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On the local isometric embedding in R
3 of surfaces

with Gaussian curvature of mixed sign

Qing Han and Marcus Khuri

We study the old problem of isometrically embedding a two-
dimensional Riemannian manifold into Euclidean three-space. It is
shown that if the Gaussian curvature vanishes to finite order and its
zero set consists of two Lipschitz curves intersecting transversely at
a point, then local sufficiently smooth isometric embeddings exist.

1. Introduction

Does every smooth two-dimensional Riemannian manifold admit a smooth
local isometric embedding into R

3, or heuristically, can every abstract surface
be visualized at least locally? This natural question was first posed in 1873
by Schlaefli [16], and remarkably has remained to a large extent unanswered.
It is the purpose of this paper to provide a general sufficient condition under
which local embeddings exist.

The local isometric embedding problem for surfaces is equivalent to find-
ing local solutions of a particular Monge–Ampère equation, usually referred
to as the Darboux equation. The primary difficulty in analyzing this equa-
tion arises from the fact that it changes from elliptic to hyperbolic type,
whenever the Gaussian curvature of the given metric passes from positive
to negative curvature. Consequently, the hypotheses of any result must take
into account the manner in which the Gaussian curvature, K, vanishes. The
classical results deal with the cases in which the curvature does not vanish,
or the metric is analytic. It was not until 1985/1986 that the first degenerate
cases (whenK vanishes) were treated, by Lin. He showed the existence of suf-
ficiently smooth embeddings if the metric is sufficiently smooth and K ≥ 0
[11], or K(0) = 0, |∇K(0)| �= 0 [12]. Smooth embeddings of smooth surfaces
were obtained by Han et al. [5] when K ≤ 0 and ∇K possesses a certain
nondegeneracy, and by Han [3] when K vanishes across a single smooth
curve (see also [1, 2, 8] for related results). Lastly if K = |∇K(0)| = 0,
|∇2K(0)| �= 0 then Khuri [9] has proven the existence of sufficiently smooth
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embeddings for sufficiently smooth surfaces. For more details on this prob-
lem and other related topics the reader is referred to [4]. Here we will show

Theorem 1.1. Let g ∈ Cm∗, m∗ ≥ 36(N + 10), be a Riemannian metric
defined on a neighborhood of the origin in the plane, with Gaussian curvature
K vanishing there to finite order N. If the zero set K−1(0) consists of two
Cm∗ curves intersecting transversely at the origin, then g admits a Cm,
m ≤ 1

12m∗ −N − 24, isometric embedding into R
3 on some neighborhood of

the origin.

Remark 1.1. Our methods actually treat a slightly more general situation
in that the zero set K−1(0) may consist of more than two curves intersecting
transversely at the origin. However, in this setting there should not be more
than two regions on which K ≥ 0.

The embeddings produced by this theorem are referred to as sufficiently
smooth, since higher regularity of the metric implies higher regularity for
the embedding. However, this theorem does not guarantee that C∞ metrics
give rise to C∞ embeddings, as the methods used here require the domain of
existence to shrink whenever higher regularity is demanded of the solution.
On the other hand, it is likely that techniques similar to those found in
[3, 6] may lead to a C∞ version of Theorem 1.1. We also point out that
counterexamples to the existence of local isometric embeddings have been
found for metrics of low regularity, by Pogorelov [15] when g ∈ C2,1, and by
Nadirashvili and Yuan [13] who recently generalized this result. Moreover
counterexamples to the local solvability of smooth Monge–Ampère equations
have been found in [10]. Yet it is still very much an open question, whether
or not there are any smooth (or sufficiently smooth) counterexamples to the
local isometric embedding problem.

As mentioned above this problem is equivalent to finding local solu-
tions of a particular Monge–Ampère equation. To see this we use a standard
method originally introduced by Weingarten [20]. That is, we search for a
function z(u, v) defined in a neighborhood of the origin such that the new
metric g − dz2 is flat. Note that g − dz2 will be Riemannian as long as
|∇gz| < 1. Since flat metrics are locally isometric to Euclidean space, there
exist two Cm functions x(u, v), y(u, v) (if g ∈ Cm and z ∈ Cm+1, see [7])
such that g − dz2 = dx2 + dy2. The map (u, v) �→ (x(u, v), y(u, v), z(u, v))
then provides the desired embedding. Furthermore, a straightforward calcu-
lation shows that g − dz2 is flat if and only if z satisfies

(1.1) det Hessg z = K(det g)(1 − |∇gz|2).
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This Monge–Ampère equation is the so-called Darboux equation, and the
question of its local solvability is equivalent to the local isometric embedding
problem.

It is trivial to construct approximate local solutions of (1.1), and thus
it is natural to use an implicit function theorem to prove existence. Under
the hypotheses of Theorem 1.1 the linearization will be of mixed type, and
thus we will necessarily lose derivatives when it is inverted. This suggests
that we use a version of the Nash–Moser implicit function theorem, which
essentially reduces the problem to a study of the linearized equation. We
will show that the linearization has a particularly nice canonical form, when
an appropriate coordinate system is chosen and certain perturbation terms
that behave like quadratic error in the Nash–Moser iteration are removed.
This was first observed by Han in [3]. More precisely, the canonical form is
given by

(1.2) Lu = (aKux)x + buyy + cKux + duy,

where a, b > 0. The significance of this particular structure is that it explic-
itly illustrates how the Gaussian curvature affects the type of the lineariza-
tion. Moreover it is also important that the first-order coefficient cK vanishes
whenever the principal symbol changes type, as this leads to the so-called
Levi conditions [14] in the hyperbolic regions, which facilitate the making of
estimates. Under the assumptions of Theorem 1.1 on the Gauss curvature,
there are four separate regions of elliptic or hyperbolic type for (1.2), each
having a Lipschitz smooth boundary. We will develop the appropriate exis-
tence and regularity theory for (1.2) in each of these regions, and show that
combined with a Nash–Moser iteration this leads to a corresponding solu-
tion of the nonlinear equation (1.1) in each region. These separate solutions
will then be patched together to form a solution on a full neighborhood of
the origin.

This paper is organized as follows. In Section 2 we obtain the canonical
form (1.2), and in Sections 3 and 4 the linear existence theory is established
in the elliptic and hyperbolic regions, respectively. Lastly in Section 5 we
use a version of the Nash–Moser iteration to solve (1.1) in the elliptic and
hyperbolic regions separately, and also show how the solutions obtained can
be patched together to yield the desired solution.

2. The linearized canonical form

In this section we will bring the linearization of (1.1) into the canonical
form (1.2). Before doing this, however, we must specify at which function the
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linearization will be evaluated. For this we need an appropriate approximate
solution, z0. We will then search for a solution of (1.1) in the form

z = z0 + ε5w,

where ε > 0 is a small parameter. Let y = (y1, y2) be local coordinates in
a neighborhood of the origin with g = gijdy

idyj , then we are interested in
solving

(2.1) Φ(w) := det∇ijz −K|g|(1 − |∇gz|2) = 0,

where |g| = det gij and ∇ij are covariant derivatives with respect to these
coordinates. We choose

z0 =
1
2
(y1)2 +

m∗∑

n=3

pn(y),

where each pn is a homogeneous polynomial of degree n, chosen so that

(2.2) ∂αΦ(0) = 0, |α| ≤ m∗ − 2.

Here α = (α1, α2) is a multi-index, and m∗ is as in Theorem 1.1. Note that
such a polynomial z0 may be found in the usual way by following the proof of
the Cauchy–Kowalevski Theorem, since the line y2 = 0 is noncharacteristic
for (2.1) as ∇11z0(0) = 1.

Upon rescaling coordinates by yi = ε2xi, the linearization of Φ at a func-
tion w,

L(w)u =
d

dt
Φ(w + tu)|t=0,

is given by

(2.3) ε−1L(w)u = aiju;ij + 2ε4K|g|〈∇gz,∇gu〉,

where u;ij denote covariant derivatives in xi coordinates, 〈·, ·〉 is the inner
product associated with g, and

(aij) =
( ∇22z −∇12z

−∇12z ∇11z

)

is the cofactor matrix of Hessg z. Note that the quantity |g|−1aij transforms
like a contravariant two-tensor. According to the assumptions of Theorem
1.1,K−1(0) divides a small neighborhood of the origin into domains {Ω+

κ }κ0
κ=1
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on which K > 0, and {Ω−
� }�0

�=1 on which K < 0 (obviously κ0 + �0 = 4). The
following lemma gives the desired canonical form. We will denote the Sobolev
space of square integrable derivatives by Hm, with norm ‖ · ‖Hm .

Lemma 2.1. Let g ∈ Cm∗ and w ∈ C∞ with |w|C3 < 1. Given a domain
Ω+

κ , or Ω−
� , � = 1, 2, or Ω−

� , � = 3, 4, and given small σ, δ > 0, there exists
a local Cm∗−2 change of coordinates ξi = ξi(x) such that

Ω+
κ ∩Bσ(0) = {(ξ1, ξ2) | 0 < ξ2 < (tan δ)ξ1, |ξ| < σ},

or
Ω−

� ∩Bσ(0) = {(ξ1, ξ2) | h(ξ1) < ξ2, |ξ| < σ}, � = 1, 2,

or
Ω−

� ∩Bσ(0) = {(ξ1, ξ2) | h(ξ2) < ξ1, |ξ| < σ}, � = 3, 4,

for some Lipschitz function h(ξi) (not necessarily the same for different
regions) satisfying h(0) = 0 and |h(ξi) − |ξi||C1 = O(σ). In this new coordi-
nate system the linearization takes the form

ε−1L(w)u = a22L(w)u+ (a22)−1Φ(w)[∂2
x1u− ∂x1 log(a22

√
|g|)∂x1u],

where
L(w)u = ∂ξ1(k∂ξ1u) + ∂2

ξ2u+ c∂ξ1u+ d∂ξ2u

with

k = Kk(x,w,∇w,∇2w,∇ξ),
c = Kc(x,w,∇w,∇2w,∇3w,∇ξ,∇2ξ) + (a22)−2∂x1Φ(w)∂x1ξ1,

d = ε2d(x,w,∇w,∇2w),

for some k, c, d ∈ Cm∗−4 such that k > 1/2 if ε = ε(m) is chosen sufficiently
small. Moreover there exists a constant Cm independent of ε, δ such that

(2.4) ‖ ξ ‖Hm≤ δ−1Cm(1+ ‖ w ‖Hm+4), m ≤ m∗ − 2.

Remark 2.1. In estimate (2.4), δ is only relevant for the regions {Ω+
κ }κ0

κ=1.
Furthermore, since the curvature K vanishes at least to second order, it may
be possible to eliminate the role of δ in the arguments of the next section.

Proof. We may choose an initial coordinate system x = (x1, x2) so that each
of the elliptic and hyperbolic regions Ω+

κ , Ω−
� are sector domains, that is, each
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occupies the region between two lines passing through the origin. Further-
more, we may assume that Ω−

1 (Ω−
2 ) contains the positive (negative) x2-axis.

Note that according to the hypotheses of Theorem 1.1, ∂Ω+
κ − {(0, 0)} and

∂Ω−
� − {(0, 0)} are both Cm∗ smooth, so that this initial transformation is

also Cm∗ . The approximate solution z0 is chosen with respect to this initial
coordinate system (recall that yi = ε2xi), and therefore

a22 > 0, a12 = O(ε2).

It is now an easy exercise in linear algebra to show that for each domain Ω+
κ ,

or Ω−
� , � = 1, 2, or Ω−

� , � = 3, 4, there exists a linear change of coordinates
x = (x1, x2) such that

Ω+
κ = {(x1, x2) | 0 < x2 < x1, |x| < 1},

or
Ω−

� = {(x1, x2) | |x1| < x2 < 1}, � = 1, 2,

or
Ω−

� = {(x1, x2) | |x2| < x1 < 1}, � = 3, 4,

and such that
∂2

y1(y1)2 > 0, ∂y1∂y2(y1)2 = 0.

Here yi = ε2xi. It follows that a22 > 0 and a12 = O(ε2) are preserved under
this linear change of coordinates. For convenience we will still denote yi by
yi and xi by xi.

We may write (2.3) as

L1(w)u = aij
1 uxixj + ai

1uxi := ε−1L(w)u,

where aij
1 = aij ,

(2.5) al
1 = −ε2(aijΓl

ij + 2K|g|zl)

with zl = glizyi , and Γl
ij are Christoffel symbols in yi coordinates. According

to (2.1)

a11
1 = ∇22z = (a22)−1[K|g|(1 − |∇gz|2) + (∇12z)2 + Φ(w)].

We then set

L2(w)u = aij
2 uxixj + ai

2uxi := L1(w)u− (a22)−1Φ(w)ux1x1 ,
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that is aij
1 = aij

2 and ai
1 = ai

2 except for

(2.6) a11
2 = (a22)−1[K|g|(1 − |∇gz|2) + (∇12z)2].

Also let

L3(w)u = aij
3 uxixj + ai

3uxi := (a22)−1L2(w)u.

We now define the desired change of coordinates by

ξ1 = ξ1(x1, x2), ξ2 = x2,

with

(2.7) a12ξ1x1 + a22ξ1x2 = 0,

so that if

L4(w)u = aij
4 uξiξj + ai

4uξi := L3(w)u

then

a12
4 = aij

3 ξ
1
xiξ2xj = 0.

In order to obtain the correct expression in these new coordinates for the
domains Ω+

κ , or Ω−
� , � = 1, 2, or Ω−

� , � = 3, 4, we impose the initial conditions

(2.8) ξ1(x1, x1) = (tan δ)−1x1, or ξ1(x1, 0) = x1, or ξ1(x1, 0) = x1,

respectively. Note that since the curves x1 �→ (x1, x1) and x1 �→ (x1, 0) are
noncharacteristic for (2.7), Equation (2.7) with initial condition (2.8) has a
unique Cm∗−2 solution on some neighborhood of the origin. Furthermore,
standard methods for first-order equations combined with the Gagliardo–
Nirenberg inequalities (Lemma 5.2 below) yields (2.4). Note also that (ξ1, ξ2)
forms a new coordinate system near the origin since

(tan δ)−1 = ξ1x1(0, 0) + ξ1x2(0, 0) = ξ1x1(0, 0)
(

1 − a12

a22
(0, 0)

)
,

or

ξ1x1(0, 0) = 1,

according to the respective initial conditions given by (2.8).
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We shall now calculate the coefficients of L4(w). Observe that (2.6) yields

a11
4 = aij

3 ξ
1
xiξ1xj = (∇11z)−2[K|g|(1 − |∇gz|2) + (∇12z)2](ξ1x1)2

− 2(∇11z)−1(∇12z)ξ1x1ξ1x2 + (ξ1x2)2,

but (2.7) gives

ξ1x2 = (∇11z)−1(∇12z)ξ1x1

so

a11
4 = (a22)−2K|g|(1 − |∇gz|2)(ξ1x1)2.

Next we examine a1
4. By (2.7)

ξ1x1x2 = −(a12
3 )x1ξ1x1 − a12

3 ξ
1
x1x1 , ξ1x2x2 = −(a12

3 )x2ξ1x1 − a12
3 ξ

1
x1x2 ,

so (2.6) produces

a1
4 = aij

3 ξ
1
xixj + ai

3ξ
1
xi(2.9)

= (a22)−2K|g|(1 − |∇gz|2)ξ1x1x1

−
[(

a12

a22

)(
a12

a22

)

x1

+
(
a12

a22

)

x2

]
ξ1x1 + ai

3ξ
1
xi .

