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Deformations of Axially Symmetric Initial
Data and the Mass-Angular Momentum
Inequality

Ye Sle Cha and Marcus A. Khuri

Abstract. We show how to reduce the general formulation of the mass-
angular momentum inequality, for axisymmetric initial data of the Ein-
stein equations, to the known maximal case whenever a geometrically
motivated system of equations admits a solution. This procedure is based
on a certain deformation of the initial data which preserves the rele-
vant geometry, while achieving the maximal condition and its implied
inequality (in a weak sense) for the scalar curvature; this answers a ques-
tion posed by R. Schoen. The primary equation involved, bears a strong
resemblance to the Jang-type equations studied in the context of the
positive mass theorem and the Penrose inequality. Each equation in the
system is analyzed in detail individually, and it is shown that appropriate
existence/uniqueness results hold with the solution satisfying desired as-
ymptotics. Lastly, it is shown that the same reduction argument applies
to the basic inequality yielding a lower bound for the area of black holes
in terms of mass and angular momentum.

1. Introduction

The standard picture of gravitational collapse [4,7] asserts that generically,
an asymptotically flat spacetime should eventually settle down to a stationary
final state, consisting of (possibly multiple) disconnected black hole space-
times. The black hole uniqueness theorem implies that, in vacuum, each of
these solutions must be the Kerr spacetime; note that there are still impor-
tant unresolved technical aspects associated with this uniqueness result [6]. It
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is also conceivable that these black holes are coupled to matter fields. In any
event, as in Kerr, the following inequality holds between mass and angular mo-
mentum my > /| Jy| for each of the connected components of the final state,
and hence for the final state itself. Moreover, as gravitational radiation carries
positive energy, the mass of any initial state should not be smaller than that
of the final state m > my. If auxiliary conditions are imposed, one of which
usually includes axisymmetry, in order to ensure the conservation of angular
momentum, then J = Jy where J,J; denote the (ADM) angular momen-
tums of the initial and final state. This leads to the mass-angular momentum
inequality [11]

m > +/|J] (1.1)

for any initial state. A counterexample to (1.1) would pose a serious challenge
to this standard picture of collapse, whereas a verification of (1.1) would only
lend credence to this model.

Consider an initial data set (M, g, k) for the Einstein equations. This
consists of a 3-manifold M, Riemannian metric g, and symmetric 2-tensor k
representing the extrinsic curvature (second fundamental form) of the embed-
ding into spacetime, which satisfy the constraint equations

167 = R+ (Trgk)” — |K|2,

8nJ =divy(k — (Trgk)g). (12)

Here p and J are the energy and momentum densities of the matter fields,
respectively, and R is the scalar curvature of g. The following inequality will
be referred to as the dominant energy condition

> |l (13)

Suppose that M has at least two ends, with one designated end being asymp-
totically flat, and the remainder being either asymptotically flat or asymp-
totically cylindrical. Recall that a domain My,q C M is an asymptotically
flat end if it is diffeomorphic to R3\Ball, and in the coordinates given by the
asymptotic diffeomorphism the following fall-off conditions hold

gij = 0ij + o), 0gij € L*(Mena), iy = O1a(r™), A> g, (1.4)
for some [ > 6.! In the context of the mass-angular momentum inequality,
these asymptotics may be weakened, see for example [21]. The asymptotics for
cylindrical ends is most easily described in Brill coordinates, to be given in the
next section.

We say that the initial data are axially symmetric if the group of isome-
tries of the Riemannian manifold (M, g) has a subgroup isomorphic to U(1),
and that the remaining quantities defining the initial data are invariant under

I The notation f = o;(r~%) asserts that lim, oo 729" f = 0 for alln < I, and f = O;(r—?)
asserts that r@t7|9" f| < C for all n < I. The assumption [ > 6 is needed for the results
in [5].
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the U(1) action. In particular, if  denotes the Killing field associated with
this symmetry, then

Lng =L,k =0, (1.5)
where £,, denotes Lie differentiation. If M is simply connected and the data
are axially symmetric, it is shown in [5] that the analysis reduces to the study
of manifolds diffeomorphic to R minus a finite number of points. Each point
represents a black hole, and has the geometry of an asymptotically flat or
cylindrical end. The fall-off conditions in the designated asymptotically flat
end guarantee that the ADM mass and angular momentum are well defined
by the following limits

1 .
_ i
m = ].67T /(gz],, gu,j)’/ ) (16)
Seo
1 i
J = 3 (kij — (Trgk)gij)v'n’, (1.7)
Soo

where S, indicates the limit as r — oo of integrals over coordinate spheres
Sy, with unit outer normal v. Note that (1.4) implies that the ADM linear
momentum vanishes.

Angular momentum is conserved [14] if

Jin' = 0. (1.8)

Moreover, when M is simply connected, this is a necessary and sufficient con-
dition [14] for the existence of a twist potential w:

2€ij1(K7" — (Trgk)g?™))n'n,dr’ = dw (1.9)

where €;;; is the volume form for g.

In [10] Dain has confirmed (1.1) under the hypotheses that the initial data
have two ends, are maximal (Tryk = 0), vacuum (¢ = |J|, = 0), and admit
a global Brill coordinate system. He also established the rigidity statement,
which asserts that equality occurs in (1.1) if and only if the initial data arise
as the t = 0 slice of the extreme Kerr spacetime. Chrusciel, Li, and Weinstein
[5,8] improved these results by showing that global Brill coordinates exist
under general conditions, and by replacing the vacuum assumption with the
hypotheses that p > 0 and a twist potential exists; they also studied the case
of multiple black holes. Later Schoen and Zhou [21] gave a simplified proof
for more general asymptotics, still assuming the maximal condition, and Zhou
[23] treated the near maximal case. It should be noted that such results are
false without the assumption of axial symmetry [18].

