0.

Therefore, u is a solution of (2.1) and satisfies u = 0 on ∂�κ and (2.4). �

Remark 2.12 It is clear that Theorem 2.1 still holds if �κ is replaced by �κ1,κ2 with the
property that ∂�κ1,κ2 \ {0} is smooth and that in a small neighborhood of the origin ∂�κ1,κ2

is given by smooth functions y = κ1(x) and y = κ2(x) over a small interval [0, d] with
κ1(0) = κ2(0) = 0 and κ ′

1(0) > 0 > κ ′
2(0). To see this, we simply note that there exists a

smooth transform in �̄κ1,κ2 such that F(�κ1,κ2 ∩ U ) = Cκ ∩ V for a positive constant κ and
neighborhoods U and V of the origin.

Remark 2.13 We also note that c ≤ 0 can be replaced by c ≤ ε for ε > 0 sufficiently small.
This is standard for elliptic differential equations.

3 The cauchy problem in non-smooth hyperbolic regions

In this section, we will discuss Cauchy problems for hyperbolic equations in R
2 when the

initial curve has an angular point. We will discuss uniformly hyperbolic equations here and
treat degenerate hyperbolic equations in the next section.

It is well known that the Cauchy problem for linear hyperbolic differential equation is
well-posed in a domain whose boundary is a smooth non-characteristic curve. A standard
example of such a domain is the upper half plane. However, we cannot apply directly results
for smooth domains to non-smooth domains. In this section, we will prove by hand the exis-
tence of solutions of Cauchy problems for hyperbolic equations if the initial curve is not
smooth and has an angular point. The method is based on energy estimates and is particularly
designed for non-flat domains. The regularity of these solutions depends essentially on a class
of compatibility conditions of Cauchy data and nonhomogeneous terms at angular points.
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A class of mixed type equations 845

Throughout this section, we fix a function y = κ(x) on R with κ(0) = 0 satisfying

y = κ(x) is Lipschitz in Rand smooth for any x �= 0,

and

y = κ(x) is strictly decreasing for x < 0 and strictly increasing for x > 0.

Hence for any τ > 0, κ(x) = τ has two roots, one positive and one negative. An important
example of such a function is given by y = κ|x | for a positive constant κ .

For a fixed positive constant y0, we set

�κ,y0 = {(x, y); κ(x) < y < y0}.
For brevity, we simply write � instead of �κ,y0 . We denote by ∂b� and ∂t� the bottom and
top boundaries of �, i.e.,

∂b� = {(x, y); y = κ(x) < y0}, ∂t� = {(x, y); κ(x) < y0, y = y0}.
In the following, we consider

Lu ≡ uyy − (aux )x + b1ux + b2uy + cu = f in �, (3.1)

where a, b1, b2 and c are smooth functions in � satisfying

a ≥ a0 in �, (3.2)

for a positive constant a0. Obviously, y = κ(x) is space-like if

aκ2
x ≤ η0 on ∂b�, (3.3)

for a constant η0 ∈ (0, 1). Our goal is to prove that the Cauchy problem of (3.1) in � is
well-posed for Cauchy data prescribed on ∂b�. We point out that ∂b�, as an initial curve, is
not smooth and has an angular point.

For any nonnegative integers m ≥ l, we define H (m,l)(�) (H (m,l)
0b (�)) to be the closure

of all C∞(�) functions (which vanish to all orders at ∂b�), in the norm

‖ u ‖2
(m,l)=

∫

�

l∑
j=0

m− j∑
i=0

(∂ i
x∂

j
y u)2.

Obviously, the usual Sobolev space Hm(�) is a subset of H (m,l)(�). The L2(�) inner prod-
uct will as usual be denoted by (·, ·). A simple calculation shows that the formal adjoint L∗
of L is given by

L∗u = uyy − (aux )x − (b1u)x − (b2u)y + cu.

It is convenient to first establish an existence result for (3.1) with homogeneous Cauchy
data and with f vanishing to high order on ∂b�.

Lemma 3.1 Let m be a positive integer, a ∈ Cm+1(�̄) and b1, b2, c ∈ Cm(�̄) satisfying
(3.2) and (3.3). Then for any f ∈ H (m,0)

0b (�), there exists a u ∈ H (m+1,1)
0b (�) satisfying

(u, L∗v) = ( f, v) for any v ∈ C∞(�) with v = vy = 0 on ∂t�. (3.4)

We note that (3.3) holds automatically for arbitrary nonnegative a if ∂b� is a horizontal
line, i.e., κ ≡ 0. It is clear from the proof that η0 in (3.3) is allowed to be 1 in Lemma 3.1.
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Proof Let Ĉ∞(�) consist of all C∞(�) functions v with v = vy = 0 on ∂t�. We consider
a fixed v ∈ Ĉ∞(�). For a large constant λ to be determined, we consider

m∑
s=0

(−1)sλ−s∂2s
x ϕ = v in �,

ϕ = · · · = ∂m−1
x ϕ = 0 on ∂b�.

This is a boundary value problem related to an ODE for each y ∈ (0, y0), and therefore the
theory of such equations guarantees the existence of a unique solution ϕ ∈ C2m(�). Set

w(x, y) =
y∫

κ|x |
eλtϕ(x, t)dt.

Then w satisfies

m∑
s=0

(−1)sλ−s∂2s
x (e

−λywy) = v in �,

w = wy = ∂xwy = · · · = ∂m−1
x wy = 0 on ∂b�.

(3.5)

We note that w satisfies extra boundary conditions

∂ i
x∂

j
yw|∂b� = 0, for i + j ≤ m. (3.6)

To see this, we simply differentiate w = 0 along ∂b� to get

n2wx − n1wy = 0 on ∂b�, (3.7)

where (n1, n2) is the outward unit normal vector of ∂b�. Withwy = 0 on ∂b�, we get easily
wx = 0 on ∂b�. A simple induction argument then yields (3.6). We note that

(n1, n2) = 1√
1 + κ2

x

(κx ,−1).

By taking λ sufficiently large, we claim

(
Lw,

m∑
s=0

(−1)sλ−s∂2s
x (e

−λywy)

)
≥ C‖w‖2

(m+1,1), (3.8)

where C is a positive constant depending on m, a0, the Cm+1-norm of a and the Cm-norms
of b1, b2 and c. To prove this, we integrate by parts each term in the left hand side of (3.8)
repeatedly with the help of (3.6). First for 1 ≤ s ≤ m, we have
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(
wyy − (awx )x , (−1)se−λy∂2s

x wy

)

=
∫

�

e−λy∂s
x∂

2
yw∂

s
x∂yw +

∫

�

e−λy∂s+1
x wy∂

s
x (awx )− δsm

∫

∂�

e−λy∂s−1
x ∂yyw∂

s
x∂ywn1

=
∫

�

e−λy
(

1

2
λ(∂s

x∂yw)
2 + 1

2
(λa − ay)(∂

s+1
x w)2 − ∂s

x∂yw∂x

( s∑
i=1

Ci
s∂

i
x a∂s+1−i

x w

))

+
∫

∂�

e−λy
(

1

2
a(∂s+1

x w)2n2 + 1

2
(∂s

x∂yw)
2n2 − δsm∂

s−1
x ∂yyw∂

s
x∂ywn1

)
,

and
(
b1wx + b2w2 + cw, (−1)se−λy∂2s

x wy
)

=
∫

�

e−λy∂s
x (b1wx + b2wy + cw)∂s

x∂yw.

For s = 0, we simply have

(Lw, e−λyw) =
∫

�

e−λy(1

2
w2

y + 1

2
(λa − ay)w

2
x + (b1wx + b2wy + cw)wy

)
.