Calculating the second term on the right-hand side yields

(a22)2
[(

a12

a22

)(
a12

a22

)

x1

+
(
a12

a22

)

x2

]
= a12a12

x1 − (a22)−1(a12)2a22
x1

+ a22a12
x2 − a12a22

x2

= a12a12
x1 − a11a22

x1 + a22a12
x2 − a12a22

x2

+ (a22)−1a22
x1(det aij)

= −a12
x1a12 + a11

x1a22 + a22a12
x2 − a12a22

x2

+ (a22)−1a22
x1(det aij) − (det aij)x1 .

Therefore (2.5), (2.7) and (2.9) imply that

a22a1
4 = −[aij

xj + ε2(aljΓi
lj + 2K|g|zi)]ξ1xi + ((a22)−1 det aij)x1ξ1x1(2.10)

+ (a22)−1K|g|(1 − |∇gz|2)ξ1x1x1 .
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A computation shows

a11
y1 + a12

y2 + aljΓ1
lj = −Γj

j2zy1y2 + Γj
j1zy2y2 + (Γi

12,y2 − Γi
22,y1 − Γ1

11Γ
i
22

+ 2Γ1
12Γ

i
12 − Γ1

22Γ
i
11)zyi

= Γj
j2a

12 + Γj
j1a

11 + (Γi
12,y2 − Γi

22,y1 − Γ1
11Γ

i
22 + 2Γ1

12Γ
i
12

− Γ1
22Γ

i
11 − Γj

j2Γ
i
12 + Γj

j1Γ
i
22)zyi .

However, we see that the coefficient of zyi is in fact a curvature term. More
precisely, if we denote it by χi then

χi = Γi
12,y2 − Γi

22,y1 + Γj
12Γ

i
j2 − Γj

22Γ
i
j1 = −Ri

212 = −gi1|g|K,

where Ri
jkl is the Riemann tensor for g in yi coordinates (recall that Γi

lj are
Christoffel symbols in yi coordinates). A similar calculation shows that

a12
y1 + a22

y2 + aljΓ2
lj = Γj

j1a
12 + Γj

j2a
22 − gi2|g|Kzyi .

Therefore after solving for ξ1x2 in (2.7), (2.10) becomes

a22a1
4 = (a22)−1K|g|(1 − |∇gz|2)ξ1x1x1 − ε2K|g|ziξ1xi

− [ε2Γj
j1(a

22)−1 det aij − ((a22)−1 det aij)x1 ]ξ1x1 .

It now follows from

det aij = Φ(w) +K|g|(1 − |∇gz|2)

that we have

a22a1
4 = −ε2K|g|ziξ1xi + ∂x1 [(a22)−1K|g|(1 − |∇gz|2)ξ1x1 ]

− [ε2Γj
j1(a

22)−1K|g|(1 − |∇gz|2) + ε2Γj
j1(a

22)−1Φ(w)

− ((a22)−1Φ(w))x1 ]ξ1x1 .

Lastly, it is trivial to calculate the remaining coefficients:

a22
4 = 1, a2

4 = −ε2(a22)−1(aijΓ2
ij + 2K|g|z2).

Then by defining

L(w)u := L4(w)u+ (ε2Γj
j1 + ∂x1 log a22)(a22)−2Φ(w)ξ1x1uξ1

and recalling that Γj
j1 = 1

2∂y1 log |g|, we obtain the desired result. �



658 Qing Han & Marcus Khuri

3. Linear theory in the elliptic regions

In light of Lemma 2.1, it will be sufficient for our purposes to study the ques-
tion of existence and regularity for the operator L(w), instead of the pure
linearization L(w). More precisely, in this section we will study the Dirichlet
problem for a modified version of L(w) in an elliptic region. First note that
by using polar coordinates ξ1 = r cos θ, ξ2 = r sin θ, we can transform the
elliptic region Ω+

κ ∩Bσ(0) of Lemma 2.1 into a rectangle

Ω = {(r, θ) | 0 < r < σ, 0 < θ < δ}.

Under these coordinates we find that

L(w)u = Kurr + Aurθ + Buθθ + Cur + Duθ,

where

K = k cos2 θ + sin2 θ,

A = 2(1 − k)
sin θ cos θ

r
,

B = k
sin2 θ

r2
+

cos2 θ
r2

,

C = k
sin2 θ

r
+

cos2 θ
r

+ (c+ ∂ξ1k) cos θ + d sin θ,

D = 2(k − 1)
sin θ cos θ

r2
− (c+ ∂ξ1k)

sin θ
r

+ d
cos θ
r

.

It will be convenient to cut-off these coefficients away from the origin. So let
ϕ ∈ C∞([0,∞)) be a nonnegative cut-off function with

ϕ(r) =

{
1 if 0 < r < 1

2σ,
0 if σ < r,

and define
Lu = Kurr +Aurθ +Buθθ + Cur +Duθ,

where

K = ϕ2K, A = ϕA, B = B, C = ϕC, D = ϕD.

We will study the boundary value problem:

(3.1) Lu = f in Ω, u(r, 0) = u(r, δ) = 0, ∂s
ru(0, θ) = 0, 0 ≤ s ≤ s0,
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for some large integer s0. The motivation for considering this problem stems
from our method for constructing solutions to the nonlinear problem (2.1)
(see Section 5). Namely, we shall construct solutions in the elliptic and hyper-
bolic regions separately, and then show that they can be patched together.
This requires certain compatibility conditions at the origin, and the bound-
ary conditions of (3.1) guarantee that they will be satisfied. Of course, a
necessary condition for solving (3.1) is that f must also vanish to a corre-
sponding high order at the origin. It is therefore convenient to introduce the
following weighted Sobolev spaces which control the amount of vanishing.
Define norms

‖ u ‖2
(m,l,γ) =

∫

Ω

∑

0≤s≤m, 0≤t≤l

s+t≤max(m,l)

λ−sr−γ+2s(∂s
r∂

t
θu)

2,

where λ, γ > 0 are large parameters, and let H(m,l,γ)(Ω) be the closure of
C

∞(Ω) with respect to this norm, where C
∞(Ω) is the space of smooth

functions that vanish in a neighborhood of r = 0. We will always denote
the traditional Sobolev spaces having square integrable derivatives up to
and including order m by Hm(Ω), with norm ‖ · ‖m. The following sim-
ple lemma describes the boundary behavior exhibited by elements of the
weighted spaces.

Lemma 3.1. Suppose that u ∈ H(m,l,γ)(Ω) ∩ Cmax(m,l)−1(Ω), then for any
0 < r0 < σ we have

∫

r=r0

(∂s
r∂

t
θu)

2 ≤ r
γ−2(s+1)
0 C ‖ u ‖2

(m,l,γ),

s ≤ m− 1, t ≤ l − 1, s+ t ≤ max(m, l) − 1,

where the constant C depends only on σ − r0.

Proof. When s≤m− 1, t≤ l − 1, s+ t≤ max(m, l) − 1 we have r−γ/2+s+1 ×
∂s

r∂
t
θu ∈ H1(Ω) ∩ C0(Ω). The desired result now follows from the standard

trace theorem for Sobolev spaces. �
In analogy with the theory of strictly elliptic equations in a sector domain

such as Ω, the regularity of a solution to (3.1) will depend on the size of the
angle forming the domain. More precisely, smaller angles yield higher regu-
larity. According to Lemma 2.1 we are free to choose the angle δ arbitrarily
small, with the only price being paid with the blow-up of estimate (2.4).
This blow-up, however, can be controlled in the context of Equation (3.1)
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by taking ε = ε(δ) to be sufficiently small, since whenever ξ(x) or its deriva-
tives appear in the coefficients of the operator L, they are always multiplied
by ε. These considerations lead to existence and regularity for (3.1), and the
first step needed to establish such a result is the following basic estimate.
Define

aλ,γ(r, θ) =
λθ2 − 1
rγ

,

and as in Lemma 2.1 let w ∈ C∞ throughout this section.

Lemma 3.2. Suppose that |w|C4 < 1 and let u ∈ H(2,1,γ+2)(Ω) ∩ C2(Ω)
with u(r, 0) = u(r, δ) = 0. If δ = δ(λ) and ε = ε(δ) are sufficiently small,
then

∫

Ω
aλ,γ−2uLu ≥ C

∫

Ω
λr−γu2 + r−γ+2(ϕ sin θur + r−1 cos θuθ)2

for some constant C > 0 independent of λ, δ, ε and w.

Proof. Let 0 < r0 < σ and set Ωr0 = Ω ∩ {(r, θ) | r0 < r < σ}. Then for any
a ∈ C∞(Ωr0), integration by parts yields
∫

Ωr0

auLu =
∫

Ωr0

−a(Ku2
r +Auruθ +Bu2

θ)

+
1
2

∫

Ωr0

[(aK)rr + (aA)rθ + (aB)θθ − (aC)r − (aD)θ]u2

+
∫

∂Ωr0

a(Kuurν1 +Auurν2 +Buuθν2)

+
1
2

∫

∂Ωr0

[−(aK)rν1 − (aA)θν1 − (aB)θν2 + aCν1 + aDν2]u2,

where (ν1, ν2) denotes the unit outer normal to ∂Ωr0 . By choosing a = aλ,γ−2

and observing that

|(aλ,γ−2K)rr| + |(aλ,γ−2A)rθ| + |(aλ,γ−2C)r| + |(aλ,γ−2D)θ|
= O(r−γ), (aλ,γ−2B)θθ = 2λr−γ cos2 θ(1 +O(θ + λ−1)),

the desired result follows since all boundary terms vanish according to
Lemma 3.1 (after letting r0 → 0). Note that ε is chosen small depending
on δ, in order to control the blow-up (implied by estimate (2.4)) found in
the coefficients of L. �
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This lemma is the main tool used to establish the basic existence result of
the next theorem. Let Ĉ∞(Ω) denote the space of C∞(Ω) functions v satis-
fying v(r, 0) = v(r, δ) = 0. Given f ∈ H(m,1,γ)(Ω), we will refer to a function
u ∈ H(m,1,γ)(Ω) as a weak solution of (3.1) if

(3.2) (u, L∗v) = (f, v) all v ∈ Ĉ∞(Ω),

where (·, ·) is the L2(Ω) inner product and L∗ is the formal adjoint of L.

Theorem 3.1. Suppose that g ∈ Cm∗ , |w|C4 < 1 and f ∈ H(m,1,γ)(Ω). If
m ≤ m∗ − 4 and δ = δ(m), ε = ε(m, δ) are sufficiently small, then there
exists a weak solution u ∈ H(m,1,γ)(Ω) of (3.1).

Proof. Given v ∈ Ĉ∞(Ω), let ζ ∈ H(m,∞,γ+2)(Ω) ∩ C∞(Ω) be the unique
solution of the ordinary differential equation (ODE):

m∑

s=0

λ−s(−1)s∂s
r(aλ,γ−2(s−1)∂

s
rζ) = v,(3.3)

ζ(r, 0) = ζ(r, δ) = 0, ∂s
rζ(σ, θ) = 0, 0 ≤ s ≤ m− 1,∫

r=r0

(∂s
r∂

l
θζ)

2 ≤ rγ−2s
0 C, 0 ≤ s ≤ 2m− 1, 0 ≤ l <∞.

Here r0 > 0 is assumed to be sufficiently small, and C > 0 is a constant
depending on m, λ, γ and v. The proof that such a solution exists may be
found in Appendix A.

Our first goal is to establish an estimate of the form

(3.4)

(
Lζ, r4

m∑

s=0

λ−s(−1)s∂s
r(aλ,γ−2(s−1)∂

s
rζ)

)
≥ C ‖ ζ ‖2

(m,1,γ) .

The boundary conditions of (3.3) allow us to integrate by parts in a manner
similar to the proof of Lemma 3.2 to find

(
Lζ, r4

m∑

s=0

λ−s(−1)s∂s
r(aλ,γ−2(s−1)∂

s
rζ)

)
(3.5)

=
m∑

s=0

λ−s([∂s
r , L]ζ + L∂s

rζ, r
4aλ,γ−2(s−1)∂

s
rζ)

+
m∑

s=0

λ−s

(
∑

l<s

(
s
l

)
∂s−l

r r4∂l
rLζ, aλ,γ−2(s−1)∂

s
rζ

)
.
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Note that since all the coefficients of L vanish at r = σ, except B, no
boundary terms at r = σ appear in the above formula. Furthermore since
r4aλ,γ−2(s−1) = aλ,γ−2(s+1) and ∂s

rζ ∈ H(2,1,γ−2(s−1))(Ω), 0 ≤ s ≤ m− 2 (for
m− 1 ≤ s ≤ m the boundary behavior of ∂s

rζ given by (3.3) is also ade-
quate), Lemma 3.2 implies that

m∑

s=0

(L∂s
rζ, λ

−sr4aλ,γ−2(s−1)∂
s
rζ)(3.6)

≥ C

∫

Ω

m∑

s=0

λ−s[r−γ+2(s+1)(ϕ sin θ(∂s
rζ)r + r−1 cos θ(∂s

rζ)θ)2

+ λr−γ+2s(∂s
rζ)

2]

≥ C

∫

Ω

[
m−1∑

s=0

λ−sr−γ+2s(∂s
rζθ)

2 +
m∑

s=0

λ1−sr−γ+2s(∂s
rζ)

2

]

≥ C ‖ ζ ‖2
(m,1,γ)

if δ = δ(λ) and ε = ε(δ) are sufficiently small. Next, we calculate

[∂s
r , L]ζ =

∑

l<s

(
s
l

)
[∂s−l

r K(∂l
rζ)rr + ∂s−l

r A(∂l
rζ)rθ

+ ∂s−l
r B(∂l

rζ)θθ + ∂s−l
r C(∂l

rζ)r + ∂s−l
r D(∂l

rζ)θ],

and observe that integrating by parts, again with the help of the boundary
conditions in (3.3), produces

∣∣∣∣∣

(
∑

l<s

(
s
l

)
∂s−l

r K(∂l
rζ)rr, r

4aλ,γ−2(s−1)∂
s
rζ

)∣∣∣∣∣ ≤ Cs

∫

Ω

∑

l≤s

r−γ+2l(∂l
rζ)

2,

(3.7)

∣∣∣∣∣

(
∑

l<s

(
s
l

)
∂s−l

r A(∂l
rζ)rθ, r

4aλ,γ−2(s−1)∂
s
rζ

)∣∣∣∣∣ ≤ Cs

∫

Ω

[
r−γ+2s(∂s

rζ)
2

+
∑

l<s

r−γ+2l(∂l
rζθ)

2

]
,

∣∣∣∣∣

(
∑

l<s

(
s
l

)
∂s−l

r B(∂l
rζ)θθ, r

4aλ,γ−2(s−1)∂
s
rζ

)∣∣∣∣∣ ≤ Cs

∫

Ω

[
r−γ+2s(∂s

rζ)
2

+
∑

l<s

r−γ+2l(∂l
rζθ)

2

]
,
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∣∣∣∣∣

(
∑

l<s

(
s
l

)
∂s−l

r C(∂l
rζ)r, r

4aλ,γ−2(s−1)∂
s
rζ

)∣∣∣∣∣ ≤ Cs

∫

Ω

∑

l≤s

r−γ+2l(∂l
rζ)

2,

∣∣∣∣∣

(
∑

l<s

(
s
l

)
∂s−l

r D(∂l
rζ)θ, r

4aλ,γ−2(s−1)∂
s
rζ

)∣∣∣∣∣ ≤ Cs

∫

Ω

[
r−γ+2s(∂s

rζ)
2

+
∑

l<s

r−γ+2l(∂l
rζθ)

2

]
.

Also observe that
∑

l<s

(
s
l

)
∂s−l

r r4∂l
rLζ

=
∑

s−4≤l<s

(
s
l

)
4!