The focus of this paper is on the general case without the maximal or
near maximal hypothesis. We will exhibit a reduction argument by which the
general case is reduced to the maximal case, assuming that a canonical system
of elliptic PDEs possesses a solution. The procedure is motivated by, and bears
a resemblance to, previous reduction arguments that have been applied to
other geometric inequalities such as the positive mass theorem and the Penrose
inequality [1,2,15,19,20,22]. Moreover, the primary equation is related to the
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Jang-type equations that appear in each of these procedures. The end result
yields a natural deformation of the initial data, in which the geometry relevant
to the mass-angular momentum inequality is preserved, while achieving the
maximal condition. In particular, this answers a question posed by R. Schoen
[23]:

Question 1.1. Is there a canonical way to deform a mon-mazimal, azisymmet-
ric, vacuum data to a unique maximal, vacuum data with the same physical
quantities, i.e. the mass and angular momentum, which also preserves the azial
symmetry?

This paper is organized as follows: In the next section we describe the
deformation in detail, while in Sect. 3 the reduction argument is established
and the case of equality is treated. In Sect. 4 we give an initial analysis of the
canonical system of PDEs, and finally four appendices are added to include
several important but lengthy calculations.

2. Deformation of Initial Data

In this section we will describe the deformation procedure which leads to the
reduction argument for the mass-angular momentum inequality. It will be as-
sumed that (M, g, k) is a simply connected, axially symmetric initial data set
with multiple ends as described in the previous section. Simple connectedness
and axial symmetry imply [5] that M = R3\ 27]:[:1 in, Where 7,, are points in
R? and represent asymptotic ends (in total there are N + 1 ends). Moreover
there exists a global (cylindrical) Brill coordinate system (p, ¢, z) on M, where
the points 4, all lie on the z-axis, and in which the Killing field is given by
1 = 0y. In these coordinates the metric takes a simple form

g =e U2 (dp? + dz?) + p?e 2V (do + A,dp + A.dz)?, (2.1)

where pe~Y (d¢+ A,dp+ A.dz) is the dual 1-form to [n|~'n and all coefficient
functions are independent of ¢. Let Mgnd denote the end associated with limit

r = y/p?+ 22 — oo. The asymptotically flat fall-off conditions (1.4) will be
satisfied if

U=o0_3(r"7), a=o0_4(r"2), A, A, =o_3(r"2). (2.2)

The remaining ends associated with the points ¢,, will be denoted by M2 ;,
and are associated with the limit r,, — 0, where r,, is the Euclidean distance
to i,,. The asymptotics for asymptotically flat and cylindrical ends are given,
respectively, by

1 1 3

U=2logr,+o0-4(r3), a=o0_4(r3), ApA.=o0-3(r2), (2.3)
1 1 3

U=logr, +o-_4(ri), a=o-4(r3), Ay A.=o0_3(r7). (2.4)

It will also be assumed that the dominant energy condition (1.3) is sat-
isfied, and that
divgk(n) =0, (2.5)
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which is equivalent to (1.8). Equation (2.5) gives rise to a twist potential w
(1.9) that is constant on each connected component of the axis of rotation.
Let I,, denote the interval of the z-axis between 4,41 and i, where ig = —o0
and iyy1 = 00. Then a standard formula (see Appendix D) yields the angular
momentum for each black hole

1

T = 5lr, —wlr,_,). (26)

According to (1.7) and (2.5), the total angular momentum is given by
N
T=> Tn (2.7)
n=1

We seek a deformation of the initial data (M, g, k) — (M, g, k) such that
the manifolds are diffeomorphic M 2 M, the geometry of the ends is preserved,
and

m=m, J=J, Trgk=0, R>|k|> weakly, (2.8)

where 7, 7, and R are the mass, angular momentum, and scalar curvature of
the new data. The inequality in (2.8) is said to hold ‘weakly’ if it is valid when
integrated against an appropriate test function. The validity of this inequality
plays a central role in the proof of the mass-angular momentum inequality in
the maximal case, and it is precisely the lack of this inequality in the non-
maximal case which prevents the proof from generalizing. Thus, the primary
goal of the deformation is to obtain such a lower bound for the scalar curvature,
while preserving all other aspects of the geometry.

With intuition from previous work [1,2,22] we search for the deformation
in the form of a graph inside a stationary 4-manifold

M= {t = f(x)} C (M xR, g+ 2Y;dz'dt + pdt?), (2.9)

where the 1-form Y = Y;dz’ and functions ¢ and f are defined on M and
satisfy

Enf=Lpp=5LY =0 (2.10)
Define

_ — 1 — _
9ij = 9ij + JiY; + [iYi+ ofifi, kij = o (V:Y; +V,Y3), (2.11)
where f; = 0;f,V is the Levi-Civita connection with respect to g, and
uw’=p+|Y2 (2.12)

In the ‘Riemannian’ setting (2.9), g arises as the induced metric on the graph

M. However in the ‘Lorentzian’ setting
M ={t= f(z)} C (M xR, g — 2Y;dx'dt — @dt?), (2.13)

the deformed data arise as the induced metric and second fundamental form
of the t = 0 slice. Notice that