By taking λ large enough and using a Poincaré type inequality to estimate ‖w‖L2(�), we
obtain

(
Lw,

m∑
s=0

(−1)sλ−se−λy∂2s
x wy

)
≥ C‖w‖2

(m+1,1)

+λ−m
∫

∂�

e−λy
(

1

2
a(∂m+1

x w)2n2 + 1

2
(∂m

x ∂yw)
2n2 − ∂m−1

x ∂yyw∂
m
x ∂ywn1

)
,

where λ and C are positive constants depending on m, a0, the Cm+1-norm of a and the
Cm-norms of b1, b2 and c. Note that the boundary integral is nonnegative on ∂t�. We now
study the boundary integral on ∂b�. We first note ∂m−1

x ∂yw = ∂m
x w = 0 on ∂b� by (3.6).

Then by an argument as similar as in proving (3.7), we have

n1∂
m−1
x ∂yyw − n2∂

m
x ∂yw = 0, n1∂

m
x ∂yw − n2∂

m+1
x w = 0 on ∂b�.

It follows that the boundary integral on ∂b� is given by
∫

∂�

e−λy
(

1

2
a(∂m+1

x w)2n2 + 1

2
(∂m

x ∂yw)
2n2 − ∂m−1

x ∂yyw∂
m
x ∂ywn1

)

= 1

2

∫

∂�

e−λy

(
a

n2
1

n2
2

− 1

)
(∂m

x ∂yw)
2n2 = 1

2

∫

∂�

e−λy(aκ2
x − 1

)
(∂m

x ∂yw)
2n2.

This is nonnegative by (3.3) and n2 < 0 on ∂b�. Then (3.8) holds.
Next we claim

‖v‖(−m,0) ≤ C‖w‖(m+1,1). (3.9)
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Here ‖ · ‖(−m,0) is the norm on the dual space H (−m,0)
0b (�) of H (m,0)

0b (�). This dual space
may be obtained as the completion of L2(�) in the norm ‖ · ‖(−m,0). To get (3.9), we simply
note

‖v‖(−m,0) = sup
z∈H (m,0)

0b (�)

|(v, z)|
‖z‖(m,0)

= sup
z∈H (m,0)

0b (�)

∣∣(∑m
s=0(−1)sλ−s∂2s

x (e
−λywy), z

)∣∣
‖z‖(m,0) ≤ C‖w‖(m+1,1).

Now, a simple integration by parts yields

(w, L∗v) = (Lw, v) for any v ∈ Ĉ∞(�).

By (3.8), we obtain

‖w‖(m+1,1)‖L∗v‖(−m−1,−1) ≥ (w, L∗v) = (Lw, v)

=
(

Lw,
m∑

s=0

(−1)sλ−s∂2s
x (e

−λywy)
)

≥ C‖w‖2
(m+1,1),

and hence with (3.9)

‖v‖(−m,0) ≤ C‖L∗v‖(−m−1,−1) for any v ∈ Ĉ∞(�). (3.10)

Consider the linear functional F : L∗Ĉ∞(�) → R given by

F(L∗v) = ( f, v).

By (3.10), we have

|F(L∗v)| ≤ ‖ f ‖(m,0)‖v‖(−m,0) ≤ C‖ f ‖(m,0)‖L∗v‖(−m−1,−1).

Hence F is a bounded linear functional on the subspace L∗Ĉ∞(�) of H (−m−1,−1)
0b (�). Thus

we can apply the Hahn-Banach Theorem to obtain a bounded extension of F defined on
H (−m−1,−1)

0b (�) such that ‖F‖ ≤ C‖ f ‖(m,0). It follows that there exists a u ∈ H (m+1,1)
0b (�)

such that

F(z) = (u, z) for any z ∈ H (−m−1,−1)
0b (�).

Now restrict z back to L∗Ĉ∞(�) to obtain (3.4). �

Next, we discuss the regularity of solutions in Lemma 3.1 in usual Sobolev spaces. The

Sobolev space of square integrable derivatives up to and including order m will be denoted
by Hm(�) with norm ‖ · ‖m , and the completion of C∞(�) functions which vanish to all
order at ∂b� in the norm ‖ · ‖m will be denoted by Hm

0b(�).

Corollary 3.2 Under the hypotheses of Lemma 3.1, if f ∈ Hm
0b(�), there exists a unique

solution u ∈ Hm+1
0b (�) of (3.1).

Proof Obviously, Hm
0b(�) ⊂ H (m,0)

0b (�). Let u ∈ H (m+1,1)
0b (�) be the function given in

Lemma 3.1 so that (3.4) holds.
We first consider m = 1. By u ∈ H (2,1)

0b (�), we have u, ux ∈ H1(�) with u = ux = 0
on ∂b� in the L2(∂b�) sense. We integrate by parts to obtain

− (uy + b2u, vy) = (
f + (aux )x − b1ux + (b2,y − c)u, v

)
for any v ∈ Ĉ∞(�). (3.11)
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A standard argument using difference quotients in the y-direction implies (uy + b2u)y

∈ L2
loc(�) and

(uy + b2u)y = f + (aux )x − b1ux + (b2,y − c)u.

Then uyy ∈ L2
loc(�) and

uyy − (aux )x + b1ux + b2uy + cu = f in �.

This implies easily that uyy ∈ L2(�) and hence u ∈ H2(�). An integration by parts of
(3.11) then yields uy = 0 on ∂b� in the L2(∂b�) sense. Last, by u = |∇u| = 0 on ∂b� = 0,
(3.8) with m = 1 yields

(
Lu,

1∑
s=0

(−1)sλ−s∂2s
x (e

−λyuy)

)
≥ C‖u‖2

(2,1),

from which the uniqueness follows.
Now we assume m ≥ 2. We already proved that u ∈ H2(�) and that (3.4) holds. We need

to prove

∂ i
x∂

j
y u ∈ L2(�) for any i + j ≤ m + 1,

and

∂ i
x∂

j
y u|∂b� = 0 for any i + j ≤ m.

This follows easily from (3.1), u ∈ H (m+1,1)
0b (�) and f ∈ Hm

0b(�). �

Corollary 3.2 yields the existence of a regular solution of (3.1) for homogeneous Cauchy

data and f vanishing to high order on ∂b�. However, our main concern is to solve (3.1) for
general f and Cauchy data

u = ϕ, uy = ψ on ∂b�. (3.12)

Since ∂b� has an angular point at the origin, there is a natural compatibility condition which
we will derive next. As ∂b� is the graph given by y = κ(x) over R, we may assume ϕ and
ψ are functions of x ∈ R.

Lemma 3.3 Let m ≥ 2 be an integer and ϕ ∈ C(∂b�) ∩ Cm(∂b� \ {0}), ψ ∈ C(∂b�) ∩
Cm−1(∂b�\{0})and f ∈ Cm−2(�̄). Suppose (3.3) is satisfied. Then there exists a u ∈ Cm(�̄)

such that

u = ϕ, uy = ψ, and ∂α(Lu − f ) = 0 on ∂b�, (3.13)

for any |α| ≤ m − 2 if and only if there hold compatibility conditions Ci (ϕ, ψ, f ) for
i = 1, . . . ,m.

The compatibility condition Ci (ϕ, ψ, f ) is imposed on (one-sided) derivatives of ϕ,ψ, f
and κ up to order i at the origin. The formulation of such a condition will be given in the proof
below, from which it is clear that Cm(ϕ, ψ, f )makes sense for ϕ ∈ C(∂b�)∩Cm(∂b�\{0}),
ψ ∈ C(∂b�) ∩ Cm−1(∂b� \ {0}) and f ∈ Cm−2(�̄).