(4 − s+ l)!
r4−s+l

⎡

⎣
∑

t≤l

(
l
t

)
(∂l−t

r K(∂t
rζ)rr

+ ∂l−t
r A(∂t

rζ)rθ + ∂l−t
r B(∂t

rζ)θθ + ∂l−t
r C(∂t

rζ)r + ∂l−t
r D(∂t

rζ)θ)

⎤

⎦ ,

so similar calculations yield∣∣∣∣∣

(
∑

l<s

(
s
l

)
∂s−l

r r4∂l
rLζ, aλ,γ−2(s−1)∂

s
rζ

)∣∣∣∣∣(3.8)

≤ Cs

∫

Ω

⎡

⎣
∑

l≤s

r−γ+2l(∂l
rζ)

2 +
∑

l<s

r−γ+2l(∂l
rζθ)

2

⎤

⎦ .

Then the combination of (3.5) to (3.8) produces (3.4) for λ = λ(m) suffi-
ciently large and δ = δ(λ), ε = ε(δ) sufficiently small.

We need one last estimate before proving existence. Since r4η ∈
H(m,0,γ+2)(Ω) whenever η ∈ H(m,1,γ)(Ω), we have

‖ r4v ‖(−m,−1,γ) := sup
η∈H(m,1,γ)(Ω)

|(η, r4v)|
‖ η ‖(m,1,γ)

(3.9)

= sup
η∈H(m,1,γ)(Ω)

|(r4(λθ2 − 1)η, ζ)(m,0,γ+2)|
‖ η ‖(m,1,γ)

≤ C sup
η∈H(m,1,γ)(Ω)

‖ η ‖(m,0,γ)‖ ζ ‖(m,0,γ)

‖ η ‖(m,1,γ)

≤ C ‖ ζ ‖(m,1,γ) .
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Here (·, ·)(m,0,γ+2) denotes the inner product on H(m,0,γ+2)(Ω), and the norm
‖ · ‖(−m,−1,γ) comes from the dual spaceH(−m,−1,γ)(Ω) ofH(m,1,γ)(Ω), which
may be obtained as the completion of L2(Ω) in this negative norm.

Now apply (3.4) to obtain

‖ ζ ‖(m,1,γ)‖ L∗r4v ‖(−m,−1,γ) ≥ (ζ, L∗r4v)
= (Lζ, r4v)

=

(
Lζ, r4

m∑

s=0

λ−s(−1)s∂s
r(aλ,γ−2(s−1)∂

s
rζ)

)

≥ C ‖ ζ ‖2
(m,1,γ),

which when combined with (3.9) yields

(3.10) ‖ r4v ‖(−m,−1,γ) ≤C ‖ L∗r4v ‖(−m,−1,γ) .

Consider the linear functional F : X → R where X = L∗(r4Ĉ∞(Ω)), given
by

F (L∗r4v) = (f, r4v).

According to (3.10) we have that F is bounded on the subspace X of
H(−m,−1,γ)(Ω) since

|F (L∗r4v)| = |(f, r4v)| ≤ ‖ f ‖(m,1,γ)‖ r4v ‖(−m,−1,γ)

≤ C ‖ f ‖(m,1,γ)‖ L∗r4v ‖(−m,−1,γ) .

Note that we use f ∈ H(m,1,γ)(Ω) here (i.e., f has to have this particular
boundary behavior at r = 0). Thus, we can apply the Hahn–Banach the-
orem to obtain a bounded extension of F (still denoted F ) defined on all
of H(−m,−1,γ)(Ω). It follows that there exists a unique u ∈ H(m,1,γ)(Ω) such
that

F (η) = (u, η) all η ∈ H(−m,−1,γ)(Ω).

Now restrict η back to X to obtain

(u, L∗r4v) = (f, r4v) all v ∈ Ĉ∞(Ω).

Since every v ∈ Ĉ∞(Ω) can be written as v = r4v for some v ∈ Ĉ∞(Ω), u is
a weak solution of (3.1). �

If f ∈ H(m,1,γ)(Ω) ∩ Cm∗−4(Ω), then the strict ellipticity of L on the
interior of Ω shows that the solution given by Theorem 3.1 satisfies u ∈



Local isometric embedding in R
3 665

H(m,1,γ)(Ω) ∩ Cm∗−3(Ω), since the coefficients of L will be in Cm∗−4 when
g ∈ Cm∗ . In particular Lu = f pointwise on the interior of Ω, so that

(3.11) −uθθ = B
−1[Kurr +Aurθ + Cur +Duθ − f ] in Ω.

Since B
−1 = O(r2) as r → 0 and u ∈ H(m,1,γ)(Ω) it follows that uθθ ∈

H(m−2,0,γ)(Ω). Let Hm
γ (Ω) := H(m,m,γ)(Ω) with norm ‖ · ‖(m,γ). Then if f ∈

Hm
γ (Ω) we may continue to differentiate the expression for uθθ to eventually

obtain (by induction) that u ∈ Hm
γ (Ω).

In order to determine the boundary values for u, integrate by parts in
expression (3.2) to obtain

0 =
∫

∂Ω
(Kvurν1 − (Kv)ruν1 +Avuθν1 − (Av)ruν2

+Bvuθν2 − (Bv)θuν2 + Cvuν1 +Dvuν2),

for all v ∈ Ĉ∞(Ω). This implies that u(r, 0) = u(r, δ) = 0, as B > 0. It also
shows that we cannot arbitrarily prescribe boundary values for u at r = σ,
since all the coefficients of L (except B) vanish at r = σ. However it is clear
that the boundary values at r = σ are given explicitly in terms of f(σ, θ)
according to (3.11); although we will not have need of this fact. Moreover,
the boundary behavior at r = 0 is completely determined by the fact that
u ∈ Hm

γ (Ω), so that if m ≥ s0 + 1 and γ > 2m then u will vanish to the
desired order s0 at r = 0 by Lemma 3.1. We summarize all that we have
found with the following theorem, and also give an a priori estimate needed
for the Nash-Moser iteration of Section 5.

Theorem 3.2. Suppose that g ∈ Cm∗ and f ∈ C
∞(Ω). If s0 + 1 ≤ m ≤

m∗ − 4, γ > 2m, |w|C6 < 1 and δ = δ(m), ε = ε(m, δ) are sufficiently small
then there exists a unique solution u ∈ Hm

γ (Ω) ∩ Cm∗−3(Ω) of (3.1). Fur-
thermore, there exists a constant Cm independent of δ and ε such that

‖ u ‖(m,γ) ≤ Cm(‖ f ‖m+2+γ + ‖ w ‖m+6‖ f ‖5+γ),

for each m ≤ m∗ − 6.

Proof. The first half of this theorem follows from the discussion directly
above, and thus it only remains to establish the estimate. From Lemma 3.2
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we have that
∫

Ω
r−γ+2(λu2 + u2

θ) ≤ C

∫

Ω
r−γ+6(f2 + r−2u2

r).

Now differentiate Equation (3.1) to obtain

Lur = fr −Krurr −Arurθ −Bruθθ − Crur −Druθ.

Solving for uθθ as in (3.11) then yields

L1ur := K(ur)rr +A(urθ)r +B(ur)θθ

+ (C +Kr −B
−1
BrK)(ur)r + (D +Ar −B

−1
BrA)(ur)θ

= fr − (Cr −B
−1
BrC)ur − (Dr −B

−1
BrD)uθ.

Applying the proof of Lemma 3.2 to the above equation gives

C

∫

Ω
[λr−γ+4u2

r + r−γ+6(ϕ sin θurr + r−1 cos θurθ)2] ≤ (aλ,γ−6ur, L1ur),

from which we find that
∫

Ω
r−γ+4(λu2

r + u2
rθ) ≤ C

∫

Ω
r−γ+6(f2 + r2f2

r + u2
rr)

if λ is sufficiently large. Eventually, with the help of |w|C6 < 1 and (3.11),
we obtain

‖ u ‖(3,3,γ−2) ≤ C ‖ f ‖(3,3,γ−6) .

By repeatedly differentiating with respect to r, we can continue this proce-
dure and apply the Gagliardo–Nirenberg inequalities (Lemma 5.2 below) in
the usual way to obtain

∫

Ω

⎛

⎝λ
∑

s≤m

r−γ+2s+2(∂s
ru)

2 +
∑

s<m

r−γ+2s+2(∂s
ruθ)2

⎞

⎠(3.12)

≤ Cm(‖ f ‖2
(m,0,γ−6) +Λ2

m ‖ u ‖2
(3,3,γ−2))

≤ Cm(‖ f ‖2
(m,γ) +Λ2

m ‖ f ‖2
(3,γ)),

where

Λm = ‖ r2K ‖m + ‖ r2A ‖m + ‖ r2B ‖m + ‖ r2C ‖m + ‖ r2D ‖m + 1.
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To see how this works, we will show the calculation for one representative
term that appears on the right-hand side of the equation after differentiating;
the remaining terms may be treated similarly. Differentiate (3.1) s-times to
obtain

Ls∂
s
ru := K(∂s

ru)rr +A(∂s
ru)rθ +B(∂s

ru)θθ

+ (C + sKr − sB
−1
BrK)(∂s

ru)r + (D + sAr − sB
−1
BrA)(∂s

ru)θ

= ∂s
rf − ∂s−1

r (Crur) + · · · .

Since ∂s
ru ∈ H(2,1,γ−2s)(Ω) when s ≤ m∗ − 6, the basic estimate yields

∫

Ω
r−γ+2s+2[λ(∂s

ru)
2 + (∂s

ruθ)2]

≤ C

∫

Ω
r−γ+2s+6[(∂s

rf)2 + (∂s−1
r (Crur))2] + · · · .

Furthermore, observe that

∂s−1
r (Crur) =

∑

l≤s−1

(
s− 1
l

)
∂s−1−l

r Cr∂
l
rur,

and

∂s−1−l
r Cr = ∂s−1−l

r (r−2r2Cr) =
∑

t1≤s−1−l

Ct1r
−2−(s−1−l−t1)∂t1

r (r2Cr),

r−γ/2+s+3+[−2−(s−1−l−t1)]∂l
rur =

∑

t2≤l

Ct2∂
t2
r (r−γ/2+t1+t2+2ur),

for some constants Ct1 and Ct2 . Therefore we may apply Lemma 5.2(i), the
Sobolev embedding theorem, and |w|C6 < 1 to find

‖ r−γ/2+s+3∂s−1
r (Crur) ‖

≤
∑

2≤t1+t2≤s−1

Ct1t2 ‖ ∂t1
r (r2Cr)∂t2

r (r−γ/2+t1+t2+2ur) ‖

+
∑

t1+t2<2

Ct1t2 ‖ ∂t1
r (r2Cr)∂t2

r (r−γ/2+t1+t2+2ur) ‖

≤ Cs(|r2Cr|∞ ‖ ur ‖(s−1,0,γ−4) + ‖ r2Cr ‖s−1 |r−γ/2+4ur|∞)
+ Cs ‖ u ‖(2,2,γ−2)

≤ Cs(‖ u ‖(s,0,γ−2) + Λs ‖ u ‖(3,3,γ−2)),
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where | · |∞ denotes the L∞(Ω) norm. Note that the first term of the last
line above, may be absorbed into the left-hand side of (3.12) for large λ(s).

The remaining derivatives of u involving higher orders of ∂θ may be
estimated by differentiating (3.11) and using the above estimates. Since the
coefficients of L depend on the derivatives of w up to and including order 3
and the derivatives of ξ (the coordinates of Lemma 2.1) up to and including
order 2, with the help of (2.4) we obtain

‖ u ‖(m,γ−2) ≤ Cm(‖ f ‖(m,γ) + ‖ w ‖m+6‖ f ‖(3,γ)).

Lastly since f vanishes to all orders at r = 0, a little calculation shows that
∫

Ω
r−γ+2s(∂s

r∂
t
θf)2 ≤ Cs

∫

Ω
(∂s+γ/2+1

r ∂t
θf)2,

from which the desired result follows. �

4. Linear theory in the hyperbolic regions

Here we shall study the question of existence and regularity for the Cauchy
problem associated with the operator L(w) of Lemma 2.1, in the hyperbolic
regions. In the previous section concerning the elliptic regions, after cutting-
off some of the coefficients away from the origin, we were able to invert L(w)
in the appropriate function spaces. However in the hyperbolic case, we will
not necessarily be able to make such an inversion, and as a result we must
consider a regularized version of L(w) as we explain below. For convenience
let (x, y) denote the coordinates (ξ1, ξ2) of Lemma 2.1, so that a portion of
the given hyperbolic region Ω−

� ∩Bσ(0), � = 1, 2, may be written as

Ω = {(x, y) | h(x) < y < σ}

for some Lipschitz function h(x) satisfying h(0) = 0 and |h(x) − |x||C1 =
O(σ). Then in these coordinates L(w) is given by

Lu = (Kux)x + uyy + Cux +Duy

with

K = kK, C = cK + (a22)−2∂x1ξ1∂x1Φ(w), D = ε2d,

in the notation of Lemma 2.1. Consider the Cauchy problem
(4.1)
Lu = f in Ω, u|∂Ω1 = φ, uy|∂Ω1 = ψ, ∂αu(0, 0) = 0, 0 ≤ |α| ≤ α0,
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for some given data φ, ψ and a large integer α0, where ∂Ω1 denotes the
“bottom” portion of the boundary given by y = h(x). The “top” portion of
the boundary will be denoted ∂Ω2, and is given by y = σ. As in problem
(3.1) the solution is required to vanish to high order at the origin, in order to
satisfy certain compatibility conditions which arise when constructing solu-
tions to the nonlinear problem (2.1) (see Section 5). Of course, a necessary
condition to have such behavior is that φ, ψ and f must also vanish to a
corresponding high order at the origin.

Equation (4.1) is degenerate hyperbolic, and as such, solvability of the
Cauchy problem depends on the so-called Levi conditions. These are rela-
tions between the coefficients K and C, which if satisfies would guarantee
existence for the Cauchy problem (when y = h(x) is smooth and nonchar-
acteristic). A simple example of such a relation is the condition (see [14])

C ≤M

√
|K| in Ω,

for some constant M > 0. Unfortunately, the quantity ∂x1Φ(w) present in
C prevents the validity of this inequality. However in the Nash iteration of
the next section, ∂x1Φ(w) will be uniformly small. Therefore, it is natural
to consider the regularized Cauchy problem

Lθu = f in Ω, u|∂Ω1 = φ, uy|∂Ω1 = ψ,

∂αu(0, 0) = 0, 0 ≤ |α| ≤ α0,(4.2)

where Lθ differs from L in that K is replaced by Kθ := K − θ with θ =
|Φ(w)|C1 . There then exists a constant M > 0 such that

(4.3) C ≤M |Kθ| in Ω.

However we cannot simply apply the results of [14] to obtain the desired
solution of (4.2), since the Cauchy surface y = h(x) is not smooth. We will
therefore prove existence by hand in what follows. Note that with regards to
the Nash iteration θ is of quadratic error (see Section 5), so that the small
perturbation (4.2) will not affect convergence of this procedure.

It will be convenient to first establish an existence result for (4.2) with
homogeneous Cauchy data and with f vanishing to high order on all of ∂Ω1.
To this end, we define H(m,l)(Ω) (H(m,l)

0 (Ω)) to be the closure of all C∞(Ω)
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functions (which vanish to all orders at ∂Ω1) in the norm

‖ u ‖2
(m,l) =

∫

Ω

∑

0≤s≤m

0≤t≤l

λ−s(∂s
x∂

t
yu)

2,

where λ > 0 is a large parameter. The L2(Ω) inner product will as usual be
denoted by (·, ·), and the formal adjoint of Lθ by L∗

θ. Also as in Lemma 2.1
w ∈ C∞ throughout this section.