Oy =un-Y, (2.14)



846 Y. S. Cha and M. A. Khuri Ann. Henri Poincaré

where n is the unit normal to the ¢ = 0 slice and Y is the vector field dual
to Y with respect to g. Thus (u,—Y) comprise the lapse and shift of this
stationary spacetime. Based on the structure of the Kerr spacetime, we make

the following simplifying assumption that Y has only one component
Yiai = 71.].}/]‘61' = Y¢8¢ (215)

Lemma 2.1. Under the hypothesis (2.15), g is a Riemannian metric, Trgk = 0,
and ¢ = u? — gup(Y?)2. Moreover if {e;}3_, is an orthonormal frame for g
with e3 = |n|~1n, then

k(ei,e;) = k(es,e3) =0, k(e es) = %ei(yd))v i,J # 3. (2.16)

Lastly
(1+ a2V F2) (1 — a2V ) = 1, (2.17)

where V' f = g f; and vif =9 f;.

Proof. From (2.10) it follows that G5 = gpe, and so |Y|2 = gy (Y ?)?. This
yields the formula for ¢. Next observe that

uT@E:ﬁiYi
— 9y —T, Y7
1
= — [ ——=0,1/detg | Y?
(Vdetg Ve g>
=0, (2.18)

where fi»j are Christoffel symbols.
We now show that § is Riemannian. Equations (2.10) and (2.15) imply
that

Yo =0psY? Yi=09,;Y7 =G,V = (gio+ [iYs)Y? = (gis + figssY *)Y?.
(2.19)

Inserting this into (2.11) produces
Gi; = 9ij + (Figjo + [i9i6)Y? + (0® + g (Y )V fi ;. (2.20)

Take a g-orthonormal frame (dy,ds,ds = |n|~'n) at a point, and express g as
a matrix with respect to this frame

L+ (W2 + g0 (Y2 (0 + 956 (YO)2) fife  /TeaY?fi

L+ (U + 990 (YO)2) 5 JGaaYfa | (2:21)
1

Qf
Il

The determinant of the lower 2 x 2 minor is 1 +u?f7 > 0, and the full deter-
minant is given by

detg = (1 +u?|Vf|2)det g > 0. (2.22)
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It follows that g is positive definite. Observe also that an analogous computa-
tion in the Lorentzian setting produces

detg=(1— uﬂﬁf%} detg. (2.23)

Equations (2.22) and (2.23) together yield (2.17).
In order to establish (2.16), observe that

2uki; = VY, + V,;Y; = 0;Y; + 0;Y; — 2T, Y,, (2.24)
and
0;Y; = 0i(Ty;Y?) = (0:G4;)Y + Ty 0:Y 7, (2.25)
2T, = 9 (01 + 0,90 — 0173))Ya
= (0:G;4 + 0;7:5)Y?. (2.26)
Therefore
2ukij = G0 Y + 74,0 ?. (2.27)

Clearly k(e3,e3) = 0, and if we express e;,i = 1,2 in coordinates (3.4),
then for i,5 =1,2

2uk(e;, e5) = 2ue® (ki — Aikjg — Ajkig + AiAjFgy)
= UG 0,V 4+ Gy, 0Y? — AGyp Y0 — AjG,50;Y )
=0, (2.28)
since g,; = Aigy, from (3.1). Also

- g
2uk(e;, e3) = ﬁei(Y‘b) = |n\ei(Y¢). (2.29)
O

This lemma shows that the deformed data set is maximal, satisfying
one requirement of (2.8). Furthermore, it shows that ¢ is determined by the
functions v and Y'?. Thus, the three functions (u, Y, f) completely determine
the new data, and will be chosen to satisfy the remaining statements in (2.8),
so as to yield a reduction argument for the mass-angular momentum inequality.

The next task is to show how to choose the three functions (u, Y%, f). In
order to apply the techniques from the maximal case, the existence of a twist
potential for (M, g, k) is needed. Therefore we require

divgk(n) = 0. (2.30)
This turns out to be a linear elliptic equation for Y¢ (if u is independent of
Y?), as is shown in the appendix. As discussed in Sect. 4, the function Y
is uniquely determined among bounded solutions of (2.30), if the r~3-fall-off

rate is prescribed at Mgnd. In particular, we will choose the following boundary
condition

2J

¢ Y
Y? = .3

+ 02(7"*%) as r — oo. (2.31)

Lemma 2.2. Ifg is asymptotically flat and w — 1 asr — oo, then the boundary
condition (2.31) guarantees that J = J.
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2

Proof. Observe that since ggg ~ 7 sin? @ as r — oo, where p = rsinf and

z = rcos@, we have

j: lim L/E(a(b,ar)

r—o0 37T
Sy

T 27

= lim i//g¢¢ary¢r2 sin Od¢dd
00

T—00 167T

_3J / sin® 6d6
4
0

=J. (2.32)

O

Let us now show how to choose f. As with previous deformations arising
from the positive mass theorem and Penrose inequality, f is chosen to impart
positivity properties to the scalar curvature. With this in mind, it is instruc-
tive to calculate the scalar curvature for an arbitrary f. The following result

requires a long and detailed computation, and is therefore relegated to the
appendix.