Proof First, we assume there exists a function u ∈ C1(�̄) satisfying (3.12). Then a simple
differentiation yields

ux + κx uy = ϕx on ∂b� \ {0},
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or

ux = ϕx − κxψ on ∂b� \ {0}.
Letting x → 0+ and x → 0−, we have a compatibility condition

ϕx (0+)− κx (0+)ψ(0) = ϕx (0−)− κx (0−)ψ(0),
or

ψ(0)
(
κx (0+)− κx (0−)) = ϕx (0+)− ϕx (0−). (3.14)

If (3.14) holds, then

ux (0) = −κx (0+)ϕx (0−)+ κx (0−)ϕx (0+)
κx (0+)− κx (0−) .

It is easy to check that for any ϕ ∈ C(∂b�) ∩ C1(∂b� \ {0}) and ψ ∈ C(∂b�) satisfying
(3.14), there exists a u ∈ C1(�̄) satisfying (3.12). We denote by C1(ϕ, ψ, f ) the compatibility
condition (3.14), which in fact is independent of f .

The discussion for higher order derivatives is more complicated. For an integer m ≥ 2,
we assume we already derived Ci (ϕ, ψ, f ) for i = 1, . . . ,m −1. Now let u ∈ Cm(�̄) satisfy
(3.13). For any multi-index α ∈ Z

2+ with |α| = m − 2, a simple calculation yields

∂α1
x ∂

α2
y u(p) =

{
a
α2
2 (p)∂m

x u(p)+ · · · if α2 is even,

a
α2−1

2 (p)∂m−1
x ∂yu(p)+ · · · if α2 is odd,

where · · · denotes a linear combination of derivatives of u at p with order ≤ m − 1 and
derivatives of f at p with order ≤ m − 2. Now we apply ∂m

x to u = ϕ and ∂m−1
x to uy = ψ

and evaluate at p ∈ ∂b� \ {0}. Then we get on ∂b� \ {0}
m∑

i=0

Ci
mκ

i
x∂

m−i
x ∂ i

yu|p = ϕ(m) + · · · ,∑m−1
i=0 Ci

m−1κ
i
x∂

m−1−i
x ∂ i+1

y u|p = ψ(m−1) + · · · ,

where · · · denotes derivatives of u at p with order ≤ m − 1. By a simple substitution of
∂αu(p) with α2 ≥ 2, we obtain at p ∈ ∂b� \ {0}

⎛
⎝ ∑

0≤2i≤m

C2i
m κ

2i
x ai

⎞
⎠ ∂m

x u +
⎛
⎝ ∑

0≤2i+1≤m

C2i+1
m κ2i+1

x ai

⎞
⎠ ∂m−1

x ∂yu

= ϕ(m) + · · · ,
⎛
⎝ ∑

0≤2i+1≤m−1

C2i+1
m−1 κ

2i+1
x ai+1

⎞
⎠ ∂m

x u

+
⎛
⎝ ∑

0≤2i≤m−1

C2i
m−1κ

2i
x ai

⎞
⎠ ∂m−1

x ∂yu = ψ(m−1) + · · · ,

where · · · denotes a linear combination of derivatives of u at p with order ≤ m −1 and deriv-
atives of f at p with order ≤ m−2. This is a 2×2 linear system for ∂m

x u(p) and ∂m−1
x ∂yu(p).

A straightforward calculation shows that the determinate of the coefficient matrix is given
by

(1 − aκ2
x )

m−1|p,
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A class of mixed type equations 851

which is nonzero by (3.3). This implies that ∂m
x u and ∂m−1

x ∂yu, and hence all other m-th
order derivatives of u, at p ∈ ∂b�\ {0}, can be expressed as a linear combination of ϕ(m)(p),
ψ(m−1)(p), derivatives of u at p with order ≤ m − 1 and derivatives of f at p with order
≤ m −2. Now we consider p = 0. In this case, there are four linear equations for ∂m

x u(0) and
∂m−1

x ∂yu(0) arising from x → 0+ and x → 0−. This implies that there are two compatibil-
ity conditions similar to (3.14) involving ϕ(m)(0+), ϕ(m)(0−), ψ(m−1)(0+), ψ(m−1)(0−),
κ(i)(0+) and κ(i)(0−), i = 1, . . . ,m. We denote by Cm(ϕ, ψ, f ) this compatibility con-
dition. If Cm(ϕ, ψ, f ) is satisfied, then ∂m

x u(0) and ∂m−1
x ∂yu(0), and hence all other m-th

order derivatives of u at 0, can be expressed as a linear combination of ϕ(m)(0+), ϕ(m)(0−),
ψ(m−1)(0+), ψ(m−1)(0−), derivatives of u at 0 with order ≤ m − 1 and derivatives of f at
0 with order ≤ m − 2. �


Now we are ready to solve the Cauchy problem (3.1) and (3.12).

Theorem 3.4 Let m ≥ 2 be an integer and ϕ ∈ Hm+1(∂b�), ψ ∈ Hm(∂b�) and f ∈
Hm(�). Suppose (3.2), (3.3) and Ci (ϕ, ψ, f ), i = 1, . . . ,m, are satisfied. Then the Cauchy
problem (3.1) and (3.12) admits a unique solution u ∈ Hm(�). Moreover,

‖u‖m,� ≤ C(‖ϕ‖m+1,∂b� + ‖ψ‖m,∂b� + ‖ f ‖m,�), (3.15)

where C is a positive constant depending only on m, a0, η0, the Cm+1-norm of a and the
Cm-norms of b1, b2 and c.

Here and thereafter, we denote by ‖ · ‖m,� and ‖ · ‖m,∂b� the Hm-norms in � and ∂b�

respectively.

Proof By the Sobolev embedding, we have ϕ ∈ C(∂b�) ∩ Cm(∂b� \ {0}), ψ ∈ C(∂b�) ∩
Cm−1(∂b� \ {0}) and f ∈ Cm−2(�). Hence the compatibility condition Ci (ϕ, ψ, f ) makes
sense for i = 1, . . . ,m. By Lemma 3.3, there exists a v ∈ Cm(�̄) such that v = ϕ, vy = ψ

and ∂α( f − Lv) = 0 on ∂b� for any |α| ≤ m − 2. This implies f − Lv ∈ Hm−1
0b (�). By

Corollary 3.2, there exists a w ∈ Hm
0b(�) such that Lw = f − Lv. Then u = v + w is a

required solution.
We note that (3.15) is the classical energy estimates. The proof is identical to that for

Cauchy problems with the initial curve as the x-axis. For example, the H1-estimate is based
on integrating the product of (3.1) and uy . We omit details. �


In this paper, we only need the existence part in Theorem 3.4. The estimate (3.15) depends
on the lower bound a0 of a and is not sufficient for our application. In the next section, we
will derive an estimate independent of a0 under extra assumptions on a.

4 A priori estimates in the hyperbolic regions

In this section, we will derive estimates of the solutions established in the previous section
which are independent of the hyperbolicity constant. Such estimates will enable us to estab-
lish the existence of solutions to the Cauchy problem for degenerate hyperbolic equations
when the initial curve has angular points.