Theorem 4.1. Suppose that g ∈ Cm∗ , |w|C4 < 1 and f ∈ H
(m,0)
0 (Ω). If

m ≤ m∗ − 6 and ε is sufficiently small, then there exists a weak solution
uθ ∈ H

(m,1)
0 (Ω) of (4.2) with φ, ψ = 0, for each θ > 0. That is

(4.4) (uθ, L
∗
θv) = (f, v) all v ∈ C∞(Ω)

with v|∂Ω2 = vy|∂Ω2 = 0.

Proof. Set b(x, y) = K
−1
θ (x, y)e−λy and let ζ be the unique solution of

m∑

s=0

(−1)s+1λ−s∂s
x(b∂s

xζy) = v in Ω,

ζ|∂Ω1 = ∂s
xζy|∂Ω1 = 0, 0 ≤ s ≤ m− 1,(4.5)

where v is as stated in the theorem. Note that for each y ∈ (0, σ), this
equation may be interpreted as an ODE in ζy, and therefore the theory
of such equations guarantees the existence of a unique solution to (4.5).
Furthermore if the metric g ∈ Cm∗ as in Lemma 2.1, then the coefficients of
(4.5) are in Cm∗−m−4. Thus as long as m ≤ m∗ − 6, we have ∂s

xζ ∈ C2(Ω)
for 0 ≤ s ≤ 2m− 1.

We first note that the solution ζ of (4.5) satisfies extra boundary condi-
tions, namely

(4.6) ∂s
x∂

t
yζ|∂Ω1 = 0, s+ t ≤ m, 0 ≤ t ≤ 2.

To see this let ∂T ζ be differentiation along the right portion of ∂Ω1

(that is, the curve y = h(x), x > 0), which we denote by ∂Ω+
1 . Then since
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ζ|∂Ω+
1

= ζy|∂Ω+
1

= 0 we have

0 = ∂T ζ =
1√

1 + h′ 2
(ζx + h′ζy)|∂Ω+

1
=

ζx√
1 + h′ 2

|∂Ω+
1
,

where h′ = dh/dx. It follows that

0 = ∂T ζx =
1√

1 + h′ 2
(ζxx + h′ζxy)|∂Ω+

1
=

ζxx√
1 + h′ 2

|∂Ω+
1
,

0 = ∂T ζy =
1√

1 + h′ 2
(ζxy + h′ζyy)|∂Ω+

1
=

h′ζyy√
1 + h′ 2

|∂Ω+
1
.

Since |h(x) − |x||C1 = O(σ) this shows (4.6) for m = 2, and continuing this
procedure establishes the full result on ∂Ω+

1 . Also the same arguments hold
to yield (4.6) on ∂Ω−

1 , the left portion of ∂Ω1 (that is, the curve y = h(x),
x < 0).

We will now establish the basic estimate on which the existence proof is
based. More precisely, we will show that

(4.7)

(
Lθζ,

m∑

s=0

(−1)s+1λ−s∂s
x(b∂s

xζy)

)
≥ C ‖ ζ ‖2

(m,1),

for some constant C > 0. Observe that the following calculations hold for
0 ≤ s ≤ m according to the boundary conditions (4.6):

((Kθζx)x, (−1)s+1∂s
x(b∂s

xζy)) =
∫

Ω
∂x(b∂s

xζy)∂
s
x(Kθζx)

= −
∫

Ω

[
1
2
(bKθ)y(∂s+1

x ζ)2 − bxKθ∂
s
xζy∂

s+1
x ζ

]

−
∫

Ω
b∂s

xζy∂x

[
s∑

l=1

(
s
l

)
∂l

xKθ∂
s+1−l
x ζ

]

+
∫

∂Ω

1
2
bKθ(∂s+1

x ζ)2ν2,

(ζyy, (−1)s+1∂s
x(b∂s

xζy)) = −
∫

Ω
b∂s

xζyy∂
s
xζy +

∫

∂Ω
b∂s−1

x ζyy∂
s
xζyν1

=
∫

Ω

1
2
by(∂s

xζy)
2 +

∫

∂Ω

[
b∂s−1

x ζyy∂
s
xζyν1

− 1
2
b(∂s

xζy)
2ν2

]
,
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(Cζx, (−1)s+1∂s
x(b∂s

xζy))

= −
∫

Ω
b∂s

xζy∂
s
x(Cζx)

= −
∫

Ω

[
bC∂s

xζy∂
s+1
x ζ + b∂s

xζy

s∑

l=1

(
s
l

)
∂l

xC∂
s+1−l
x ζ

]
,

(Dζy, (−1)s+1∂s
x(b∂s

xζy))

= −
∫

Ω
b∂s

xζy∂
s
x(Dζy)

= −
∫

Ω

[
bD(∂s

xζy)
2 + b∂s

xζy

s∑

l=1

(
s
l

)
∂l

xD∂
s−l
x ζy

]
,

where (ν1, ν2) denotes the unit outer normal to ∂Ω. Next observe that if
λ > 0 is sufficiently large then

by = − 1
Kθ

(
λ+

∂yKθ

Kθ

)
e−λy > 0, −(bKθ)y = λe−λy > 0,

and in light of the Levi condition (4.3) as well as D = O(ε) we have

−(by − 2bD)(bKθ)y − (bxKθ − bC)2

≥ −e−2λy

K
2
θ

[(
λ+

∂yKθ

Kθ

+O(ε)
)
λKθ +O(K2

x +K
2
θ)
]

≥ −e−2λy

K
2
θ

[
λ2

2
Kθ + λKy +O(K2

x)
]

> e−2λy,

as λKy +O(K2
x) ≤ 0 near ∂Ω1 for large λ. It follows that for large λ depend-

ing on m,
(
Lθζ,

m∑

s=0

(−1)s+1λ−s∂s
x(b∂s

xζy)

)

≥ C ‖ ζ ‖2
(m,1) +

λ−m

2

∫

∂Ω
(bKθ(∂m+1

x ζ)2ν2

+ 2b∂m−1
x ζyy∂

m
x ζyν1 − b(∂m

x ζy)
2ν2),

where we have used a Poincaré type inequality to estimate ‖ ζ ‖L2(Ω). Note
that the boundary integral has the correct sign on ∂Ω2. We claim that it
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also has the correct sign on ∂Ω1. To see this we use the boundary condition
(4.6). That is, by (4.6) ∂m−1

x ζy|∂Ω1 = 0 so if ∂T is differentiation along ∂Ω1 −
{(0, 0)} then

0 = ∂T∂
m−1
x ζy = −ν2∂

m
x ζy + ν1∂

m−1
x ζyy,

which yields

b∂m−1
x ζyy∂

m
x ζyν1 = b(∂m

x ζy)
2ν2 ≥ 0.

Moreover since ∂m
x ζ|∂Ω1 = 0 we have

0 = ∂T∂
m
x ζ|∂Ω1 = −ν2∂

m+1
x ζ + ν1∂

m
x ζy,

which yields

bKθ(∂m+1
x ζ)2ν2 = bKθ(∂m

x ζy)
2 ν

2
1

ν2
.

It follows that the boundary integral on ∂Ω1 is nonnegative, and hence (4.7)
holds.

We will need one last estimate before proving existence. Namely

‖ v ‖(−m,0) := sup
η∈H

(m,0)
0 (Ω)

|(η, v)|
‖ η ‖(m,0)

(4.8)

= sup
η∈H

(m,0)
0 (Ω)

|(η,∑m
s=0(−1)s+1λ−s∂s

x(b∂s
xζy))|

‖ η ‖(m,0)

≤ θ−1C ‖ ζ ‖(m,1),

which follows after integration by parts. Here ‖ · ‖(−m,0) is the norm on the
dual space H(−m,0)

0 (Ω) of H(m,0)
0 (Ω). This dual space may be obtained as

the completion of L2(Ω) in the norm ‖ · ‖(−m,0).
To prove existence apply (4.7) to obtain

‖ ζ ‖(m,1)‖ L∗
θv ‖(−m,−1) ≥ (ζ, L∗

θv) = (Lθζ, v)

=

(
Lθζ,

m∑

s=0

(−1)s+1λ−s∂s
x(b∂s

xζy)

)
≥ C ‖ ζ ‖2

(m,1),

which together with (4.8) implies that

(4.9) ‖ v ‖(−m,0) ≤ θ−1C ‖ L∗
θv ‖(−m,−1) all v ∈ Ĉ∞(Ω),
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where Ĉ∞(Ω) consists of all C∞(Ω) functions with v|∂Ω2 = vy|∂Ω2 = 0. Con-
sider the linear functional F : X → R, where X = L∗

θĈ
∞(Ω), given by

F (L∗
θv) = (f, v).

According to (4.9) we have that F is bounded on the subspace X of
H

(−m,−1)
0 (Ω) since

|F (L∗
θv)| ≤ ‖ f ‖(m,0)‖ v ‖(−m,0) ≤ θ−1C ‖ f ‖(m,0)‖ L∗

θv ‖(−m,−1) .

Note that the generalized Schwarz inequality (the first inequality in the
above sequence) holds because f ∈ H

(m,0)
0 (Ω), that is, f vanishes appropri-

ately on ∂Ω1. Thus we can apply the Hahn–Banach theorem to obtain a
bounded extension of F defined on all of H(−m,−1)

0 (Ω). It follows that there
exists uθ ∈ H

(m,1)
0 (Ω) such that

F (η) = (uθ, η) all η ∈ H
(−m,−1)
0 (Ω).

Now restrict η back to X to obtain

(uθ, L
∗
θv) = (f, v) all v ∈ Ĉ∞(Ω).

�

In order to obtain higher regularity for the solution given by Theorem
4.1, we will utilize the following standard lemma concerning the difference
quotient:

uq(x, y) :=
u(x, y + q) − u(x, y)

q
.

Lemma 4.1. (i) Let u ∈ H(0,1)(Ω) and Ω′ ⊂⊂ Ω (that is, Ω′ is compactly
contained in Ω). Then

‖ uq ‖L2(Ω′) ≤ ‖ uy ‖L2(Ω)

for all 0 < |q| < 1
2dist(Ω′, ∂Ω).

(ii) If u ∈ L2(Ω) and ‖ uq ‖L2(Ω′) ≤ C for all 0 < |q| < 1
2dist(Ω′, ∂Ω),

then u ∈ H(0,1)(Ω′).

The Sobolev space of square integrable derivatives up to and including
order m will be denoted by Hm(Ω) with norm ‖ · ‖m, and the completion of
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C∞(Ω) functions which vanish to all orders at ∂Ω1 in the norm ‖ · ‖m shall
be denoted by Hm

0 (Ω).

Corollary 4.1. Under the hypotheses of Theorem 4.1, if f ∈ Hm
0 (Ω) there

exists a unique solution uθ ∈ Hm
0 (Ω) of (4.2) with φ, ψ = 0, for each θ > 0.

Proof. Let uθ ∈ H
(m,1)
0 (Ω) be the weak solution given by Theorem 4.1, so

that (4.4) holds. If m ≤ 1 then this corollary follows directly from Theorem
4.1, so assume that m ≥ 2. We may integrate by parts to obtain

−(∂yuθ +Duθ, vy) = (f − ∂x(Kθ∂xuθ) − C∂xuθ +Dyuθ, v)

+
∫

∂Ω
(Cvuθν1 − vyuθν2 −Kθvxuθν1 +Kθv∂xuθν1)

for all v ∈ Ĉ∞(Ω), where (ν1, ν2) is the unit outer normal to ∂Ω. Note that
since uθ, ∂xuθ ∈ H1(Ω) both uθ|∂Ω and ∂xuθ|∂Ω are meaningful in L2(∂Ω),
and in particular as uθ, ∂xuθ ∈ H1

0 (Ω) we have uθ|∂Ω1 = ∂xuθ|∂Ω1 = 0 in the
L2(∂Ω1) sense. Thus we may write

(uθ, vy) = (f, v) all v ∈ Ĉ∞(Ω),

where

uθ = −∂yuθ −Duθ, f = f − ∂x(Kθ∂xuθ) − C∂xuθ +Dyuθ.

Furthermore

(uq
θ, vy) = (f q

, v) all v ∈ C∞
c (Ω),

so that choosing a sequence vi ∈ C∞
c (Ω) with vi → −ηuq

θ in H(0,1)(Ω) for
some nonnegative η ∈ C∞

c (Ω), implies that

‖ √
ηuq

θ ‖2 ≤ |(f q
, ηuq

θ)| + |(uq
θ, ηyu

q
θ)| + |(uq

θ, η(Duθ)q)|
≤ ‖ √

ηf
q ‖‖ √

ηuq
θ ‖ + ‖ √

ηuq
θ ‖‖ ηy√

η
uq

θ ‖

+ ‖ √
ηuq

θ ‖‖ √
η(Duθ)q ‖ .

Then since uθ, f ∈ H(0,1)(Ω) and |∇η|2 ≤ Cη, Lemma 4.1(i) yields
‖ √

ηuq
θ ‖≤ C for some constant C independent of q, if |q| is sufficiently

small. Now Lemma 4.1(ii) shows that uθ ∈ H
(0,1)
loc (Ω), as η was arbitrary.

Hence ∂2
yuθ ∈ L2

loc(Ω). It follows that the equation Lθuθ = f holds in L2
loc(Ω),



676 Qing Han & Marcus Khuri

and since we can solve for ∂2
yuθ, we can boot-strap in the usual way to obtain

uθ ∈ Hm
loc(Ω).

Next observe that the above restrictions on η may be relaxed if q > 0,
that is in this case η is only required to vanish in a neighborhood of ∂Ω2.
Then the same procedure yields ηuθ ∈ Hm(Ω) for all such η. Furthermore
since Lθ is strictly hyperbolic, we can use the regularity theory for such
operators to obtain estimates for uθ near ∂Ω2. It follows that uθ ∈ Hm(Ω).

To show that uθ ∈ Hm
0 (Ω), it is enough to observe that

(4.10) ∂s
x∂

t
yuθ|∂Ω1 = 0, s+ t ≤ m− 1,

where the equality is interpreted in the L2(∂Ω1) sense when s+ t = m− 1.
This follows from the fact that f satisfies (4.10), in the following way. First
note that as in the arguments used to establish (4.6), uθ|∂Ω1 = ∂xuθ|∂Ω1 = 0
implies that ∂yuθ|∂Ω1 = 0. Furthermore using the notation of those argu-
ments we have

0 = ∂T (∂xuθ) =
1√

1 + h′ 2
(∂2

xuθ + h′∂x∂yuθ)|∂Ω+
1
,

0 = ∂T (∂yuθ) =
1√

1 + h′ 2
(∂x∂yuθ + h′∂2

yuθ)|∂Ω+
1
.

However from Equation (4.2) we find that

(−θ∂2
xuθ + ∂2

yuθ)|∂Ω+
1

= 0,

hence
∂2

xuθ|∂Ω+
1

= ∂2
yuθ|∂Ω+

1
= ∂x∂yuθ|∂Ω+

1
= 0.