Theorem 2.3. Suppose that (1.5), (2.5), (2.10), (2.15), and (2.30) are satisfied,
then the scalar curvature of g is given by

R— |E|§ =16m(p — J(v)) + |k — 7r|§ + 2u~ M divg (uQ)
+ (Trym)? — (Tryk)? + 2v(Trym — Tryk), (2.33)

where .
uViif +uify + uifi + 2 (9i0Y S + g6V

1+ u?| V2

is the second fundamental form of the graph M in the Lorentzian setting,

) i i i -1y
i uwft i ufHuY (2.35)

NI NI
and

Qi = V'V f —ugh fikij +w? (k — )i + ufow'w! (k — )y, /1+ w2V FI2.
(2.36)

Furthermore, if Y = 0 then the same conclusion holds without any of the listed
hypotheses.

(2.34)

Tij =

This theorem, together with the dominant energy condition (1.3), make
it clear that in order to obtain the inequality R > |k|% at least weakly, f should
be chosen to solve the equation

Try(n — k) = 0. (2.37)
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It follows that
R— k|2 = 167(n — J(v)) + |k — 7|2 4 2u " divg(uQ), (2.38)

which yields the inequality in (2.8) after multiplying by u and applying the
divergence theorem; it is assumed that appropriate asymptotic conditions are
imposed (see below) in order to ensure that the boundary integrals vanish in
each of the ends. Equation (2.37) is similar to previous Jang-type equations
that have been used in connection with deformations of initial data, in partic-
ular for the positive mass theorem [22] and the Penrose inequality [2]. These
previous equations have the form

Trg(r — k) =0, (2.39)

where it is assumed that u = 1 and Y = 0 [22], and Y = 0 [2]. Note that (2.39)
does not reduce to (2.37) even in the setting of [22] or [2]. This suggests that
there is a significant difference between these two equations. In fact, solutions
of (2.37) do not blow up, while solutions of (2.39) typically blow up at apparent
horizons or can be prescribed to blow up at these surfaces [16]. This separate
behavior arises from the fact that the trace in (2.37) is taken with respect to g,
whereas the trace in (2.39) is taken with respect to g. As a result, the analysis
of (2.37) is much more simple than that of (2.39). Lastly, in order to ensure
that m = m, we will impose the following asymptotics

|f| + 7|V flg +7r2|V2fly <er™® in M2, (2.40)

for some 0 < ¢ < 1. A bounded solution may be obtained by prescribing the
following asymptotics at the remaining ends

iV Ely + 102 V2fl, < ¢ in asymptotically flat M (2.41)

end>
1
IVfly +|V3fly < cri  in asymptotically cylindrical M2 . (2.42)

At this point we have shown how to choose f and Y, in order to produce
a deformation of the initial data which satisfies (2.8). It remains to choose u, in
such a way as to facilitate a proof of the mass-angular momentum inequality.
This shall be accomplished in the next section.

3. The Reduction Argument and Case of Equality

Here we shall follow the maximal case proof of the mass-angular momentum
inequality, within the setting of the deformed initial data (M,g, k). The pri-
mary stumbling block is a lack of the pointwise scalar curvature inequality as
appearing in (2.8). However a judicious choice of u will overcome this difficulty.

Assuming that the functions (u, Y, f) are chosen to possess the appropri-
ate asymptotics, the geometry of the ends will be preserved in the deformation.
Since the deformed data are also simply connected and axially symmetric, the
results of [5] apply to yield a global Brill coordinate system (p, ¢, %) such that

— 202452 4 dz2) 4 p2e 27 (dg + Axdp + Axdz)>. (3.1)

Q|
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Next, recall that (2.30) implies the existence of a twist potential @. An impor-
tant property of the Brill coordinates is that they yield a simple formula for
the mass [3,10]

m— M(U,w)
1 - & 2,21 —
= 3o (2@ 2U+2ap R+ ple 2@ (Ap,?_Az,ﬁ)Q _g¢i|%|2) dr,  (3.2)
R3
where |0w| and dz denote the Euclidean norm and volume element, and

_ 1 _ L .
MT, D) = 327/(4|8U|2—|—g¢i|8w\2> dz. (3.3)

R3

Let

T = 1
e5 =€V N(05 — AzDy), ez = eV (0: — Az0y),

€p = ———
V9o

be an orthonormal frame. Then according to (1.9) and g, = g¢e,

s, (3.4)

1 eU @ 1 eU—a

kleg,eg) = ———=ex(0) = ———0:0, k(ez, ey) = e5(@) = —— 0,.
o) 2|n|2 2946 (s €0 2[n|2"° ) 2969
(3.5)
In light of Lemma 2.1 it follows that
B B B o2U—2
[klZ = 2(k(ep, e4)” + k(ez,e4)%) = |ow?, (3.6)
295,
and hence with the help of Theorem 2.3 and the dominant energy condition
— 1
m — o) > 2 72U+2a k
M- MT,3) > o [ 2e T R 2
R3
1 672ﬁ+2a
> & ——divg(uQ)dx
R3
> 1/eUdi 7(u@)dxg (3.7)
“8r) wu Vo o '
where the volume element for g is given by dzy; = e 3U+20 g
Inequality (3.7) suggests that we choose
u=el=-L_ =L (3.8)

V9ss VYoo

If g preserves the asymptotic geometry of g, then based on (2.2), (2.3), (2.4)

u = 1+ol_3(7"7%) as r — oo in M2 4, (3.9)
uw=r12+ 01_4(7’2) as r, — 0 in asymptotically flat M7 4, (3.10)
3
2

u =1y +0_4(r3) asr, — 0in asymptotically cylindrical M7 4, (3.11)