Let y = κ(x) and � ⊂ R
2 be as defined in the beginning of Sect. 3. We consider an

equation of the following form

Lu ≡ uyy − aK uxx + b1ux + b2uy + cu = f in � (4.1)
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with the Cauchy data

u = ϕ, uy = ψ on ∂b�, (4.2)

where a, b1, b2, c and K are smooth functions satisfying

λ ≤ a ≤ � in �, (4.3)

0 < K ≤ 1 in �, (4.4)

and

|b1| ≤ Cb
(√

K + |Kx |
)

in �, (4.5)

for positive constants λ ≤ � and Cb. We always assume that ∂b� is space-like, i.e.,

aKκ2
x ≤ η0, (4.6)

for a constant η0 ∈ (0, 1). In the following, we also assume

K 2
x ≤ C2

K Ky in �, (4.7)

and
(
y − κ(x)

)d ≤ CK K (x, y) for any (x, y) ∈ �, (4.8)

where CK is a positive constant and d is a positive integer. Note that (4.7) implies in particular
Ky ≥ 0.

Here, K is allowed to be zero along ∂b�. If this happens, (4.1) is degenerate there and
(4.6) holds automatically. Conditions (4.5), (4.7) and (4.8) are introduced to overcome the
degeneracy. The condition (4.8) of the finite degree degeneracy is essential in our arguments.
It is not clear whether results in this section still hold without this assumption.

An example of � and K is given by

� = {(x, y); |x | < y < 1},
and

K (x, y) = y2 − x2.

Obviously, (4.7) and (4.8) are satisfied for κ(x) = |x | and d = 2.
Our intention is to derive energy estimates. We first derive an estimate on H1-norms.

Lemma 4.1 Let a, b1, b2, c and K be Cd-functions in �̄ satisfying (4.3)–(4.8) and u be an
Hd+3-solution of (4.1)–(4.2) for ϕ ∈ Hd+2(∂b�), ψ ∈ Hd+1(∂b�) and f ∈ Hd+1(�).
Then

‖u‖1,� ≤ C
(‖ϕ‖d+2,∂b� + ‖ψ‖d+1,∂b� + ‖ f ‖d+1,�

)
, (4.9)

where C is a positive constant depending onλ,�, Cb, CK , η0 and the Cd-norms of a, b1, b2, c
and K .

We note that (4.9) exhibits a loss of derivatives and such a loss depends on the degree to
which coefficients degenerate along the boundary.
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Proof Multiplying 2e−μyuy/K to (4.1), we get

∂y

(
e−μy

(
u2

y

K
+au2

x

))
− 2∂x (e

−μyaux uy)+e−μy
(
μ+ Ky

K

)
u2

y

K
+e−μy

(
μ− ay

a

)
au2

x

= −2e−μyax ux uy − 2e−μyb2
u2

y

K
− 2e−μyb1

ux uy

K
− 2e−μyc

uuy

K
+ 2e−μy uy f

K
.

By combining with

∂y

(
e−μy u2

K

)
+ e−μy

(
μ+ Ky

K

)
u2

K
= 2e−μy uuy

K
,

we obtain

∂y

(
e−μy

(
u2

K
+ u2

y

K
+ au2

x

))
− 2∂x (e

−μyaux uy)

+ e−μy
(
μ+ Ky

K

) (
u2

K
+ u2

y

K

)
+ e−μy

(
μ− ay

a

)
au2

x

= − 2e−μyax ux uy − 2e−μy b1

K
ux uy

− 2e−μyb2
u2

y

K
+ 2e−μy(1 − c)

uuy

K
+ 2e−μy uy f

K
.

(4.10)

We point out again that ∂y K ≥ 0 by (4.7). We first consider the second term in the right hand
side. By (4.5) and (4.7), we have

|b1|√
K

≤ Cb

(
CK

√
Ky

K
+ 1

)
.

By the Cauchy inequality, we get

∣∣2e−μy b1

K
ux uy

∣∣ = ∣∣2e−μy b1√
K

· uy√
K

ux
∣∣ ≤ e−μy(ε b2

1

K
· u2

y

K
+ 1

ε
u2

x

)

≤ e−μy(2εC2
b (C

2
K

Ky

K
+ 1) · u2

y

K
+ 1

ε
u2

x

)
,

for any ε > 0. By choosing ε > 0 small enough and applying the Cauchy inequality to other
terms in the right hand side of (4.10), we obtain

∂y

(
e−μy(

u2

K
+ u2

y

K
+ au2

x )

)
− 2∂x (e

−μyaux uy)

+(μ− μ0)e
−μy

(
u2

K
+ u2

y

K
+ au2

x

)
≤ e−μy f 2

K
,
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where μ0 is a positive constant depending only on inf a, |a|C1 , |b2|L∞ , |c|L∞ , Cb and CK .
By a simple integration, we have

(μ− μ0)

∫

�

e−μy(u2

K
+ u2

y

K
+ au2

x

) ≤
∫

�

e−μy f 2

K

+
∫

∂b�

e−μy

√
1 + κ2

x

(
u2

K
+ u2

y

K
+ au2

x + 2aκx ux uy),

where the integral over ∂t�, having the correct sign, is already dropped. By the Cauchy
inequality and (4.6), we get

2a|κx ux uy | ≤ u2
y

K
+ aKκ2

x · au2
x ≤ u2

y

K
+ au2

x .

Therefore, by (4.3) and taking μ large enough, we obtain

∫

�

(
u2

K
+ u2

t

K
+ u2

x

)
≤ C

∫

∂b�

1√
1 + κ2

x

(
u2

K
+ u2

y

K
+ u2

x

)
+

∫

�

f 2

K
. (4.11)

We should note that the boundary integral in the right hand side of (4.11) makes sense only
when u = uy = 0 on ∂b� if K = 0 on ∂b�.

To eliminate 1/K from the right-hand side of (4.11), we introduce an auxiliary function.
It is easy to see that there exists a v ∈ Hd+2(�) such that

Dαv = Dαu on ∂b� for any |α| ≤ d + 1,

and

‖v‖d+2,� ≤ C
∑

|α|≤d+2

‖Dαu‖0,∂b�. (4.12)

Obviously, v satisfies

v = ϕ, vy = ψ on ∂b�,

and

∂ i
y( f − Lv) = 0 on ∂b�, for any i = 0, 1, . . . , d − 1. (4.13)

Then we have

L(u − v) = f − Lv in �,

u − v = 0, (u − v)y = 0 on ∂b�.

By applying (4.11) to u − v, we obtain
∫

�

(
(u − v)2

K
+ (uy − vy)

2

K
+ (ux − vx )

2
)

≤ C
∫

�

( f − Lv)2

K
. (4.14)

With (4.4), we have
∫

�

(
u2 + u2

y + u2
x

) ≤ C
∫

�

(
v2 + v2

y + v2
x

) + C
∫

�

( f − Lv)2

K
. (4.15)
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Next, we eliminate the factor 1/K in the last integral in (4.15). With (4.13) and (4.8), a simple
calculation yields

(
( f − Lv)(x, y)

)2 ≤ (
y − κ(x)

)d

y∫

κ(x)

(
∂d

y ( f − Lv)(x, t)
)2

dt for any(x, y) ∈ �,

and
∫

�

( f − Lv)2

K
≤ C

∫

�

(
∂d

y ( f − Lv)(x, s)
)2 ≤ C

(‖ f ‖d,� + ‖v‖d+2,�
)2
.