The same arguments also apply to ∂Ω−
1 , so by differentiating Equation (4.2)

we can continue this procedure to obtain (4.10).
Lastly we note that since uθ|∂Ω1 = |∇uθ|∂Ω1 = 0, (4.7) with m = 1 yields

(
Lθuθ,

1∑

s=0

(−1)s+1λ−s∂s
x(b∂s

x∂yuθ)

)
≥ C ‖ uθ ‖2

(1,1),

from which uniqueness follows. �
This corollary yields the existence of a regular solution to (4.2) when

φ = ψ = 0 and f vanishes to high order on ∂Ω1. However, we are interested
in solving (4.2) in the general case when φ, ψ and f vanish to high order
at the origin but are otherwise arbitrary. The next lemma will enable us
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to obtain the general case from Corollary 4.1. Here and below H
m
0 (Ω) will

denote the completion of C∞(Ω) in the norm ‖ · ‖m, and H
m
0 (∂Ω1) will be

defined similarly with respect to the ‖ · ‖m,∂Ω1 norm. Recall that C∞(Ω)
consists of C∞(Ω) functions which vanish in a neighborhood of the origin.

Lemma 4.2. Suppose that g ∈ Cm∗, |w|C6 < 1 and φ ∈ H
m+1
0 (∂Ω1), ψ ∈

H
m
0 (∂Ω1), f ∈ H

m
0 (Ω) with m ≤ m∗ − 6. Then there exists a function ηθ ∈

H
m+2
0 (Ω) such that ηθ|∂Ω1 = φ, ∂yηθ|∂Ω1 = ψ and ∂t

y(f − Lθηθ)|∂Ω1 = 0, 0 ≤
t ≤ m− 1, with

‖ ηθ ‖m+2 ≤ Cm(‖ f ‖m + ‖ φ ‖m+1,∂Ω1 + ‖ ψ ‖m,∂Ω1

+ ‖ w ‖m+6 (‖ f ‖2 + ‖ φ ‖2,∂Ω1 + ‖ ψ ‖2,∂Ω1)).

Proof. We may assume that a unique solution uθ ∈ H
m+2
0 (Ω) of (4.2) exists,

since here we shall only use its boundary values which can be explicitly
determined in terms of φ, ψ and f , as ∂Ω1 is noncharacteristic for Lθ. Then
because Ω is a Lipschitz domain, the linear restriction map Hm+2(Ω) →
Hm+1(∂Ω1) is bounded and onto (see [18]). By quotienting with the ker-
nel and applying the closed graph theorem, we obtain a bounded inverse
Hm+1(∂Ω1) → Hm+2(Ω)/Hm+2

0 (Ω) with respect to the quotient norm. We
may then use this map to obtain an extension ηθ of uθ from ∂Ω1 to Ω with
∂αηθ|∂Ω1 = ∂αuθ|∂Ω1 for all |α| ≤ m+ 1, and

‖ ηθ ‖m+2 ≤ Cm

∑

|α|≤m+1

‖ ∂αuθ ‖0,∂Ω1 .

Applying the Gagliardo–Nirenberg inequalities (Lemma 5.2) to the expres-
sion for ∂αuθ|∂Ω1 in terms of φ, ψ and f yields the desired estimate.

We remark that an equivalent and perhaps more concrete way to obtain
the extension is as the unique weak solution ηθ ∈ H

m+2
0 (Ω) of the boundary

value problem:

m+2∑

s=0

(−1)sΔsηθ = 0 in Ω, ∂s
yηθ|∂Ω1 = ∂s

yuθ|∂Ω1 , 0 ≤ s ≤ m+ 1,

(
m+1−s∑

l=s

(−1)l∂yΔlηθ

)

∂Ω2

= 0, 0 ≤ s ≤
[
m+ 1

2

]
,

(
m+1−s∑

l=s+1

(−1)lΔlηθ

)

∂Ω2

= 0, 0 ≤ s ≤
[
m+ (−1)m

2

]
. �
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Now in order to solve (4.2) with φ ∈ H
m+1
0 (∂Ω1), ψ ∈ H

m
0 (∂Ω1), and

f ∈ H
m
0 (Ω), we note that if ηθ ∈ H

m+2
0 (Ω) is as in Lemma 4.2 and uθ ∈

Hm
0 (Ω) is given by Corollary 4.1 with fθ = f − Lθηθ ∈ Hm

0 (Ω), then uθ =
uθ + ηθ ∈ H

m
0 (Ω) satisfies (4.2). Observe that in order for uθ to have the

desired vanishing at the origin we require m ≥ α0 + 2.
Our next task shall be to estimate uθ independent of θ, in a manner

suitable for application to the Nash iteration of the next section. A signifi-
cant difference between the following theorem and its analog for the elliptic
regions (Theorem 3.2), is that the loss of derivatives here depends on the
degree to which the Gaussian curvature vanishes at the origin.

Theorem 4.2. Suppose that g ∈ Cm∗, φ, ψ ∈ C
∞(∂Ω1), f ∈ C

∞(Ω) and
|w|C2N+4 < 1 where N ≤ m∗ − 2 is the largest integer such that ∂αK(0, 0) =
0 for all |α| ≤ N . If α0 + 2 ≤ m ≤ m∗ − 6 and ε = ε(m) is sufficiently small,
then there exists a unique solution uθ ∈ H

m
0 (Ω) of (4.2) for each θ > 0. Fur-

thermore, there exists a constant Cm independent of ε and θ such that

‖ uθ ‖m ≤ Cm(‖ f ‖m+N + ‖ φ ‖m+N+1,∂Ω1 + ‖ ψ ‖m+N,∂Ω1

+ ‖ w ‖m+N+6 (‖ f ‖N+2 + ‖ φ ‖N+3,∂Ω1 + ‖ ψ ‖N+2,∂Ω1))

for each m ≤ m∗ −N − 8.

Proof. The existence of a solution uθ ∈ H
m∗−6
0 (Ω) for each θ > 0 follows

directly from the discussion preceding the statement of this theorem. In
order to make estimates it will be advantageous to have a zeroth-order term
for Lθ. Therefore we set vθ = e−

1
2
y2
uθ and observe that

Lθvθ := ∂x(Kθ∂xvθ) + ∂2
yvθ + C∂xvθ + (2y +D)∂yvθ

+ (1 + y2 + yD)vθ = e−
1
2
y2
f := f.

With the aim of treating the x-derivatives first, we differentiate the above
equation to find

L
(m)
θ ∂m

x vθ = ∂m
x f −

m∑

s=3

(
m
s

)
∂s

xKθ∂
m−s
x (∂2

xvθ)

−
m∑

s=2

(
m
s

)
∂s

x(C + ∂xKθ)∂m−s
x (∂xvθ)
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−
m∑

s=1

(
m
s

)
[∂s

xD∂
m−s
x (∂yvθ) + y∂s

xD∂
m−s
x vθ]

:= ∂m
x f + f

(m)(vθ),

where

L
(m)
θ v := (Kθvx)x + vyy + (C +m∂xKθ)vx + (2y +D)vy

+
(

1 + y2 + yD +m∂xC +
m(m+ 1)

2
∂2

xKθ

)
v.

We first assume that m ≤ N + 1. In this case let ηθ be given by Lemma
4.2 such that ηθ|∂Ω1 = vθ|∂Ω1 , ∂yηθ|∂Ω1 = ∂yvθ|∂Ω1 and

(4.11) ∂t
y(f − Lθηθ)|∂Ω1 = 0, 0 ≤ t ≤ m+N.

Note that this implies that ηθ ∈ H
m+N+3
0 (Ω), ∂αηθ|∂Ω1 = ∂αvθ|∂Ω1 for all

|α| ≤ m+N + 2, and we have the estimate

‖ ηθ ‖m+N+3 ≤ C(‖ f ‖m+N+1 + ‖ φ ‖m+N+2,∂Ω1 + ‖ ψ ‖m+N+1,∂Ω1

(4.12)

+ ‖ w ‖m+N+7 (‖ f ‖2 + ‖ φ ‖2,∂Ω1 + ‖ ψ ‖2,∂Ω1)).

Furthermore, the function vθ := vθ − ηθ satisfies

L
(m)
θ ∂m

x vθ = ∂m
x (f − Lθηθ) + f

(m)(vθ).

As in the proof of Theorem 4.1, we set b = K
−1
θ e−λy and integrate by parts:

(−b∂y∂
m
x vθ, L

(m)
θ ∂m

x vθ)

(4.13)

=
∫

Ω

[
−1

2
(bKθ)y(∂m+1

x vθ)2 + (bxKθ −mb∂xKθ − bC)∂m+1
x vθ∂y∂

m
x vθ

]

+
∫

Ω

(
1
2
by − b(2y +D)

)
(∂y∂

m
x vθ)2

+
∫

Ω

1
2

[
b

(
1 + y2 + yD +m∂xC +

m(m+ 1)
2

∂2
xKθ

)]

y

(∂m
x vθ)2

+
∫

∂Ω

[
1
2
bKθ(∂m+1

x vθ)2ν2 − bKθ∂
m+1
x vθ∂y∂

m
x vθν1

]
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−
∫

∂Ω

[
1
2
b(∂y∂

m
x vθ)2ν2 +

1
2
b

×
(

1 + y2 + yD +m∂xC +
m(m+ 1)

2
∂2

xKθ

)
(∂m

x vθ)2ν2

]
.

The boundary integral along ∂Ω2 is nonnegative, and according to the choice
of ηθ it vanishes along ∂Ω1. Moreover, the same calculations as in the proof
of Theorem 4.1 apply to the interior integral to yield

λ(‖ ∂m+1
x vθ ‖ + ‖

√
|b|∂y∂

m
x vθ ‖ + ‖

√
|b|∂m

x vθ ‖)
≤ C(‖

√
|b|∂m

x (f − Lθηθ) ‖ + ‖
√
|b|f (m)(vθ) ‖).

We proceed to estimate each term on the right-hand side separately.
First note that since m ≤ N + 1 and |w|CN+4 < 1, we have

‖
√
|b|f (m)(vθ) ‖2 ≤ Cm

∫

Ω

m−1∑

s=0

e−λy|Kθ|−1[(∂s
xvθ)2 + (∂y∂

s
xvθ)2].

Next observe that since K vanishes (at most) to order N at the origin, there
exists a constant C0 > 0 such that |K| ≥ C−1

0 (y − h(x))N+1 in Ω. Then in
light of (4.11), a little calculation shows that

‖
√

|b|∂m
x (f − Lθηθ) ‖2 ≤ C0

∫

Ω

[∂m
x (f − Lθηθ)]2

(y − h(x))N+1

≤ C1

∫

Ω
[∂N+1

y ∂m
x (f − Lθηθ)]2.

It follows that applying (4.12) and summing from 0 to m produces

m+1∑

s=0

‖ ∂s
xvθ ‖ +

m∑

s=0

‖
√
|b|∂y∂

s
xvθ ‖ +

m∑

s=0

‖
√
|b|∂s

xvθ ‖(4.14)

≤ Cm(‖ f ‖m+N+1 + ‖ φ ‖m+N+2,∂Ω1 + ‖ ψ ‖m+N+1,∂Ω1

+ ‖ w ‖m+N+7 (‖ f ‖2 + ‖ φ ‖2,∂Ω1 + ‖ ψ ‖2,∂Ω1)),

if λ is sufficiently large. From this inequality we may obtain an estimate
for the x-derivatives of vθ (and hence for uθ), with the help of (4.12). In
addition, by solving for ∂2

yuθ in Equation (4.2) all remaining derivatives up
to and including order m may also be estimated.
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We now assume thatm ≥ N + 2. In order to isolate terms involving high-
order derivatives of w we break f (m) into two parts. Let v(s)

θ := ∂s
xvθ − η

(s)
θ

with η(s)
θ to be given below, then f (m) = f

(m)
1 + f

(m)
2 where

f
(m)
1 (vθ) = −

m∑

s=N+2

(
m
s

)
∂s

xKθ∂
m−s+2
x vθ

−
m∑

s=N+1

(
m
s

)
∂s

x(C + ∂xKθ)∂m−s+1
x vθ

−
m∑

s=N+1

(
m
s

)
∂s

xD∂y∂
m−s
x vθ

− y
m∑

s=N

(
m
s

)
∂s

xD∂
m−s
x vθ −

N+1∑

s=3

(
m
s

)
∂s

xKθη
(m−s+2)
θ

−
N∑

s=2

(
m
s

)
∂s

x(C + ∂xKθ)η
(m−s+1)
θ

−
N∑

s=1

(
m
s

)
∂s

xD∂yη
(m−s)
θ − y

N−1∑

s=1

(
m
s

)
∂s

xDη
(m−s)
θ

and

f
(m)
2 (vθ) = −

N+1∑

s=3

(
m
s

)
∂s

xKθv
(m−s+2)
θ

−
N∑

s=2

(
m
s

)
∂s

x(C + ∂xKθ)v
(m−s+1)
θ

−
N∑

s=1

(
m
s

)
∂s

xD∂yv
(m−s)
θ − y

N−1∑

s=1

(
m
s

)
∂s

xDv
(m−s)
θ .

The functions η(s)
θ ∈ H

N+3
0 (Ω), 0 ≤ s ≤ m, are defined recursively in the fol-

lowing way. For 0 ≤ s ≤ N + 1 we set η(s)
θ = ∂s

xηθ, and if N + 2 ≤ s ≤ m we
apply Lemma 4.2 to obtain η

(s)
θ such that η(s)

θ |∂Ω1 = ∂s
xvθ|∂Ω1 , ∂yη

(s)
θ |∂Ω1 =

∂y∂
s
xvθ|∂Ω1 with

(4.15) ∂t
y(∂

s
xf + f

(s)
1 (vθ) − L

(s)
θ η

(s)
θ )|∂Ω1 = 0, 0 ≤ t ≤ N.
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Note that since f (s)
1 ∈ H

min(m∗−s−6,N+2)
0 (Ω) and ∂s

xvθ|∂Ω1 ∈ H
m∗−s−7
0 (∂Ω1),

∂y∂
s
xvθ|∂Ω1 ∈ H

m∗−s−8
0 (∂Ω1), we must have N + 1 ≤ m∗ − s− 8 for the

construction of η(s)
θ to be valid. In this case the following estimate holds:

‖ η(s)
θ ‖N+3 ≤ C(‖ ∂s

xf + f
(s)
1 (vθ) ‖N+1 + ‖ ∂s

xvθ ‖N+2,∂Ω1(4.16)

+ ‖ ∂y∂
s
xvθ ‖N+1,∂Ω1 + ‖ w ‖N+7 (‖ ∂s

xf + f
(s)
1 (vθ) ‖2

+ ‖ ∂s
xvθ ‖2,∂Ω1 + ‖ ∂y∂

s
xvθ ‖2,∂Ω1))

≤ Cs(‖ f (s)
1 (vθ) ‖N+1 + ‖ f ‖s+N+1 + ‖ φ ‖s+N+2,∂Ω1

+ ‖ ψ ‖s+N+1,∂Ω1 + ‖ w ‖s+N+7 (‖ f ‖2 + ‖ φ ‖2,∂Ω1

+ ‖ ψ ‖2,∂Ω1)),

where we have used |w|CN+7 < 1 and the proof of Lemma 4.2 to estimate
∂t

y∂
s
xvθ|∂Ω1 , t = 0, 1.
Observe that v(s)

θ , N + 2 ≤ s ≤ m, satisfies

L
(s)
θ v

(s)
θ = (∂s

xf + f
(s)
1 (vθ) − L

(s)
θ η

(s)
θ ) + f

(s)
2 (vθ).

Therefore (4.13) applies to yield

λ(‖ ∂xv
(s)
θ ‖ + ‖

√
|b|∂yv

(s)
θ ‖ + ‖

√
|b|v(s)

θ ‖)(4.17)

≤ C(‖
√

|b|(∂s
xf + f

(s)
1 (vθ) − L

(s)
θ η

(s)
θ ) ‖ + ‖

√
|b|f (s)

2 (vθ) ‖).