Vol. 16 (2015)  Deformations of Axially Symmetric Initial Data 851

where 7, is the Euclidean distance to the point 4,, defining the end. Therefore,
with the help of the asymptotics for f (2.40), (2.41) and Y (2.31), as well as
the assumption

[klg + [E(D: )lg + k(9p,05)] < ¢ on M, (3.12)

the asymptotic boundary integrals arising from the right-hand side of (3.7) all
vanish as long as J = J. This is proven in Appendix C. It follows that

m > M(U,w). (3.13)

Theorem 3.1. Let (M, g,k) be a smooth, simply connected, axially symmetric
initial data set satisfying the dominant energy condition (1.3) and conditions
(1.8), (3.12), and with two ends, one designated asymptotically flat and the
other either asymptotically flat or asymptotically cylindrical. If the system of
equations (2.30), (2.37), (3.8) admits a smooth solution (u,Y?, f) satisfying
the asymptotics (2.31), (2.40), (2.41), (3.9)—(3.11), then

m > +/|J]| (3.14)

and equality holds if and only if (M, g,k) arises from an embedding into the
extreme Kerr spacetime.

Proof. The existence of a solution (u,Y?, f) ensures that we may apply the
maximal case proof to the deformed initial data (M,g, k) as above, arriving
at the inequality (3.13). The results of [8,10,21] then imply that

MT,z) = /17, (3.15)

Moreover, according to (2.8) m = m and J = J, and hence (3.13) yields the
desired inequality (3.14).

Consider now the case of equality in (3.14). In the process of deriving
(3.13), several positive terms were left out from the right-hand side. These
terms arise from (2.33) and (3.2). In the current situation, they must all vanish

= T(0)] = k= 7lg = [Apz — Azl = 0. (3.16)

Furthermore, in light of the dominant energy condition, the fact that |v|, < 1,
and the identity

p—J) = (u— |J|g) +(1— |U|g>|J|g + (|J|g|v|g - J(v)), (3.17)
it follows that
p=1|Jl, = 0. (3.18)

~ We claim that (M, g, k) is now a vacuum initial data set. By Lemma 2.1
Trgk = 0, so that the momentum density is given by

8 J = divgk. (3.19)



852 Y. S. Cha and M. A. Khuri Ann. Henri Poincaré

Let {e;}?_, denote the orthonormal basis (3.4) with e3 = e, then

Assume now that i # 3, then by Lemma 2.1

Ze] (es,€)) =0 (3.21)

and
2

(divgﬁ)(ei) = —Z<§ej€i,€3>g(€3,€j)

j*l

—Z Ves€is€a)k(eq,e3) — Z(ﬁejej,egﬁ(ei,eg). (3.22)

Jj=1

w

The last sum is zero since Jy is a Killing field. Moreover
<§e3ei76a> = 7<6i7§€36(1.> = 7<eiaﬁea€3> = <vea€i763>a (323)

since
(04, €a] = Lo, eq = 0. (3.24)

Thus, we need only show that the first sum in (3.22) vanishes. To accomplish
this, observe that

<§ej €;, €3> = —<ﬁei6j, €3> (325)
as Oy is Killing. Furthermore a direct computation shows that
(lep e], ea) = [nle*” > (Apz — Az ) = 0, (3.26)
where (3.16) was used. Therefore
(Wej €, €3> = <ﬁeiej7 63>7 (327)

and it follows that the first sum in (3.22) vanishes. Hence J = 0.
Consider now the energy density

1677t = R+ (Trgk)® — [k|2 = R — |k[2. (3.28)
A lengthy computation (7.11) in Appendix A shows that
—[R[2 = —2(divyB) (W f) + 167 (s — J(0)) + [K[2 — |f? + 2(divyk)(v)
—2(divgm)(v), (3.29)

when Eq. (2.37) is satisfied. However

, J =0 and (3.16) imply that the right-
hand side vanishes. Thus 7z = 0, and (M, 7,

0a
k) is a vacuum initial data set.
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Next, since m = J we may now apply the results of [10] and [21] to
conclude that (M,g,k) is isometric to the t = 0 slice (R® — {0}, 9rx, kEK)
of the extreme Kerr spacetime EK*. Consider the map M — EK* given by
2 — (z, f(x)). The induced metric on the graph is given by

(98K)i; — [i(Ye); — [i(Yer)i — (upk — Yek|], ) fifi, (3.30)

where

1
(keK)ij = Ymn (VP (Yer); + ViR (Yek)i) , (3.31)

and (upk, —YgK) are the lapse and shift. If 04 denotes the spacelike Killing
field in this spacetime, then ggK(YEK)jai = YI?K&;) and YgK satisfies Eq.
(2.30) with g replaced by ggk, as well as boundary condition (2.31). Since there
is a unique solution to (2.30), (2.31), and § & grk, we have that Y = Ygg.
Moreover it is a direct calculation to find that uprx = V5 = eV = u, where
Ugk arises from the Brill coordinate expression for ggx. It now follows from
(2.11) and (2.12) that g agrees with the induced metric (3.30). Furthermore,
from (3.16) m = k, showing that the second fundamental form of the embedding
(M, g) — EK* is given by k. Therefore the initial data (M, g, k) arise from the
extreme Kerr spacetime.