Hence, we obtain

‖u‖1,� ≤ C‖v‖d+2,� + C‖ f ‖d,�. (4.16)

With the help of (4.12), (4.1) and the trace theorem, we get

‖v‖d+2,� ≤ C
∑

|α|≤d+2

‖Dαu‖0,∂b�

≤ C
(‖ϕ‖d+2,∂b� + ‖ψ‖d+1,∂b� + ‖ f ‖d,∂b�

)

≤ C
(‖ϕ‖d+2,∂b� + ‖ψ‖d+1,∂b� + ‖ f ‖d+1,�

)
,

where C is a positive constant depending only on the Cd -norms of a, b1, b2, c and K . This
implies (4.9) easily. �

Remark 4.2 It is clear that we have

∫

�

( (u − v)2

K
+ (uy − vy)

2

K
+ (ux − vx )

2)

≤ C
(‖ϕ‖d+2,∂b� + ‖ψ‖d+1,∂b� + ‖ f ‖d+1,�

)2
. (4.17)

This will be used in the proof of Lemma 4.3 below.

Next, we derive estimates of derivatives of u.

Lemma 4.3 For an integer m ≥ 1, let a, b1, b2, c and K be Cm+d−1-functions in �̄ sat-
isfying (4.3)–(4.8) and u be an Hm+d+2-solution of (4.1)–(4.2) for ϕ ∈ Hm+d+1(∂b�),
ψ ∈ Hm+d(∂b�) and f ∈ Hm+d(�). Then

‖u‖m,� ≤ C
(‖ϕ‖m+d+1,∂b� + ‖ψ‖m+d,∂b� + ‖ f ‖m+d,�

)
, (4.18)

where C is a positive constant depending on λ, �, Cb, CK , η0 and the Cm+d−1-norms of
a, b1, b2, c and K .

Proof We prove by induction. We note that Lemma 4.1 corresponds the case m = 1. Let s
be a positive integer ≤ m − 1. Apply ∂s

x to (4.1) to get

Ls(∂
s
x u) = fs, (4.19)

where

Ls = ∂yy − aK∂xx + (
b1 − s(aK )x

)
∂x + b2∂y +

(
c + sb1,x − s(s − 1)

2
(aK )xx

)
,
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and

fs = ∂s
x f +

s−1∑
i=2

c′
s,i∂

s+2−i
x (aK )∂ i

x u +
s−1∑
i=1

c′′
s,i∂

s+1−i
x b1∂

i
x u

+
s−1∑
i=0

c′′′
s,i∂

s−i
x c∂ i

x u +
s−1∑
i=0

c′′′′
s,i∂

s+2−i
x b2∂

i
x∂yu,

for some constants c′
s,i , c′′

s,i , c′′′
s,i and c′′′′

s,i . We will write

fs = ∂s
x f +

s−1∑
i=0

�′
si∂

i
x u +

s−1∑
i=0

�′′
si∂

i
x∂yu.

We should note that Ls has the same structure as L . As in the proof of Lemma 4.1, we
construct a function vs ∈ Hd+2(�) such that

Dαvs = Dα(∂s
x u) on ∂b� for any |α| ≤ d + 1,

and

‖vs‖d+2,� ≤ C
∑

|α|≤d+2

‖Dα(∂s
x u)‖0,∂b�.

Similar to (4.14), we have

∫

�

(
(∂s

x u − vs)
2

K
+ (∂s

x∂yu − ∂yvs)
2

K
+ (∂s+1

x u − ∂xvs)
2
)

≤ C
∫

�

( fs − Lsvs)
2

K
,(4.20)

where C is positive constant depending only on inf a, |a|C2 , |K |C2 , |b1|C1 , |b2|C1 , |c|L∞ , Cb

and CK . We write

fs − Lsvs = f̃s +
s−1∑
i=0

�′
si (∂

i
x u − vi )+

s−1∑
i=0

�′′
si∂y(∂

i
x u − vi ),

where v0, . . . , vs−1 are constructed for u, . . . , ∂s−1
x u as vs for ∂s

x u, and

f̃s = (∂s
x f − Lsvs)+

s−1∑
i=0

�′
sivi +

s−1∑
i=0

�′′
si∂yvi .

This implies

∫

�

( fs − Lsvs)
2

K
≤ C

⎛
⎝

∫

�

f̃ 2
s

K
+

s−1∑
i=0

∫

�

(∂ i
x u − vi )

2

K
+

s−1∑
i=0

∫

�

(∂ i
x∂yu − ∂yvi )

2

K

⎞
⎠ ,

where C is a positive constant depending only on the Cs-norms of aK , b1, b2 and c. Note

∂ i
y f̃s = 0 on ∂b� fori = 0, . . . , d − 1.
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Therefore, we get

∫

�

f̃ 2
s

K
≤

∫

�

(
∂d

y f̃
)2

≤
∫

�

|∂d
y (∂

s
x f − Lsvs)|2 +

s−1∑
i=0

∫

�

|∂d
y (�

′
sivi )|2 +

s−1∑
i=0

∫

�

|∂d
y (�

′′
si∂yvi )|2

≤ C
(‖ f ‖2

s+d,� + ‖vs‖2
d+2,� +

s−1∑
i=0

‖vi‖2
d+1,�

)
,

where C is a positive constant depending only on the Cs+d -norms of aK , b1, b2 and c. For
each i = 0, . . . , s, we have

‖vi‖d+2,� ≤ C
∑

|α|≤d+2

‖Dα∂ i
x u‖0,∂b�

≤ C
(‖ϕ‖i+d+2,∂b� + ‖ψ‖i+d+1,∂b� + ‖ f ‖i+d,∂b�

)

≤ C
(‖ϕ‖i+d+2,∂b� + ‖ψ‖i+d+1,∂b� + ‖ f ‖i+d+1,�

)
,

where C depends on the Ci+d -norms of a, b1, b2, c and K . In summary, we obtain

∫

�

((
∂s

x u − vs

)2

K
+

(
∂y∂

s
x u − ∂yvs

)2

K
+ (∂s+1

x u − ∂xvs)
2
)

≤ C

⎛
⎜⎝

s−1∑
i=0

∫

�

(
(∂ i

x u − vi )
2

K
+

(
∂y∂

i
x u − ∂yvi

)2

K

)

+ C
(‖ϕ‖2

s+d+2,∂b�
+ ‖ψ‖2

s+d+1,∂b�
+ ‖ f ‖2

s+d+1,�

)
⎞
⎠ , (4.21)

where C depends on the Cs+d -norms of a, b1, b2, c and K . By a simple induction starting
from (4.17), we obtain

∫

�

(
(∂s

x u)2 + (∂y∂
s
x u)2 + (∂s+1

x u)2
)

≤ C
(‖ϕ‖2

s+d+2,∂b�
+ ‖ψ‖2

s+d+1,∂b�
+ ‖ f ‖2

s+d+1,�

)
.

All other derivatives of u of order s + 1 can be obtained from (4.1). �

Now we prove the main result in this section.

Theorem 4.4 For an integer m ≥ 2, let a, b1, b2, c and K be Cm+d−1-functions in �̄ satisfy-
ing (4.3)–(4.8) and ϕ ∈ Hm+d+1(∂b�),ψ ∈ Hm+d(∂b�) and f ∈ Hm+d(�). If Ci (ϕ, ψ, f )
holds for i = 1, . . . ,m + d − 2, then (4.1)–(4.2) admits a unique Hm+d+2(�)-solution u
and such a u satisfies

‖u‖m,� ≤ C
(‖ϕ‖m+d+1,∂b� + ‖ψ‖m+d,∂b� + ‖ f ‖m+d,�

)
, (4.22)
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where C is a positive constant depending on λ, �, Cb, CK , η0 and the Cm+d−1-norms of
a, b1, b2, c and K . Moreover, if a, b1, b2, c, K and f are Hs(�̄) and ϕ and ψ are Hs(∂b�)

for any s ≥ 1 and Ci (ϕ, ψ, f ) holds for any i ≥ 1, then u is smooth and satisfies (4.22) for
any m ≥ 1.