We now proceed to estimate each term on the right-hand side of (4.17)
separately. First note that since |w|CN+4 < 1, we have

‖
√
|b|f (s)

2 (vθ) ‖2 ≤ Cs

∫

Ω

s−1∑

l=0

e−λy|Kθ|−1[(v(l)
θ )2 + (∂yv

(l)
θ )2](4.18)

= Cs

∫

Ω

s−1∑

l=N+2

e−λy|Kθ|−1[(v(l)
θ )2 + (∂yv

(l)
θ )2]

+ Cs

∫

Ω

N+1∑

l=0

e−λy|Kθ|−1[(∂l
xvθ)2 + (∂y∂

l
xvθ)2].
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Next observe again that since |K| ≥ C−1
0 (y − h(x))N+1 in Ω, (4.15) implies

that

‖
√

|b|(∂s
xf + f

(s)
1 (vθ) − L

(s)
θ η

(s)
θ ) ‖2(4.19)

≤ C0

∫

Ω

[∂s
xf + f

(s)
1 (vθ) − L

(s)
θ η

(s)
θ ]2

(y − h(x))N+1

≤ C1

∫

Ω
[∂N+1

y (∂s
xf + f

(s)
1 (vθ) − L

(s)
θ η

(s)
θ )]2.

Furthermore, applying the Gagliardo–Nirenberg inequalities (Lemma 5.2),
(4.12), (4.14), (4.16), and using |w|C2N+4 < 1 produces

‖ f (s)
1 (vθ) ‖N+1 ≤ Cs((|Kθ|CN+2 + |C|CN+1 + |D|CN+1) ‖ vθ ‖s+1

(4.20)

+ (‖ Kθ ‖s+N+3 + ‖ C ‖s+N+2 + ‖ D ‖s+N+2)|vθ|C0)

+ Cs

(
N+1∑

l=s−N

‖ ηθ ‖l+N+2 +
s−1∑

l=N+2

‖ η(l)
θ ‖N+2

)

≤ Cs(‖ f ‖s+N+1 + ε ‖ vθ ‖s+1 + ‖ φ ‖s+N+2,∂Ω1

+ ‖ ψ ‖s+N+1,∂Ω1 + ‖ w ‖s+N+7 (‖ f ‖N+2

+ ‖ φ ‖N+3,∂Ω1 + ‖ ψ ‖N+2,∂Ω1)).

It follows that we may combine (4.17) to (4.20) and utilize (4.12), (4.14), as
well as (4.16) to obtain

m∑

s=N+2

‖ ∂xv
(s)
θ ‖ +

m∑

s=N+2

‖
√
|b|∂yv

(s)
θ ‖ +

m∑

s=N+2

‖
√
|b|v(s)

θ ‖

≤ Cm(‖ f ‖m+N+1 + ε ‖ uθ ‖m+1 + ‖ φ ‖m+N+2,∂Ω1 + ‖ ψ ‖m+N+1,∂Ω1

+ ‖ w ‖m+N+7 (‖ f ‖N+2 + ‖ φ ‖N+3,∂Ω1 + ‖ ψ ‖N+2,∂Ω1)).

Since v(s)
θ = ∂s

xvθ − η
(s)
θ , with the help of (4.16) the above inequality yields

an estimate for the x-derivatives of uθ. The remaining derivatives of uθ may
be estimated in the usual way, by solving for ∂2

yuθ from Equation (4.2).
Lastly taking ε = ε(m) sufficiently small yields the desired result. �

Remark 4.1. In this section we have focused on the Cauchy problem in the
domains Ω−

� ∩Bσ(0), � = 1, 2. However analogous existence and regularity
results, requiring only slight modifications of the arguments above, hold for
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the Cauchy problem in the domains Ω−
� ∩Bσ(0), � = 3, 4, when the Cauchy

data are prescribed on either the “upper” or “lower” parts of these domains
(that is, on one of the two differentiable components of the curve x = h(y)).

5. The Nash–Moser iteration

In this section we will carry out Nash–Moser-type iteration procedures to
obtain solutions of (2.1) in each of the elliptic, hyperbolic and mixed type
regions separately. The solutions will then be patched together by choosing
appropriate boundary values, to yield a solution on a full neighborhood of
the origin. As a consequence of Lemma 2.1, we can assume (by a judicious
choice of coordinates) that each elliptic region is given by

Ω+
κ = {(ξ1, ξ2) | 0 < ξ2 < (tan δ)ξ1, |ξ| < σ}, 1 ≤ κ ≤ κ0,

each hyperbolic region is given by

Ω−
� = {(ξ1, ξ2) | h(ξ1) < ξ2 < σ}, � = 1, 2,

or
Ω−

� = {(ξ1, ξ2) | h(ξ2) < ξ1 < σ}, � = 3, 4.

If ∂Ω+
κ denotes the portion of the boundary consisting of the curves ξ2 = 0

and ξ2 = (tan δ)ξ1, ∂Ω−
� , � = 1, 2, denotes the portion of the boundary given

by ξ2 = h(ξ1), and ∂Ω−
� , � = 3, 4, denotes either the upper or lower part of

the boundary curve ξ1 = h(ξ2), then we aim to solve

(5.1) Φ(w+
κ ) = 0 in Ω+

κ , w+
κ |∂Ω+

κ
= 0,

∂αw+
κ (0, 0) = 0, |α| ≤ α0,

for each κ = 1, . . . , κ0, and

(5.2) Φ(w−
� ) = 0 in Ω−

� , w−
� |∂Ω−

�
= φ−� , ∂νw

−
� |∂Ω−

�
= ψ−

� ,

∂αw−
� (0, 0) = 0, |α| ≤ α0,

for each � = 1, . . . , �0, where ∂ν denotes the outward normal derivative, α0

is a large integer and φ−� , ψ−
� will be specified below.

Both of problems (5.1) and (5.2) will require slight modifications of the
standard Nash–Moser procedure. This arises from the fact that instead of
solving the linearized equation at each iteration, the theories developed in
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Sections 3 and 4 require us to solve modified versions of the linearized
equation. However the error incurred at each step by these modifications
is of quadratic type and therefore does not prevent the procedure from con-
verging to a solution. Below we shall carry out the proof in full detail for
the hyperbolic regions, problem (5.2). Moreover, since the corresponding
iteration for problem (5.1) differs only slightly from that of (5.2), we shall
merely indicate the necessary changes required in this case.

5.1. Hyperbolic regions

In the hyperbolic regions, the linearization L(w) and the operator Lθ(w) that
we invert in Section 4 differ by perturbation terms coming from Lemma
2.1 as well as a regularizing term involving θ = |Φ(w)|C1 . More precisely,
according to Lemma 2.1

L(w)u = εa22(w)Lθ(w)u+ εθa22(w)∂2
ξ1u(5.3)

+ ε(a22(w))−1Φ(w)[∂2
x1u− ∂x1 log(a22(w)

√
|g|)∂x1u],

where ξi(x1, x2) are the coordinates constructed in Lemma 2.1. Further-
more, as with all Nash–Moser iterative schemes we will need smoothing
operators. Since the theory of Section 4 is based on the Sobolev spaces
H

m
0 , the smoothing operators we use should respect these spaces. For con-

venience, in the remainder of this section the hyperbolic region in question
Ω−

� will be denoted by Ω, and the H
m
0 (Ω) norm will be denoted

by ‖ · ‖m.

Lemma 5.1. Given μ ≥ 1 there exists a linear smoothing operator Sμ :
L2(Ω) → H

∞
0 (Ω) such that for all l,m ∈ Z≥0 and u ∈ H

l
0(Ω),

(i) ‖ Sμu ‖m ≤ Cl,m ‖ u ‖l, m ≤ l,

(ii) ‖ Sμu ‖m ≤ Cl,mμ
m−l ‖ u ‖l, l ≤ m,

(iii) ‖ u− Sμu ‖m ≤ Cl,mμ
m−l ‖ u ‖l, m ≤ l.

Furthermore, there exists a linear smoothing operator S
′
μ : L2(Ω) →

H∞(Ω) such that (i) to (iii) hold whenever u ∈ H l(Ω).

Proof. See Appendix B. �

The next lemma contains the so-called Gagliardo–Nirenberg inequalities,
which will be used frequently throughout this section.
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Lemma 5.2. Let u, v ∈ Ck(Ω).

(i) If α and β are multi-indices such that |α| + |β| = m, then there exists
a constant C1 depending on m such that

‖ ∂αu∂βv ‖L2(Ω) ≤ C1(|u|L∞(Ω) ‖ v ‖Hm(Ω) + ‖ u ‖Hm(Ω) |v|L∞(Ω)).

(ii) If α1, . . . , αl are multi-indices such that |α1| + · · · + |αl| = m, then
there exists a constant C2 depending on l and m such that

‖ ∂α1u1 · · · ∂αlul ‖L2(Ω)

≤ C2

l∑

j=1

(|u1|L∞(Ω) · · · |̂uj |L∞(Ω) · · · |ul|L∞(Ω)) ‖ uj ‖Hm(Ω),

where |̂uj |L∞(Ω) indicates the absence of |uj |L∞(Ω).

(iii) Let D ⊂ R
l be compact and contain the origin, and let G ∈ C∞(D). If

u ∈ Hm(Ω,D) ∩ L∞(Ω,D), then there exists a constant C3 depending
on m such that

‖ G ◦ u ‖Hm(Ω) ≤ C3|u|L∞(Ω)(|G(0)|+ ‖ u ‖Hm(Ω)).

Proof. These estimates are standard consequences of the interpolation
inequalities, and may be found in, for instance, [19]. �

We now set up the underlying iterative procedure. Suppose that φ−� ∈
H

m∗−m0+1
0 (∂Ω) and ψ−

� ∈ H
m∗−m0

0 (∂Ω) for some m0 ≥ 0. Then according
to the proof of Lemma 4.2 there exists w0 ∈ H

m∗−m0+2
0 (Ω) such that

(5.4) w0|∂Ω = φ−� , ∂νw0|∂Ω = ψ−
� .

Now suppose that in addition to w0, functions w1, w2, . . . , wn have been
defined on Ω, and put vi = Siwi, 0 ≤ i ≤ n, where Si = Sμi . Then define
wn+1 = wn + un where un is the unique solution of

(5.5) Lθn
(vn)un = fn in Ω, un|∂Ω = ∂νun|∂Ω = 0,

given by Theorem 4.2, where θn = |Φ(vn)|C1 and fn will be specified below.
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Let Qn(wn, un) denote the quadratic error in the Taylor expansion of Φ
at wn. Then according to (5.3) we have

Φ(wn+1) = Φ(wn) + L(wn)un +Qn(wn, un)(5.6)

= Φ(wn) + εS
′
na

22(vn)Lθn
(vn)un + en,

where

en = (L(wn) − L(vn))un + ε(I − S
′
n)a22(vn)Lθn

(vn)un

+ εθna
22(vn)∂2

ξ1
n
un +Qn(wn, un) + ε(a22(vn))−1Φ(vn)[∂2

x1un

− ∂x1(log a22(vn)
√

|g|)∂x1un],

and ξi
n are the coordinates of Lemma 2.1 with respect to vn.

We now define fn. In order to solve (5.5) with the theory of Section 4,
we require fn ∈ C

∞(Ω). Furthermore, we need the right-hand side of (5.6)
to tend to zero sufficiently fast, to make up for the error incurred at each
step by solving (5.5) instead of solving the unmodified linearized equation.
Therefore we set E0 = 0, En =

∑n−1
i=0 ei, and define

(5.7) f0 = −[εS
′
0a

22(v0)]−1S0Φ(w0),

fn = [εS
′
na

22(vn)]−1(Sn−1En−1 − SnEn + (Sn−1 − Sn)Φ(w0)).

It follows that

Φ(wn+1) = Φ(w0) +
n∑

i=0

εS
′
ia

22(vi)fi + En + en(5.8)

= (I − Sn)Φ(w0) + (I − Sn)En + en.

The following theorem contains the Moser estimate for solutions of (5.5),
upon which the whole iteration scheme is based.

Theorem 5.1. Suppose that g ∈ Cm∗ and N is as in Theorem 4.2. If
m ≤ m∗ −N − 8, |vn|C2N+4 < 1 and ε = ε(m) is sufficiently small then there
exists a unique solution un ∈ H

m
0 (Ω) of (5.5) which satisfies the estimate

(5.9) ‖ un ‖m≤ Cm(‖ fn ‖m+N + ‖ vn ‖m+N+6‖ fn ‖N+2),

for some constant Cm independent of ε and θn.
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Proof. This will follow from Theorem 4.2 with φ = ψ ≡ 0. The only differ-
ence is that the Sobolev norms appearing in Theorem 4.2 are with respect
to the coordinates ξi

n(x1, x2) of Lemma 2.1. In order to obtain the current
estimate from that of Theorem 4.2 we may utilize (2.4). Note that δ (of
Lemma 2.1) is not chosen arbitrarily small in the hyperbolic regions, and so
it does not appear in the above estimate. �

In what follows, we will show that the right-hand side of (5.8) tends to
zero sufficiently fast to guarantee convergence of {wn}∞n=0 to a solution of
(5.2). Let ρ be a positive number that will be chosen as large as possible,
and set μ = ε−

1
2ρ , μn = μn. Furthermore, note that Φ(w0) ∈ H

m∗−m0

0 (Ω).
The convergence of {wn}∞n=0 will follow from the following eight statements,
valid for 0 ≤ m ≤ m∗ −N − 8 unless specified otherwise. These statements
shall be proven by induction on n, for some constants C1, . . . , C5 independent
of n and ε, but dependent on m.

In: ‖ un−1 ‖m ≤ εμm+N+2−ρ
n−1 ,

IIn: ‖ wn ‖m ≤
{
C1ε if m+N + 2 − ρ ≤ −1/2,
C1εμ

m+N+2−ρ
n if m+N + 2 − ρ ≥ 1/2,

IIIn: ‖ wn ‖2N+6 ≤ C1ε, ‖ vn ‖2N+6 ≤ C3ε,

IVn: ‖ wn − vn ‖m ≤ C2εμ
m+N+2−ρ
n ,

Vn: ‖ vn ‖m ≤
{
C3ε if m+N + 2 − ρ ≤ −1/2,
C3εμ

m+N+2−ρ
n if m+N + 2 − ρ ≥ 1/2,

m <∞,

VIn: ‖ en−1 ‖m ≤ C4ε
3μm−ρ

n−1 , m ≤ min(m∗ −N − 10,m∗ −m0),

VIIn: ‖ fn ‖m ≤ C5ε
2(1 + μρ−m)μm−ρ

n , m <∞,

VIIIn: ‖ Φ(wn) ‖m + ‖ Φ(vn) ‖m ≤ εμm+N+4−ρ
n ,

m ≤ min(m∗ −N − 10,m∗ −m0).

Assume that the above eight statements hold for all nonnegative integers
less than or equal to n. The next four propositions will show that they also
hold for n+ 1. The case n = 0 will be proven shortly thereafter.

Proposition 5.1. If 3N + 8 < ρ < m∗ − 6, 0 ≤ m ≤ m∗ −N − 8 and ε is
sufficiently small, then In+1, IIn+1, IIIn+1, IVn+1 and Vn+1 hold.

Proof. In+1: First note that by IIIn,

|vn|C2N+4 ≤ C ‖ vn ‖2N+6 ≤ CC3ε < 1
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for small ε. Therefore if m ≤ m∗ −N − 8 we may apply Theorem 5.1 to
obtain a solution un ∈ H

m
0 (Ω) of (5.5) which satisfies estimate (5.9). When

m+ 2N + 8 − ρ ≥ 1/2 this may be combined with Vn, VIIn and ρ ≥ 2N + 8
to obtain

‖ un ‖m ≤ Cm(‖ fn ‖m+N + ‖ vn ‖m+N+6‖ fn ‖N+2)

≤ Cm(C5ε
2(1 + μρ−m)μm+N−ρ

n

+ C3C5ε
3(1 + μρ−N−2)μm+2N+8−ρ

n μN+2−ρ
n )

≤ εμm+N+2−ρ
n

for small ε. Whenm+ 2N + 8 − ρ ≤ −1/2, the estimate ‖ vn ‖m+N+6 ≤C3ε
placed in the above calculation gives the desired result.