Lastly, if (M, g, k) arises from extreme Kerr, then by the properties of
this spacetime, equality in (3.14) holds. O

Theorem 3.1 reduces the proof of the mass-angular momentum inequality,
in the general non-maximal case, to the existence of a solution (u,Y¢, f) to
the system of Egs. (2.30), (2.37), and (3.8). Notice that this is in fact a coupled
system, as the definition of u depends on g. The first task, which is addressed in
the next section, is to analyze the given asymptotic boundary value problems
associated with each Eq. (2.30) and (2.37). Before doing so, however, we record
the reduction statement for multiple black holes. Let

F(Js-- 5 IN) (3.32)

denote the numerical value of the action functional (3.3) evaluated at the
harmonic map, from R3 — {5 = 0} to the two-dimensional hyperbolic space,
constructed in Proposition 2.1 of [8]. Whether the square of this value agrees
with

N
T=> Tn (3.33)
n=1

is an important open problem. The proof of the following theorem is analogous
to that of Theorem 3.1.

Theorem 3.2. Let (M, g,k) be a smooth, simply connected, axially symmetric
initial data set satisfying the dominant energy condition (1.3) and condition
(1.8), and with N + 1 ends, one designated asymptotically flat and the others
either asymptotically flat or asymptotically cylindrical. If the system of equa-
tions (2.30), (2.37), (3.8) admits a smooth solution (u,Y?, f) satisfying the
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asymptotics (2.31), (2.40), (2.41), (3.9)—(3.11), then

m>F(,. .., In). (3.34)

4. A Lower Bound for Area in Terms Mass and Angular
Momentum

In this section we observe that the reduction argument given above, immedi-
ately applies to another geometric inequality for axisymmetric black holes. Let
(M, g,k) be as in the previous section, with the restriction that it possesses
only two ends denoted M el;d, such that M ;‘ld is asymptotically flat and M__, is
either asymptotically flat or asymptotically cylindrical. Based on the heuristic
arguments of Sect. 1 leading to the mass-angular momentum inequality (1.1),
combined with the Hawking area theorem [17], the following upper and lower
bounds are derived [14]

Amin
mzf\/m4fj2§8—§m2+\/m4f\72, (4.1)
T

where Api, is the minimum area required to enclose M__ ;. In [14] the lower
bound is established in the maximal case, and it is also shown that equality
occurs if and only if the initial data set is isometric to the ¢ = 0 slice of the
extreme Kerr spacetime. The proof relies upon the mass-angular momentum
inequality and the area-angular momentum inequality A, > 87|7| [9,13]. In
the non-maximal case, the area-angular momentum inequality has also been
established when A, is replaced by the area of a stable, axisymmetric, mar-
ginally outer trapped surface [9,12]. Thus, since we have shown (in the previous
section) how to reduce the non-maximal case of the mass-angular momentum
inequality to the problem of solving a coupled system of elliptic equations, an
analogous lower bound for area may also be reduced to the same problem.
More precisely, Theorem 3.1 combined with Theorem 1.1 in [9] and the proof
of a Theorem 2.5 in [14], produces the following result.

Theorem 4.1. Let (M, g,k) be a smooth, simply connected, azxially symmetric
initial data set satisfying the dominant energy condition (1.3) and condition
(1.8), and with two ends, one designated asymptotically flat and the other either
asymptotically flat or asymptotically cylindrical. If the data possesses a stable
axisymmetric marginally outer trapped surface with area A, and the system
of Egs. (2.30), (2.37), (3.8) admits a smooth solution (u,Y?, f) satisfying the
asymptotics (2.31), (2.40), (2.41), (3.9)—(3.11), then

AZmQ—\/m4—j2 (4.2)

8

and equality holds if and only if (M,g,k) arises from an embedding into the
extreme Kerr spacetime.
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5. The Equation for f

Let (M, g,k) be a simply connected, axisymmetric initial data set with two
ends denoted M7 | such that M7 4 is asymptotically flat and M__, is either

end’ en n
asymptotically flat or asymptotically cylindrical. As discussed above there is

a global Brill coordinate system (p, ¢, z) in which the metric takes the form
(2.1). Here we make a change of coordinates to (r, ¢, 0), where p = rsin 6 and
z = rcos . The metric may then be expressed by

g = e 2UT2(dr? 4 12d6%) + e 2V sin? O(de + A,dr + Apdh)>. (5.1)
In addition to (2.2)—(2.4), it is assumed that the initial data and wu satisfy the
following asymptotics

w=1+0y(r"2), Trek=0y(r=2=°), in M}, (5.2)

for some € € (0, 1), and

5

uw=r1>+ 02(7'%)7 Tryk = Oo(r"),  in asymptotically flat M__ , (5.3)
u=r+ 02(7“%), Trok = 02(7‘%), in asymptotically cylindrical M_ ;. (5.4)

Note that the asymptotics for u are consistent with the choice (3.8) and the
asymptotics (2.2)—(2.4), while the asymptotics for Tryk are weaker in M,
and stronger in asymptotically flat M_ ,, as compared with (1.4).