Proof For a positive sequence ε → 0, we consider an equation of the following form

Lεu ≡ uyy − a(K + ε)uxx + b1ux + b2uy + cu = fε in � (4.23)

with the Cauchy data

u = ϕε, uy = ψε on∂b�, (4.24)

where ϕε , ψε and fε are chosen so that

ϕε → ϕ in Hm+d+1(∂b�), ψε → ψ in Hm+d(∂b�), fε → f in Hm+d(�),

and

Ci (ϕε, ψε, fε) holds forLε for any i = 1, . . . ,m + d − 2.

We note that Lε in (4.23) is strictly hyperbolic in �̄. By Theorem 3.4, (4.23)–(4.24) admits
a solution uε ∈ Hm+d(�). By Lemma 4.3, uε satisfies

‖uε‖m,� ≤ C
(‖ϕε‖m+d+1,∂b� + ‖ψε‖m+d,∂b� + ‖ fε‖m+d,�

)
,

where C is a positive constant depending on λ, �, Cb, CK , η0 and the Cm+d−1-norms of
a, b1, b2, c and K . We finish the proof by letting ε → 0. �


5 Proof of Theorem 1.2

In this section, we will prove a result of which Theorem 1.2 is a special case.
We consider an equation of the following form

Lu ≡ uyy + aK uxx + b1ux + b2uy + cu = f in B2 ⊂ R
2, (5.1)

where a, b1, b2, c and K are smooth in B2. We always assume

a ≥ λ in B2, (5.2)

for a positive constant λ. Concerning K , we assume

{K = 0} consists of two curves given by smooth functions y = γi (x),

where y = γ1(x) is decreasing and y = γ2(x) is increasing and (5.3)

γ1(0) = 0, γ2(0) = 0, γ ′
1(0) �= γ ′

2(0).

By setting

κ1(x) = max{γ1(x), γ2(x)}, κ2(x) = min{γ1(x), γ2(x)},
we note that κ1(x) and κ2(x) are smooth at any x �= 0, κi (0) = 0 and κ1(x) > 0 and
κ2(x) < 0 for any x �= 0. Obviously, y = κ1(x) and y = κ2(x) divide B2 into four regions.
We denote by�+ and�− the union of the two regions containing the x-coordinate axis and
the y-coordinate axis, respectively. We further assume that

K > 0 in �+ and K < 0 in �−. (5.4)
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Moreover, we assume that

K 2
x ≤ C2

K |Ky | in �−, (5.5)

and
∣∣y − κ(x)

∣∣d ≤ CK |K (x, y)| for any (x, y) ∈ �−, (5.6)

where CK is a positive constant and d is a positive integer. Concerning coefficients b1 and
c, we assume

|b1| ≤ Cb
(√

K + |Kx |
)

in �, (5.7)

for a positive constant Cb and

c ≤ 0 in �+. (5.8)

We note that (5.5) and (5.6) are assumed only in �− and (5.8) only in �+.
Now we explain briefly the roles of these assumptions. The curves y = γ1(x) and

y = γ2(x) divide B2 into four regions, in two of which (5.1) is elliptic and in another
two (5.1) is hyperbolic by (5.4). For any one of the regions, the origin is an angular point.
For any hyperbolic region, the part of the boundary containing the origin is space-like. The
assumption (5.7) is the so-called Levy condition. It is needed in both elliptic regions and
hyperbolic regions. The condition (5.8) is used to ensure the existence of solutions of the
Dirichlet problem in elliptic regions. The assumptions (5.5) and (5.6) are needed to overcome
the degeneracy in the hyperbolic regions.

For Eq. (1.2) in Theorem 1.2, we have K (x, y) = x2 − y2, κ1(x) = |x |, κ2(x) = −|x |
and d = 2.

We now present a result more general than Theorem 1.2 and only formulate it for the
infinite differentiability.

Theorem 5.1 Let a, b1, b2, c and K be smooth functions in B2 ⊂ R
2 satisfying (5.2)–(5.8).

Then for any smooth function f in B2, there exists a smooth solution u of (5.1) in B1.
Moreover, for any nonnegative integer s, u satisfies

‖u‖Hs (B1) ≤ cs‖ f ‖Hs+d+3(B2)
, (5.9)

where cs is a positive constant depending only on s, λ, CK , Cb, the C1-norm of γi , i = 1, 2,
and the Cs+d+2-norms of a, b1, b2, c and K .

Proof Throughout the proof, we denote by Cs a positive constant depending only on s, λ,
CK , Cb, the C1-norm of γi , i = 1, 2, and the Cs-norms of a, b1, b2, c and K .

We first smoothen the corner of ∂�+ at ∂B2 and consider (5.1) in �+. By Theorem 2.1,
there exists a smooth solution u of (5.1) in�+ with u = 0 on ∂�+. Moreover, for any integer
s ≥ 1, u satisfies

‖u‖Hs (�+) ≤ Cs‖ f ‖Hs+1(�+). (5.10)

By the trace theorem, we obtain
∑
|α|≤s

‖Dαu‖L2(∂�+) ≤ Cs+1‖ f ‖Hs+2(�+). (5.11)

Next, we assume y = 1 intersects y = κ1(x) for a positive x and a negative x in B2. If
not, we may extend K appropriately outside B2 to achieve this. Now we set

�−1 = �− ∩ {0 < y < 1},
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and

ϕ = 0, ψ = uy on ∂b�−1,

where ∂b�−1 is the lower portion of ∂�−1. We consider (5.1) in �−1 with the Cauchy data

u = ϕ, uy = ψ on ∂b�−1. (5.12)

Since ϕ and ψ are boundary values of a smooth solution u in �̄+, it is easy to check that
compatibility conditions Ci (ϕ, ψ, f ) are satisfied for any i ≥ 1 by Lemma 3.3. By Theorem
4.4, there exists a smooth solution u of (5.1) in �−1 satisfying (5.12). Moreover, for any
integer s ≥ 1, u satisfies

‖u‖Hs (�−1) ≤ Cs+d
(‖ϕ‖Hs+d+1(∂b�−1)

+ ‖ψ‖Hs+d (∂b�−1)
+ ‖ f ‖Hs+d (�−1)

)
.

With (5.11), we have easily

‖u‖Hs (�−1) ≤ Cm+d+2
(‖ f ‖Hs+d+3(�+) + ‖ f ‖Hs+d (�−1)

)
.

A similar argument can be applied to

�−2 = �− ∩ {−1 < y < 0}.
Therefore we obtain a function u which is a smooth solution of (5.1) in�+∩ B1 and�−∩ B1.
It is easy to see that u is smooth across ∂�+ ∩ B1 and especially at the origin. The estimate
(5.9) also follows easily. �

Remark 5.2 We also note that c ≤ 0 in (5.8) can be replaced by c ≤ ε for ε > 0 sufficiently
small. Refer to Remark 2.13.

The estimate (5.9) is not sufficient for the iteration process when solving the nonlinear
equations. For this, we need a stronger estimate.

Theorem 5.3 Let a, b1, b2, c and K be smooth functions in B2 ⊂ R
2 satisfying (5.2)–(5.8).

Then for any smooth function f in B2, there exists a smooth solution u of (5.1) in B1.
Moreover, for any nonnegative integer s, u satisfies

‖u‖Hs (B1) ≤ cs
(|| f ||Hs+d+3(B1)

+�s || f ||Hd+3(B1)

)
, (5.13)

where cs is a constant depending only on s, λ, CK , Cb, the C1-norm of γi , i = 1, 2, and
where

�s = ‖a‖Hs+d+4(B1)
+

2∑
i=1

‖bi‖Hs+d+4(B1)
+ ‖c‖Hs+d+4(B1)

+ ‖K‖Hs+d+4(B1)
+ 1.