IIn+1: Since wn+1 =
∑n

i=0 ui, we have

‖ wn+1 ‖m ≤
n∑

i=0

‖ ui ‖m ≤ ε

n∑

i=0

μm+N+2−ρ
i .

Hence, if m+N + 2 − ρ ≤ −1/2 then

‖ wn+1 ‖m ≤ ε
∞∑

i=0

(μi)−1/2 ≤ ε
∞∑

i=0

(2i)−1/2 := C1ε,

and if m+N + 2 − ρ ≥ 1/2 then

‖ wn+1 ‖m ≤ εμm+N+2−ρ
n+1

n∑

i=0

(
μi

μn+1

)m+N+2−ρ

≤ εμm+N+2−ρ
n+1

∞∑

i=0

(μ−i)1/2 ≤ C1εμ
m+N+2−ρ
n+1 .

IIIn+1: By the largeness assumption on ρ we have 3N + 8 − ρ ≤ −1/2.
Therefore IIn+1 and Vn+1 (proven below) imply that

‖ wn+1 ‖2N+6 ≤C1ε and ‖ vn+1 ‖2N+6 ≤C3ε.

IVn+1: Since ρ < m∗ − 6 we have (m∗ −N − 8) +N + 2 − ρ ≥ 1/2.
Therefore Lemma 5.1 and IIn+1 yield

‖ wn+1 − vn+1 ‖m = ‖ (I − Sn+1)wn+1 ‖m

≤ Cmμ
m−(m∗−N−8)
n+1 ‖ wn+1 ‖m∗−N−8
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≤ Cmμ
m−(m∗−N−8)
n+1 C1εμ

(m∗−N−8)+N+2−ρ
n+1

:= C2εμ
m+N+2−ρ
n+1 .

Vn+1: From Lemma 5.1 and ρ < m∗ − 6 we have for all m ≥ 0,

‖vn+1 ‖m = ‖Sn+1wn+1 ‖m

≤ Cm

{
‖wn+1 ‖ρ−N−3 if m+N + 2 − ρ ≤ −1/2,
μm+N+1−ρ

n+1 ‖wn+1 ‖ρ−N−1 if m+N + 2 − ρ ≥ 1/2.

Vn+1 now follows from IIn+1. �

Write en = e
′
n + e

′′
n + e

′′′
n , where

e
′
n = (L(wn) − L(vn))un,

e
′′
n = ε(I − S

′
n)a22(vn)Lθn

(vn)un + εθna
22(vn)∂2

ξ1
n
un

+ ε(a22(vn))−1Φ(vn)[∂2
x1un − ∂x1(log a22(vn)

√
|g|)∂x1un],

e
′′′
n = Qn(wn, un).

Proposition 5.2. If the hypotheses of Proposition 5.1 hold in addition to
n > 0, ρ ≥ 2N + 12, and 0 ≤ m ≤ min(m∗ −N − 10,m∗ −m0) then VIn+1

holds.

Proof. We will estimate e
′
n, e

′′
n and e

′′′
n separately. According to (2.3) we may

write

(L(wn) − L(vn))un = ε
∑

i,j

Aij∂xixjun + ε
∑

i

Ai∂xiun.

Then Lemma 5.2(i) and (iii), In+1, and IVn show that

‖ e′
n ‖m ≤ εCm,1

⎡

⎣

⎛

⎝
∑

i,j

‖ Aij ‖m +
∑

i

‖ Ai ‖m

⎞

⎠ ‖ un ‖4

+

⎛

⎝
∑

i,j

‖ Aij ‖2 +
∑

i

‖ Ai ‖2

⎞

⎠ ‖ un ‖m+2

⎤

⎦

≤ εCm,2(‖ wn − vn ‖m+2‖ un ‖4 + ‖ wn − vn ‖4‖ un ‖m+2)

≤ Cm,3ε
3μm+N+4−ρ

n μN+6−ρ
n

≤ Cm,3ε
3μm−ρ

n .
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Note that we have used ρ ≥ 2N + 10, as well as m ≤ m∗ −N − 10 which
allows us to apply In+1 and IVn.

We now estimate e
′′
n. By Lemma 5.2(i) and (iii), In+1, Vn and VIIIn,

‖ εθna
22(vn)∂2

ξ1
n
un ‖m ≤ εθnCm,4(‖ a22(vn) ‖m‖ ∂2

ξ1
n
un ‖2

+ ‖ a22(vn) ‖2‖ ∂2
ξ1

n
un ‖m)

≤ εθnCm,5[(1 + ‖ vn ‖m+2) ‖ un ‖4

+ (1 + ‖ vn ‖4) ‖ un ‖m+2]

≤ ε2μ3−ρ
n Cm,6[(1+ C3εμ

m+N+4−ρ
n )εμN+4−ρ

n

+ (1 + C3ε)εμm+N+4−ρ
n ]

≤ Cm,7ε
3μm−ρ

n

if μ is large and m+N + 4 − ρ ≥ 1/2. If m+N + 4 − ρ ≤ −1/2 then we
may use the estimate ‖ vn ‖m+2 ≤ C3ε to obtain the same outcome. Another
application of Lemma 5.2 gives

‖ ε(a22(vn))−1Φ(vn)∂2
x1un ‖m ≤ εCm,8[‖ Φ(vn) ‖m (1+ ‖ vn ‖4) ‖ un ‖4

+ ‖ Φ(vn) ‖2 (1+ ‖ vn ‖m+2) ‖ un ‖4

+ ‖ Φ(vn) ‖2 (1+ ‖ vn ‖4) ‖ un ‖m+2]

≤ Cm,9ε
3μm−ρ

n

after noting that m ≤ min(m∗ −N − 10,m∗ −m0) is required for VIIIn to
be valid, and similar methods yield

‖ ε(a22(vn))−1Φ(vn)∂x1(log a22(vn)
√

|g|)∂x1un ‖m ≤ Cm,10ε
3μm−ρ

n .

Moreover, if l = ρ+ 2 ≤ m∗ − 2 and n > 0 then we may apply Lemma 5.1
and recall that μ = ε−

1
2ρ to obtain

‖ ε(I − S
′
n)a22(vn)Lθn

(vn)un ‖m

≤ εCm,11[‖ (I − S
′
n)a22(vn) ‖m‖ fn ‖2 + ‖ (I − S

′
n)a22(vn) ‖2‖ fn ‖2]

≤ εCm,12[μm−l
n (1 + ‖ vn ‖l+2)ε2(1+ μρ−2)μ2−ρ

n

+ μ2−l
n (1+ ‖ vn ‖l+2)ε2(1+ μρ−m)μm−ρ

n ]

≤ Cm,13ε
3μm−ρ

n .

Therefore

‖ e′′
n ‖ ≤Cm,14ε

3μm−ρ
n .
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We now estimate e
′′′
n . We have

e
′′′
n = Qn(wn, un) =

∫ 1

0
(1 − t)

∂2

∂t2
Φ(wn + tun)dt.

Apply Lemma 5.2(i) and (ii), as well as the Sobolev Lemma to obtain

‖ e′′′
n ‖m ≤

∫ 1

0

∑

|α|,|β|≤2

‖ ∇αβΦ(wn + tun)∂αun∂
βun ‖m dt

≤
∫ 1

0
Cm,15(‖ ∇2Φ(wn + tun) ‖2‖ un ‖4‖ un ‖m+2

+ ‖ ∇2Φ(wn + tun) ‖m‖ un ‖2
4) dt,

where α = ∂α(wn + tun) and β = ∂β(wn + tun). The notation ∇2Φ repre-
sents the collection of second partial derivatives with respect to the variables
α and β. Furthermore it is easy to see that |∇2Φ(0)| = O(ε). Therefore using
Lemma 5.2(iii), In+1, and IIn, we have

‖ e′′′
n ‖m ≤ Cm,16[(ε + ‖ wn ‖4 + ‖ un ‖4) ‖ un ‖4‖ un ‖m+2

+ (ε + ‖ wn ‖m+2 + ‖ un ‖m+2) ‖ un ‖2
4]

≤ Cm,17ε
3μm−ρ

n

if ρ ≥ 2N + 12. Combining the estimates of e
′
n, e

′′
n and e

′′′
n yields the desired

result. �

According to the above proposition if ρ+ 1 ≤ m∗ −m0 (in addition to
the other required restrictions) then En ∈ Hρ+1(Ω) and the following esti-
mate holds, which will be utilized in the next proposition:

‖ En ‖ρ+1 ≤
n−1∑

i=0

‖ ei ‖ρ+1 ≤ C4ε
3

n−1∑

i=0

μi

(5.10)

≤ C4ε
3

( ∞∑

i=0

μ−1
i

)
μn ≤ C4ε

3

( ∞∑

i=0

2−i

)
μn.

Proposition 5.3. If the hypotheses of Proposition 5.2 hold and ρ+ 1 ≤
m∗ −m0, then VIIn+1 holds for all 0 ≤ m <∞.
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Proof. By (5.7) as well as Lemma 5.2(i) and (iii),

‖ fn+1 ‖m ≤ ε−1Cm(‖ SnEn − Sn+1En+1 + (Sn − Sn+1)Φ(w0) ‖m

(5.11)

+ ‖ vn+1 ‖m+2‖ SnEn − Sn+1En+1 + (Sn − Sn+1)Φ(w0) ‖2).

Next observe that (2.2) together with (5.14) below yields

(5.12) ‖ Φ(w0) ‖ρ+1 ≤C(ε3 + ‖ w0 ‖ρ+3) ≤ Cε3.

Then (5.10) implies that for all m ≥ ρ+ 1,

‖ SnEn − Sn+1En+1 + (Sn − Sn+1)Φ(w0) ‖m(5.13)

≤ Cm(μm−ρ−1
n ‖ En ‖ρ+1 +μm−ρ−1

n+1 ‖ En+1 ‖ρ+1

+ (μm−ρ−1
n + μm−ρ−1

n+1 ) ‖ Φ(w0) ‖ρ+1)

≤ Cmε
3(1 + μρ−m)μm−ρ

n+1 .

If m < ρ+ 1, then applying similar methods along with VIn+1 to

‖ SnEn − Sn+1En+1 + (Sn − Sn+1)Φ(w0) ‖m

≤‖ (I − Sn)En ‖m + ‖ (I − Sn+1)En ‖m + ‖ Sn+1en ‖m

+ ‖ (I − Sn)Φ(w0) ‖m + ‖ (I − Sn+1)Φ(w0) ‖m,

produces the same estimate found in (5.13). Therefore plugging into (5.11)
produces

‖ fn+1 ‖m ≤ Cm[ε2(1 + μρ−m)μm−ρ
n+1 + ε3(1 + μρ−2)μm+N+6−2ρ

n+1 ]

≤ Cmε
2(1 + μρ−m)μm−ρ

n+1 ,

if m+N + 4 − ρ ≥ 1/2. If m+N + 4 − ρ ≤ −1/2 and m ≥ 2, then using
‖ vn+1 ‖m+2 ≤C3ε in the estimate above gives the desired result. Moreover
if 0 ≤ m < 2, then in place of (5.11) we use the estimate

‖ fn+1 ‖m ≤ ε−1Cm ‖ SnEn − Sn+1En+1 + (Sn − Sn+1)Φ(w0) ‖m

combined with the above method to obtain the desired result. Lastly if
m+N + 4 − ρ = 0, then replace ‖ vn+1 ‖m+2 in (5.11) by ‖ vn+1 ‖m+3 and
follow the above method. �
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Proposition 5.4. If the hypotheses of Proposition 5.3 hold and ρ+ 1 =
min(m∗ −N − 10,m∗ −m0), then VIIIn+1 holds for 0 ≤ m ≤ min(m∗ −
N − 10,m∗ −m0).

Proof. By (5.8) and VIn+1 and m ≤ ρ+ 1, we have

‖ Φ(wn+1) ‖m ≤ ‖ (I − Sn)Φ(w0) ‖m + ‖ (I − Sn)En ‖m + ‖ en ‖m

≤ Cm(μm−ρ−1
n ‖ Φ(w0) ‖ρ+1

+μm−ρ−1
n ‖ En ‖ρ+1 +C4ε

3μm−ρ
n ).

Applying estimate (5.10) along with (5.12) and εμρ−m ≤ ε1/2 produces

‖ Φ(wn+1) ‖m ≤Cmε
3μρ−mμm−ρ

n+1 ≤ 1
3εμ

m−ρ
n+1 ,

if ε is sufficiently small. Lastly a similar estimate may be obtained for
Φ(vn+1) by writing

‖ Φ(vn+1) ‖m ≤ ‖ Φ(wn+1) ‖m + ‖ Φ(vn+1) − Φ(wn+1) ‖m

≤ 1
3εμ

m−ρ
n+1 + ε ‖ vn+1 − wn+1 ‖m+2

≤ (1
3 + C2ε

2)μm+N+4−ρ
n+1 . �

To complete the proof by induction we will now prove the case n = 0.
Here we will assume that the initial data are appropriately small:

(5.14) ‖ φ−� ‖m∗−m0+1,∂Ω + ‖ ψ−
� ‖m∗−m0,∂Ω≤ Cεl, l ≥ 3.

Then according to (5.4), II0, III0, IV0 and V0 are trivial as long as ε is small
enough. Furthermore applying (5.12) and again taking ε to be sufficiently
small yields VII0 and VIII0. In addition by the proof of Proposition 5.1 we
obtain the following stronger version of I1:

‖ u0 ‖m ≤C0ε
2, m ≤ m∗ −N − 8.

Now the proof of Proposition 5.2 may be appropriately modified to show
that VI1 is valid. This completes the proof by induction.

In view of the hypotheses of Propositions 5.1 to 5.4, we will choose

ρ = min(m∗ −N − 10,m∗ −m0) − 1.
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Since ρ ≥ 3N + 9 we must then have

m∗ ≥ max(3N + 16, 3N +m0 + 10).

The following corollary yields a solution of (5.2) with α0 = m∗ −
m0 −N − 6.

Corollary 5.1. If m0 ≥ N + 10 then under the above assumptions wn → w

in H
m∗−m0−N−4
0 (Ω). Furthermore Φ(wn) → 0 in C0(Ω).

Proof. When m0 ≥ N + 10 we have ρ− 1 = m∗ −m0 − 2. Then for m+
N + 2 ≤ ρ− 1 and i > j, In implies that

‖ wi − wj ‖m ≤
i−1∑

n=j

‖ un ‖m ≤ ε
i−1∑

n=j

μm+N+2−ρ
n ≤ ε

i−1∑

n=j

μ−n.

Hence, {wn}∞n=0 is Cauchy in Hm
0 (Ω) for all m ≤ m∗ −m0 −N − 4.

Lastly by the Sobolev Lemma and VIIIn,

|Φ(wn)|C0(Ω) ≤ C ‖ Φ(wn) ‖2 ≤ εμN+6−ρ
n .