In local coordinates, with the help of (2.34), Eq. (2.37) is given by

gij uVii f +ui fj +ujfi —kij | =0. (5.5)
1+ u2|Vf[2

Observe that this equation may also be expressed in divergence form

divy (u*V ) = u(Tryk)\/1+ u?|V f[2. (5.6)

The desired asymptotics are
lf| + 7|V flg + 72| V2fly <er™® in MT, (5.7)
r YV fly+ 72| V2f|, < c  in asymptotically flat M_ ,, (5.8)
IV fly+|V2fl, < cr?  in asymptotically cylindrical M., (5.9)

where c is a constant.
We first solve (5.6) on the annular domain Q, = {(r,¢,0) |r~! <r <r},
with zero Dirichlet boundary conditions

Agf+2Viogu-Vf=u " (Trgk)\/1+u?[VfZ2 inQ, f=0 ondQ.
(5.10)

Proposition 5.1. Given initial data (M, g, k) and a smooth positive function u,
there exists a unique, smooth, uniformly bounded (independent of r) solution

f of (5.10).
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Proof. We will employ the continuity method. Thus, consider the family of
equations

divy(u’V fo) = su(Trgk) /1 +u?|Vfi2 in Q, fo =0 on 09, (5.11)

and the set S = {s € [0,1] | there exists a unique solution f, € C%P(Q,)
of (5.11)}. Clearly S is nonempty, since the case s = 0 is solved by fo = 0.
Moreover S is open by the implicit function theorem, since the linearized
equation is strictly elliptic with no zeroth order term. It remains to show that
S is closed. This will be based on the construction of radial sub and super
solutions.

Let f = f(r) be a radial function. Then

Agf = ﬁ&' ( det gg” @?)
= \/dleitg&“ ( det gg”&j)
=g (7" + 0, 10802 V) F ). (5.12)
where we have used
g = U2 g0 00— 22U (o g — pde—OUHa 2 g

(5.13)
Notice also that

Viegu-Vf =g (@ logu)f', Vf-Vf=g" @) (5.14)

Let @ = a(r) > 0,U = U(r), and h = h(r) > 0 be radial functions such that
u— 1= o (r?), eU U =o1(r%), asr—0, (5.15)
u—u=o1(r" %) U—ol(r_%)7 as r — oo, (5.16)

rr 1T k
(gu)iw — 0(1) asT—0 and 7r— o, (QMU)_1|T7”gk’| S ha

h
(5.17)
and set X, = u|st|;1Vf5, then
Ayf +2Viogu - Vf—u Y Trsk)Xs -V
" (f// + 0, 10g(r2u26_U)7 — (Tryk) O fo f/>
IV fslg
—1 U\~ uZe”Y Orf —/
— g + 0, log(r?u2e V) + (&10 <~> — (Try k) === ) )
9 (f 8 )f Ay R
(5.18)

Lemma 5.2. Given initial data (M, g, k) and a smooth positive function u sat-
isfying (2.2)~(2.4) and (5.2)—(5.4), there exist negative (positive) radial sub
(super) solutions f (f) of (5.11), which are independent of s and uniformly
bounded, and satisfy the asymptotics (5.7)(5.9).
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Proof. The super solution f will be chosen as a solution of the ODE

/!

?// n (37« log(r2172€7[7) _ b) 7 =—h, (5.19)

where b = b(r) > 0 is a uniformly bounded function chosen so that

u?e Y 3
Or log ( ~)‘ +|Trgk] <b, b(r)=0(r"2) asr — occ. (5.20)
uZe U ’

Consider the solution of (5.19) with lim, o, f(r) = 0 and ?I(O) = 0, that is

7(@:/ r—22e0ely b / e U Ity | . (5.21)
T 0

In order to see that (5.21) is indeed a super solution, use the fact that 7/ <0
along with (5.18)—(5.20) and the definition of A to find

— — u?e U —
Agf+2Viogu -Vf=g"(—h+ b+ 0 log = f

ule~

< g (~h — |Tryk|[F])
< —qy ! |Trgk|(1 + u|V7|g)

< su” (Trgk)\/1+u?|V |2, (5.22)

Moreover, with the help of (5.2)—(5.4) and (5.15)—(5.17), it is readily checked
that f satisfies the desired asymptotics. Finally, analogous methods may also
be used to construct a subsolution. 0

< —uHTrgk|\/1+ u?|V f|2

We are now in a position to make uniform C° bounds for solutions of
(5.11). Thus, use the third line of (5.22) to find that

Ag(fs*f)ﬁszmgu'v(fs*f)

> suH(Tr k) /1+ u?|Vfs|2 + u HTr k(1 +u|Vf],)

> su*1|T7’gk\ <1 —Xs-Vfs+1+ uv /s . Vf)
IV fslg

= —su HTryk|Xs - V(fs — ). (5.23)

Since f > 0, we have that (f; — f)|aq, < 0. Analogous but opposite inequal-

ities hold when applying the sub solution. It now follows from a comparison
argument that

<[ < T (5.24)

In order to produce higher order estimates, observe that the right-hand

side of Eq. (5.11) is of linear growth in the first derivatives of fs. Therefore,

by slightly modifying standard techniques applied to the Dirichlet problem for
linear elliptic equations, we obtain uniform €27 estimates for any v € [0,1],
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with the help of (5.24). It follows that S is closed, yielding a solution f = f; €
C?P(Q,) of (5.10). Elliptic regularity then implies that f is smooth.

In order to prove uniqueness, assume that two solutions f; and f5 exist,
then

Ag(fi = f2) +2VIogu - V(fi — f2)
=} (Treh) (VI w2 IVAP — VT+ @[V D)

— u(Tryk) VUit fo) Vi = f2) . (5.25)

V1+ @2 VAR+ /1 +u? [V
Since (f1 — f2)loo, = 0, the maximum/minimum principle implies that
f1 — f2 =0. O

We are now ready to establish the main theorem of this section.

Theorem 5.3. Given initial data (M,g,k) and a smooth positive function u
satisfying (2.2)—(2.4) and (5.2)—(5.4), there exists a smooth uniformly bounded
solution f of (5.5) satisfying the asymptotics (5.7)—(5.9).