We note that all estimates in Sects. 2–4 are standard energy estimates. Hence, we obtain
(5.13) with the help of interpolation inequalities. We skip the details.

6 Proof of Theorem 1.1

In this section, we will prove a result of which Theorem 1.1 is a special case.
Consider an equation of the following form

det(D2u) = K (x, y)ψ(x, y, u, Du) in B1 ⊂ R
2, (6.1)
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where K is smooth in B1 and ψ is smooth in B1 × R × R
2. We always assume

ψ ≥ λ in B1 × R × R
2, (6.2)

for a positive constant λ. Concerning K , we assume that K satisfies (5.3)–(5.6). In other
words, we assume

{K = 0} consists of two curves given by smooth functions y = γi (x),

where y = γ1(x) is decreasing and y = γ2(x) is increasing and (6.3)

γ1(0) = 0, γ2(0) = 0, γ ′
1(0) �= γ ′

2(0).

By setting

κ1(x) = max{γ1(x), γ2(x)}, κ2(x) = min{γ1(x), γ2(x)},
we note that κ1(x) and κ2(x) are smooth at any x �= 0, κi (0) = 0 and κ1(x) > 0 and
κ2(x) < 0 for any x �= 0. Obviously, y = κ1(x) and y = κ2(x) divide B1 into four regions.
We denote by�+ and�− the union of the two regions containing the x-coordinate axis and
the y-coordinate axis, respectively. We further assume

K > 0 in �+ and K < 0 in �−. (6.4)

Moreover, we assume

K 2
x ≤ C2

K |Ky | in �−, (6.5)

and
∣∣y − κ(x)

∣∣d ≤ CK |K (x, y)| for any (x, y) ∈ �−, (6.6)

where CK is a positive constant and d is a positive integer.
We now point out the difference between the assumptions on K for (5.1) and (6.1). For lin-

ear equations having the specific form of (5.1), the conditions on K are assumed with respect
to this particular coordinate system. However, the Monge–Ampère operator is invariant by
orthogonal transformations. Hence, conditions on K for (6.1) in this section are assumed in
some coordinate system.

We now present a result more general than Theorem 1.1 and only formulate it for the case
of infinite differentiability.

Theorem 6.1 Let ψ be a smooth function satisfying (6.2) and let K be a smooth function
in B1 satisfying (6.3)–(6.6). Then there exists a smooth solution u of (6.1) in Br for some
r ∈ (0, 1).

The proof of Theorem 6.1 is based on Nash–Moser iterations. An important step in such
an iteration process consists of appropriate estimates for solutions of the linearized equa-
tions. In the case of the degenerate Monge–Ampère Eq. (6.1), the linearized equations are
hard to classify. A crucial observation by Han [7] is that the linearization of Monge–Ampère
equations can be decomposed into two parts, one of which has type determined solely by K
and another which may be considered as quadratic error with respect to the iteration process.

In the following, we denote points in R
2 by (x1, x2) instead of (x, y) and write

x = (x1, x2) ∈ R
2. Set

F̃(u) = det(D2u)− Kψ(x, u, Du). (6.7)
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To proceed, we temporarily replace x ∈ R
2 by x̃ ∈ R

2, replace ψ by ψ̃ , and write ∂̃i instead
of ∂x̃i . Then (6.7) has the form

F̃(u) = det(D̃2u)− K ψ̃(x̃, u, D̃u).

All functions are evaluated at x̃ . For ε > 0 set

x̃ = ε2x,

and

u(x̃) = 1

2
x̃2

1 + ε5w

(
x̃

ε2

)
.

Now we evaluate F̃(u) in terms of w. Set

F(w; ε) = F(w) = 1

ε
F̃(u),

or

F(w) = 1

ε

{
det

(
(1 − δi2)δ1 j + ε∂i jw

) − Kψ
}
, (6.8)

where

ψ(ε, x, w, Dw) = ψ̃
(
ε2x,

1

2
ε4x2

1 + ε5w(x), ε2(1 − δi2)xi + ε3∂iw(x)
)
. (6.9)

Note that the arguments of ψ̃ are x̃ , u and D̃u in terms of w in the x-coordinates. All known
functions are evaluated at x̃ = ε2x . By taking ε small enough, we may assume F(w) is well
defined in B1 ⊂ R

2. Letting w = 0 in (6.8), we have

F(0) = −1

ε
Kψ.

By K = K (ε2x) and K (0) = 0, there holds

F(0) = εF0(ε, x),

for some smooth function F0 in ε and x . We also have

ψ(ε, x, w, Dw) ≥ λ,

for any x ∈ B1, any ε small and any w ∈ C∞(B1).
Now we discuss the linearized operator F ′(w) of F at w. For convenience, we set

(�i j ) = (
(1 − δi2)δ1 j + ε∂i jw

)
.

A straightforward calculation yields

F ′(w)ρ = �i j∂i jρ + ai∂iρ + aρ, (6.10)

where (�i j ) is the matrix of cofactors of (�i j ), i.e.,

�11 = ε∂22w, �12 = −ε∂12w, �22 = 1 + ε∂11w, (6.11)

and

ai = ai (ε, x, w, Dw) = −ε2 K ∂
∂̃i uψ̃, a = a(ε, x, w, Dw) = −ε4 K ∂uψ̃. (6.12)
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As in (6.9), ∂
∂̃i uψ̃ and ∂uψ̃ are evaluated at

(
ε2x,

1

2
ε4x2

1 + ε5w(x), ε2(1 − δi2)xi + ε3∂iw(x)
)
.

Obviously, ai and a are smooth in ε, x , w and Dw.
By (6.8), we have

det(�i j ) = εF(w)+ Kψ. (6.13)

It is not clear how K determines the type of the linear operator F ′(w) in (6.10). Next, we
shall introduce a new coordinate system and rewrite (6.10).

Lemma 6.2 For any ε ∈ (0, ε0] and any smooth function w with |w|C2 ≤ 1, there exists a
transformation T : B1 → T (B1), smooth in ε, x, D2w and D3w, of the form

x �→ y = (y1(x), y2(x)) (6.14)

such that in the new coordinates y the operator F ′(w) is given by

F ′(w)ρ = a22∂y2 y2ρ + (
Kψ + εF(w))a11∂y1 y1ρ (6.15)

+(
b10 K + b11∂y1 K + εb̃10F(w)+ b̃11∂y1(F(w)

)
∂y1ρ + b2∂y2ρ + cKρ,

where a11, a22, b10, b11, b̃10, b̃11, b2 and c are smooth functions in ε, y, w, Dw, D2w, D3w

and D4w, with

aii = 1 + O(ε) for i = 1, 2.

Moreover, for i = 1, 2, yi = yi (x) in (6.14) satisfies

|yi − xi | ≤ cε,

and for any s ≥ 0

‖yi‖Hs ≤ c(1 + ‖w‖Hs+2),

for some positive constant c.

This is Lemma 2.2 in [7] for n = 2 (p. 430). The proof for n = 2 is easy. We outline the
proof for completeness.