The desired conclusion follows since ρ > N + 6. �

5.2. Elliptic regions

Here we shall set up the iteration procedure for problem (5.1). For conve-
nience we will denote the domain Ω+

κ by Ω. Set w0 = 0 and suppose that
functions w1, . . . , wn have been defined on Ω. If Si = Sμi are smoothing
operators given by Lemma 5.1, then we put vi = Siwi, 0 ≤ i ≤ n, and define
wn+1 = wn + un where un is the solution of

(5.15) L(vn)un = fn in Ω, un|∂Ω = 0,

given by Theorem 5.2 below, L(vn) is the operator of Lemma 2.1, and fn

will also be specified below. Let Qn(wn, un) again denote the quadratic error
and L(wn) the linearization of (5.1), then according to (5.3) (with θn = 0)
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we have

Φ(wn+1) = Φ(wn) + L(wn)un +Qn(wn, un)

= Φ(wn) + εS
′
na

22(vn)L(vn)un + en,

with

en = (L(wn) − L(vn))un + ε(I − S
′
n)a22(vn)L(vn)un +Qn(wn, un)

+ ε(a22(vn))−1Φ(vn)[∂2
x1un − ∂x1(log a22(vn)

√
|g|)∂x1un].

Lastly we set E0 = 0, En =
∑n−1

i=0 ei, and define fn according to (5.7).
It is clear that similar arguments as those used for the hyperbolic regions

will show that {wn}∞n=0 converges to a solution of (5.1) if a Moser estimate
(like that found in Theorem 5.1) holds for the solution of (5.15). In order to
establish such an estimate using the theory of Section 3, we need to extend
the coefficients of L(vn) outside of Ω and cut them off. For this purpose we
will use the following extension lemma.

Lemma 5.3 [18]. Let X be a bounded convex domain in R
2, with Lipschitz

smooth boundary. Then there exists a linear operator EX : L2(X) → L2(R2)
such that:

(i) EX(u)|X = u,

(ii) EX : Hm(X) → Hm(R2) continuously for each m ∈ Z≥0.

Theorem 5.2. Suppose that g ∈ Cm∗. If m ≤ 1
3(m∗ − 8), |vn|C6 < 1 and

δ = δ(m), ε = ε(m, δ) are sufficiently small, then there exists a solution un ∈
H

m
0 (Ω) of (5.15) which satisfies the estimate

‖ un ‖m ≤ δ−1Cm

⎛

⎝‖ fn ‖m+2+γ +
∑

i+j+l≤m+23+γ

(1 + ‖ vn ‖i) ‖ vn ‖j‖ fn ‖l

⎞

⎠

for some constant Cm independent of δ and ε and where 2m < γ < m∗ −
m− 6.

Proof. This will follow from Theorem 3.2. However we must first change to
the coordinates ξi

n(x, y) of Lemma 2.1, and then change to polar coordinates
so that

Ω = {(r, θ) | 0 < r < σ, 0 < θ < δ}.
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Set
Ω1 = {(r, θ) | 0 < r < σ + 1, 0 < θ < δ}

and let ϕ = ϕ(r) be a smooth nonnegative cut-off function with ϕ(r) ≡ 1
for 0 < r < σ, and ϕ(r) ≡ 0 for σ + 1 < r. If we cut-off the coefficients of
L(EΩvn) as in (3.1), we may use Theorem 3.2 to solve

L(EΩvn)un = EΩfn in Ω1, un|∂Ω1 = 0,

with

‖ un ‖′
(m,γ),Ω1 ≤Cm(‖ EΩfn ‖′

m+2+γ,Ω1 + ‖ EΩvn ‖′
m+6,Ω1‖ EΩfn ‖′

5+γ,Ω1)

for m ≤ m∗ − 6 where γ > 2m and ‖ · ‖′
indicates that the norm is with

respect to these polar coordinates. By Lemma 5.3

‖ EΩfn ‖′
m+2+γ,Ω1 ≤Cm ‖ fn ‖′

m+2+γ,Ω,

‖ EΩvn ‖′
m+6,Ω1 ≤Cm ‖ vn ‖′

m+6,Ω .

Therefore with the help of (2.4) and Lemma 5.2 it follows that

‖ un ‖m,Ω ≤ δ−1Cm(‖ fn ‖m+2+γ,Ω +
∑

i+j+l≤m+23+γ

(1 + ‖ vn ‖i,Ω) ‖ vn ‖j,Ω‖ fn ‖l,Ω).

The result is now obtained by noting that max(m+ 2 + γ, 5 + γ) ≤ m∗ − 2
is required to apply (2.4). �

We may now apply arguments similar to those in the hyperbolic regions
to obtain a solution of (5.1). More precisely, the proofs of Propositions 5.1
to 5.4 yield the following restrictions on ρ, γ, and m∗ in the elliptic regions:

ρ ≥ 2γ + 54, ρ+ 1 = 1
3(m∗ − 14).

Choosing the largest possible value for γ and noting that the hypothesis of
Theorem 5.2 requires 2m < γ, implies that we must have m ≤ 1

12(m∗ − 185).
The following corollary produces a solution of (5.1) for α0 = 1

12m∗ − 18.

Corollary 5.2. If m∗ ≥ 192 then wn → w in H
1
12

m∗−16

0 (Ω) with

‖ w ‖ 1
12

m∗−16 ≤Cε3.

Furthermore Φ(wn) → 0 in C0(Ω).
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Proof. The same arguments used for Corollary 5.1 apply. Moreover, we use
the analogue of IIn to obtain the estimate for w. �

5.3. Proof of Theorem 1.1

Here we shall construct a solution of (2.1) in a full neighborhood of the ori-
gin. First consider the case in which there are exactly two elliptic regions,
each bordering two hyperbolic regions. Then on each elliptic region Ω+

κ let
w+

κ ∈ H
1
12

m∗−16

0 (Ω+
κ ) be the solution of (5.1) given by Corollary 5.2. On each

boundary of the hyperbolic regions ∂Ω−
� set φ−� = 0, ψ−

� = −∂νw
+
κ(�)|∂Ω+

κ(�)
∈

H
1
12

m∗−18

0 (∂Ωκ(�)) where Ω+
κ(�) is the bordering elliptic region, and note

that (5.14) is valid with m0 = 11
12m∗ + 18. Then Corollary 5.1 yields a solu-

tion w−
� ∈ H

m∗−m0−N−4
0 (Ω−

� ) of (5.2). Under the hypotheses of Corollar-
ies 5.1 and 5.2 we require m∗ ≥ max(192, 3N +m0 + 10) or rather m∗ ≥
36(N + 10).

Suppose that Ω+
κ borders on Ω−

� . Then since the common boundary curve
Υ is noncharacteristic for (2.1) (according to our original choice of approxi-
mate solution z0), the functions w+

κ and w−
� agree along with their deriva-

tives up to and including order 1
12m∗ −N − 24 along Υ. It follows that the

individual solutions {w+
κ }κ0

κ=1 and {w+
� }�0

�=1 combine to form a C
1
12

m∗−N−24

solution of (2.1) on some neighborhood of the origin.
Now consider the general case in which elliptic and hyperbolic regions

are allowed to border regions of the same type. If an elliptic region bor-
ders another elliptic region, they may be combined to form a single ellip-
tic region which contains a single curve of degeneracy on the interior. By
appropriately regularizing the linearized equation in this combined region
to eliminate the interior degeneracy, we may apply the theory of Section 3
to obtain Theorem 5.2, and hence a solution of (5.1) in this combined
region. Therefore, we may assume that each elliptic region is bordered by
hyperbolic regions (unless no hyperbolic regions are present). On the other
hand, if two hyperbolic regions share a common boundary, for instance
Ω−

1 and Ω−
3 , then Cauchy data may be prescribed appropriately on the

portion of ∂Ω−
1 which is shared with ∂Ω−

3 , so that the solution on both
regions may be glued together. Moreover, Cauchy data may be arbitrar-
ily prescribed on the portion of ∂Ω−

3 emanating from the origin and which
is not shared with ∂Ω−

1 . It follows that in the general case, the solutions
of the elliptic and hyperbolic regions may be patched together in the
usual way.
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6. Appendix A

The purpose of this appendix is to show existence for the ODE occurring in
the proof of Theorem 3.1:

m∑

s=0

λ−s(−1)s∂s
r(aλ,γ−2(s−1)∂

s
rζ) = v,(A.1)

ζ(r, 0) = ζ(r, δ) = 0, ∂s
rζ(σ, θ) = 0, 0 ≤ s ≤ m− 1,∫

r=r0

(∂s
r∂

l
θζ)

2 ≤ rγ−2s
0 C, 0 ≤ s ≤ 2m− 1, 0 ≤ l <∞,

where v ∈ Ĉ∞(Ω), ζ ∈ H(m,∞,γ+2)(Ω) ∩ C∞(Ω), r0 is sufficiently small, and
all other definitions/notation may be found in Section 3.

First note that η �→ (η, (λθ2 − 1)−1v) is a bounded linear functional on
H(m,0,γ+2)(Ω), and thus by the Riesz representation theorem there exists a
unique ζ ∈ H(m,0,γ+2)(Ω) such that

(η, ζ)(m,0,γ+2) = (η, (λθ2 − 1)−1v) all η ∈ H(m,0,γ+2)(Ω),

where (·, ·)(m,0,γ+2) denotes the inner product on H(m,0,γ+2)(Ω). It follows
that ζ is a weak solution of (A.1), and according to the basic regularity
theory for ODEs we have ζ ∈ C∞(Ω). Furthermore, the desired boundary
behavior of the solution at θ = 0, δ arises from the requirement that v(r, 0) =
v(r, δ) = 0, and the vanishing at r = σ is a result of the trace theorem
for Sobolev spaces.

Lastly we observe that since v vanishes in a neighborhood of r = 0, the
solution ζ satisfies a version of the so-called Euler differential equation in
this domain. All solutions of this equation may be written down explicitly.
In particular, for r sufficiently small ζ must be a linear combination of
2m functions of the form: rα(log r)β where α ∈ C and β ∈ Z≥0. However
according to Lemma 3.1
(A.2)∫

r=r0

(∂s
r∂

l
θζ)

2 ≤ rγ−2s
0 C ‖ ζ ‖2

(m,l+1,γ+2), s ≤ m− 1, 0 ≤ l <∞.

Therefore each term in the linear combination must satisfy

(A.3) rα(log r)β = O(rγ/2) as r → 0.

The desired boundary behavior at r = 0 now follows from (A.2) and (A.3).
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7. Appendix B

The purpose of this section is to construct the smoothing operators Sμ of
Lemma 5.1. The construction will differ from the standard one for S

′
μ (see

[16]), in that the smoothed functions are required to vanish identically at
the origin. This, of course, is only possible if the function being smoothed
already vanishes in an appropriate sense at the origin.

We first construct smoothing operators on the plane, and will later
restrict them back to the bounded domain Ω. Fix χ̂ ∈ C∞

c (R2) such that
χ̂ ≡ 1 on some neighborhood of the origin, and let

χ(x) =
∫

R2

e2πiξ·xχ̂(ξ) dξ

be its inverse Fourier Transform. Then χ is a Schwartz function and satisfies

∫

R2

χ(x) dx = 1,
∫

R2

xαχ(x) dx = 0, |α| > 0.

Furthermore, let η ∈ C∞(R2) be a radial function vanishing to all orders at
the origin, and satisfying

η(x) =

{
1 if |x| > 1,
0 if |x| < 1

2 .

For μ ≥ 1 we will write ημ(x) = η(μx), χμ(x) = μ2χ(μx) and define smooth-
ing operators Sμ : L2(R2) → H

∞
0 (R2) by

(Sμu)(x) = ημ(x)(χμ ∗ u)(x) = μ2η(μx)
∫

R2

χ(μ(x− y))u(y) dy.

Here the space H l
0(R

2) is the completion of C∞
c (R2) in the Sobolev norm

‖ · ‖l, where C∞
c (R2) denotes all C∞

c (R2) functions vanishing in a neighbor-
hood of the origin.

We now proceed to show statements (i) to (iii) of Lemma 5.1 with respect
to Sμ. Note that it is sufficient to prove these for u ∈ C

∞
c (R2) as this space
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of functions is dense in H l
0(R

2). We begin with (ii). Let

u(y) =
∑

|α|<|ρ|

1
|α|!∂

αu(x)(y − x)α +
1

(|ρ| − 1)!

×
∑

|α|=|ρ|
(y − x)α

∫ 1

0
(1 − t)|ρ|−1∂αu(x+ t(y − x)) dt

be a Taylor expansion of u with integral remainder. Then according to the
properties of χ,

(χμ ∗ u)(x) =u(x) +
μ2

(|ρ| − 1)!

∑

|α|=|ρ|

∫

R2

∫ 1

0
χ(μ(y − x))(B.1)

× (1 − t)|ρ|−1(y − x)α∂αu(x+ t(y − x)) dt dy.

Suppose that l ≤ |σ| ≤ m, and notice that

‖ ∂σSμu ‖≤
∑

β+γ=σ

‖ ∂βημ∂
γ(χμ ∗ u) ‖ .

If |ρ| = l − |γ| > 0 we may apply (B.1) to find

‖ ∂βημ∂
γ(χμ ∗ u) ‖2 = μ2|β|

∫

R2

(∂βη)2(μx)(χμ ∗ ∂γu)2(x)dx

≤ C1μ
2|β|
∫

R2

(∂βη)2(μx)(∂γu)2(x)dx

+ C2μ
2(|β|+|γ|−l) ‖ u ‖2

l .

Under the current assumptions |β| �= 0 which implies that supp ∂βημ ⊂
{|x| < μ−1}, so applying the Taylor expansion of ∂γu at x = 0 with |ρ| =
l − |γ| and recalling that u vanishes to all orders at the origin, yields
(B.2)∫

R2

(∂βη)2(μx)(∂γu)2(x) dx ≤ C3

∫

Bμ−1 (0)
(∂γu)2(x) dx ≤ C4μ

2(|γ|−l) ‖ u ‖2
l .

Moreover the case |γ| ≥ l may be treated by Young’s inequality:

‖ ∂βημ∂
γ(χμ ∗ u) ‖2 ≤ C5μ

2(|β|+|γ|−|τ |)
∫

R2

(∂γ−τχμ ∗ ∂τu)2(x)dx

≤ C6μ
2(m−l) ‖ u ‖2

l ,
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where |τ | = l. Therefore (ii) follows once (i) is established, and (i) is estab-
lished by similar arguments which will be omitted here.

We now show (iii). Let |α| = m ≤ l and observe that

‖ ∂α(u− Sμu) ‖ ≤ ‖ ∂α[(1 − ημ)u] ‖ + ‖ ∂α[ημ(u− χμ ∗ u)] ‖
≤

∑

β+γ=α

(‖ ∂β(1 − ημ)∂γu ‖ + ‖ ∂βημ∂
γ(u− χμ ∗ u) ‖).

According to the standard construction [17],

‖ ∂βημ∂
γ(u− χμ ∗ u) ‖ ≤ C7μ

|β| ‖ u− χμ ∗ u ‖|γ|
≤ C8μ

|β|μ|γ|−l ‖ u ‖l

= C8μ
m−l ‖ u ‖l .

Furthermore since supp ∂β(1 − ημ) ⊂ {|x| < μ−1} we may apply the same
methods used to establish (B.2) to obtain

‖ ∂β(1 − ημ)∂γu ‖ ≤ C9μ
m−l ‖ u ‖l .

It follows that (iii) holds.
The desired smoothing operators on Ω may be obtained from Sμ in the

following way. If Ω is a bounded convex Lipschitz domain, then Lemma 5.3
yields an extension operator E : Hm(Ω) → Hm(R2). We then define smooth-
ing operators Sμ : L2(Ω) → H

∞
0 (Ω) by Sμu = (SμEu)|Ω. As E is bounded,

it is clear that Lemma 5.1 will also hold for Sμ.
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