Proof By (6.11), we have

�i j = δi2δ j2 + O(ε) for any 1 ≤ i, j ≤ 2. (6.16)

First, we set

y2 = x2. (6.17)

Next, we consider the following equation for y1

�12∂1 y1 +�22∂2 y2 = 0,

y1(x1, 0) = x1.
(6.18)

The coefficient of ∂2 y1 is given by �22, which is not zero for small ε. Hence for small ε,
(6.18) always has a unique solution y1 in B1, smooth in ε, x and D2w. Moreover,

y1(x) = x1 + O(ε). (6.19)
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Obviously, y = y(x) forms a new coordinate system. This defines the transformation T in
(6.14).

In the new coordinates y, the operator F ′(w) has the following form

F ′(w)ρ = bi j∂yi y j ρ + bi∂yiρ + aρ, (6.20)

where

bi j =
2∑

k,l=1

�kl∂k yi∂l y j ,

and

bi =
2∑

k,l=1

�kl∂kl yi +
2∑

k=1

ak∂k yi .

We now claim that

b11 = 1

�22 det(�i j )(∂1 y1)
2, b12 = 0, b22 = �22, (6.21)

and

b1 = ∂1

(
det(�i j )

�22 ∂1 y1

)
+

2∑
k=1

ak∂k y1, b2 = a2. (6.22)

To prove the claim, we note that the expressions for b22 and b2 follow from (6.17) and those
for b12 and b11 follow from (6.18). To calculate b1, we have by (6.16)

2∑
k=1

∂k�
kl = 0.

Then the first term in b1 in (6.22) can be written as

2∑
k,l=1

�kl∂kl y1 =
2∑

k,l=1

∂k(�
kl∂l y1).

Then the expression for b1 follows again from (6.18).
By substituting (6.21) and (6.22) in (6.20), we have

F ′(w)ρ = �22∂y2 y2ρ + 1

�22 det(�i j )(∂1 y1)
2∂y1 y1ρ

+
(
∂1

(det(�i j )

�22 ∂1 y1
) +

2∑
k=1

ak∂k y1

)
∂y1ρ + a2∂y2ρ + aρ.

Recalling (6.12), (6.13), (6.16) and (6.19), we conclude the proof. �


Next, we write F ′(w) in (6.15) as

F ′(w)ρ = L(w)ρ + εF(w)
2∑

i, j=1

ãi j∂i jρ + ε

2∑
i, j=1

(
b̃ j0F(w)+ b̃i j∂i (F(w))

)
∂ jρ, (6.23)
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where ãi j and b̃i j are functions smooth in ε, x , D2w, D3w and D4w, and L(w) has the
following form in T (B1)

L(w)ρ = a22∂y2 y2ρ + a11 K ∂y1 y1ρ + (b1 K + b̃1∂y1 K )∂y1ρ + b2∂y2ρ + cKρ, (6.24)

where a11, a22, b1, b̃1, b2 and c are functions smooth in ε, y, w, Dw, D2w, D3w and D4w.
We point out that, in the new coordinate system (y1, y2) in (6.14), the operator L(w) in
(6.24) has a special structure. Both a11 and a22 are positive and there is a factor of K in the
coefficient of ∂y1 y1ρ. Hence, the operator L(w) is elliptic if K > 0 and hyperbolic if K < 0.
We emphasize that the type of L(w) is determined solely by K and is independent of w, the
function at which the linearized operator is evaluated. This is crucial for the iterations. Next,
we note that the correction terms that were added in (6.23) are quadratic in F(w) and ρ, and
their derivatives. Hence they can be relegated to the quadratic error in the iteration process,
that is, they may be ignored when solving the linearized equation.

By writing

a−1
22 L(w)ρ = ∂y2 y2ρ + a11

a22
K ∂y1 y1ρ + 1

a22
(b1 K + b̃1∂y1 K )∂y1ρ + b2

a22
∂y2ρ + c

a22
Kρ,

we note that the coefficients in the right hand side satisfy (5.2)–(5.7). (The notation here is
different from that used in the previous section.) The coefficient of ρ may not be nonpositive.
However, it is small as K = K (ε2x) and K (0) = 0. By Theorem 5.3 and Remark 5.2, for
any smooth function f in B1 and any ε > 0 sufficiently small, there exists a smooth function
ρ in B1 such that

L(w)(ρ ◦ T −1) = f ◦ T −1 in T (B1),

where T is the transformation given by (6.14). (In the following, we abuse notation and
simply write L(w)ρ = f in B1.) Moreover, if ‖w‖H4(B1)

≤ 1, then for any nonnegative
integer s

‖ρ‖Hs (B1) ≤ cs
(|| f ||Hs+d+3(B1)

+ (‖w‖Hs+d+8(B1)
+ 1)|| f ||Hd+3(B1)

)
, (6.25)

where cs is a constant depending only on s, λ, CK , the C1-norm of γi , i = 1, 2 and the
Hs+d+8-norm of K . Here, we use the fact that a11, a22, b1, b2 and c are functions smooth in
ε, y, w, Dw, D2w, D3w and D4w.

The proof of Theorem 6.1 is based on Nash–Moser iterations. A general result for the
existence of local smooth solutions is formulated in [8]. (Refer to Theorem 7.4.1 on p. 130
[8].) However, the linearized equations of (6.1) do not satisfy the condition listed there. Spe-
cifically, solutions of the linearized equations of (6.1) do not satisfy the estimate (7.4.5) in
[8]. As we have discussed, the linearization of Monge–Ampère equations can be decomposed
into two parts, one of which can be used to form a linear equation whose solutions satisfy the
estimate (7.4.5) in [8] and another which may be considered as quadratic error. Therefore the
iteration process in the proof of Theorem 7.4.1 can be performed. We now outline the proof.

Proof of Theorem 6.1 Now we can use iterations to solve F(·, ε) = 0 for ε sufficiently small
as in the proof of Theorem 7.4.1 on p. 130 [8]. The estimate (6.25) plays the same role as
(7.4.5) there. We begin the iteration by setting w0 = 0. Then w� is constructed by induction
on � as follows. Suppose w0, w1, . . . , w� have been chosen. Let ρ� be a solution of

L(w�)ρ� = −F(w�). (6.26)

Here, ρ� is chosen to satisfy

‖ρ�‖Hs (B1) ≤ cs
(||F(w�)||Hs+d+3(B1)

+ (‖w�‖Hs+d+8(B1)
+ 1)||F(w�)||Hd+3(B1)

)
,
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for any s ≥ 0. Now we define

w�+1 = w� + S�ρ�, (6.27)

where {S�} is an appropriately chosen family of smoothing operators. We point out that
(6.26) replaces (7.4.8) in [8]. We may proceed as in the proof of Theorem 7.4.1 [8] with
minor modifications. By Taylor expansion and (6.27), we have

F(w�+1)− F(w�)
= F ′(w�)(w�+1 − w�)+ Q(w�;w�+1 − w�)

= F ′(w�)(S�ρ�)+ Q(w�; S�ρ�)

= L(w�)(S�ρ�)+ (F ′(w�)− L(w�)
)
(S�ρ�)+ Q(w�; S�ρ�)

= L(w�)ρ� + L(w�)(S� − 1)ρ� + (F ′(w�)− L(w�)
)
(S�ρ�)+ Q(w�; S�ρ�),

where Q(w�; S�ρ�) is the quadratic error. Then (7.4.23) on p. 133 of [8] may be modified
accordingly. We point out that, by (6.23) and (6.24), the difference of F ′(w�)(S�ρ�) and
L(w�)(S�ρ�) consists of quadratic expressions in F(w�) and S�ρ�, and their derivatives,
which may be estimated in a way similar to Q(w�; S�ρ�). The rest of the proof is the same
as that of Theorem 7.4.1 [8], and is therefore not included here. �
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