Notice that the asymptotic behavior for f on M_ , is not prescribed, but
instead it is stated that the solution remains uniformly bounded and fall-off

rates for its derivatives are given.

Proof. The same methods as in the proof of Proposition 5.1, yield uniform
estimates for the solution f, of (5.10) in C’IQOCB Thus, as r — oo a subsequence
may be extracted which converges on compact subsets to a solution f of (5.5).
By elliptic regularity, this solution is smooth. Moreover, in light of (5.24) we

have the bound

I<f<T, (5.26)
showing that f is uniformly bounded and has the appropriate asymptotics
at M1 .

It remains to establish the asymptotics for derivatives. First consider the
end M} . Here we may follow the standard scaling argument in [22]. From
the local C%# estimates we have

@)+ V1)l + V2 (@)]y < ¢ for z € M. (5.27)
Moreover it is also known from (5.26) that
|f(@)] <clz|™® as|z| > oo in M. (5.28)

Equation (5.10) may be viewed as the following linear equation

3

y 02 .0
> a () i |+ > bi(a) 5 = Fl@), (5.29)
i=1

,j=1

where

a =g b = -1}, +2(logu)’, F=u"Y(Trgk)\/1+u?|Vf|2. (5.30)
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Now fix a point xgp € M}, and define coordinates T = (z — wg)/o, where
o = |zo|/2. When written in these new coordinates, Eq. (5.29) becomes

3 82 3 a
(7)) ——— W (T)— f = o2 F (T 5.31
Z: @) g | + LoV P gl =7 F @) (5:31)

for 7 € B1(0) = {|z|] < 1}. Observe that 0z = 00,:, and therefore

9
(@) < o < — (5.32)
2|2 ||z
o . 2
ol @)+ o | 2 @) <c( i +(’5) < S 63
oz lz]z x|z ||
0 o2 o3 c
2 — 2 —

where ¢ represents a constant depending on the initial data and u. These
estimates show that we have control of the coefficients, and right-hand side of
(5.31), in C%A. Thus the interior Schauder estimates apply to yield

J— - 72 _
0f(@)| + 10" ()| < c(0|F|co.e(py(0)) + | floos o))
< e(o®|Flc1 sy (o)) + | fleo o)) (5.35)
for T € By/5(0). It follows that

olof(x)| + 0*10° f(x)| < c(0®|F|cr(s, o)) + |flcos (o))
< clx|™F (5.36)

for x € B, /2(x0), and hence the desired estimate holds

F@)| + 2]V F(@)]y + 22V f (@)l < ele| ¢ for @ € M,

end”

(5.37)

Derivative estimates in the remaining end will be divided into two cases.

x

Case 1: M__, is asymptotically flat. By performing an inversion x fu[z hear

the origin in Brill coordinates, asymptotically flat coordinates are obtained in
M__ 4. We may now apply the same scaling argument as above. However here,
u~ |z|72 and Tryk ~ |x|~* so that

7 8 i 0-2
0'2 0'3

It follows that

olof(x)| + a?|0%f(z)| < 0(02|F|01(31(0)) + flBi0)) < ¢ for & € B,ja(xo),
(5.40)
and hence the desired estimate holds

|x||Vf(x)|g+|x|2|V2f(x)|g <c forxeM_,. (5.41)
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Case 2: M, , is asymptotically cylindrical. According to the asymptotics (2.4)
g =r"2dr* + gs:(¢,0) + G(r, ¢,0), (5.42)

where gg2 is the round metric on the 2-sphere and the remainder satisfies
G = 02(7"_%), Gij = 02(1“%) for i,7 # . (5.43)

A further change of coordinates 7 = logr, in which d7 = r~!dr, displays the
canonical cylindrical form of the metric

g =dr* + gs2(9,0) + G(7,9,0), (5.44)
with
Gij| + 0G| + |0°Gyj| = o(e2™)  for all 4, ;. (5.45)
The interior Schauder estimates imply that
1+ 1V 1y +1V2lg < e, (5.46)
and hence
0-f| + 106 f| + |07 £ + 1000 | + |05 f| < c. (5.47)
It then follows, with the help of (5.4), that
Viegu-Vf=0.f+0(e2") (5.48)
and
Agf = 02f +Agaf +0(e27). (5.49)

We now obtain derivative estimates using a separation of variables argu-
ment. Let {1;}3°, C L?(S?) be an complete orthonormal set of eigenfunctions
for Ag2, and 1et Ai = i(i + 1) denote the corresponding eigenvalues. Since the
eigenfunctions are complete, we may write

(r,6,0) Zd )i(,0) (5.50)

Inserting this into equation (5.10) produces

o0

> (d] +2d] — Nidi) i = P, (5.51)
=0
and thus
di +2d; — \id; = Pi(1) := /P(T, ®,0);(4,0). (5.52)

52
The general solution to this ODE is given by the method of variation of para-
meters

di(7) = (c1s + pra(r)elT VIR (e 4 poy(r))e(THVIFR)T L (5.53)
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where ¢1; and cy; are constants and

ph-(T): 2\/14_7)\/ 1+\/1JF7/\’TP( )d

p2i(T) = 2\/14'7/\/ —VIFX) TPi(T)dT, (5.54)

for some 73. Note that the boundedness of f implies that ¢;; = 0. Moreover

do() = a0 + pao(7) + € 2 p1o(T) = ea0 + O(e37), (5.55)
and P = O(ez7) implies that
di(t) =0 (max{e%T,e(flJ” HM)T}) , 1> 1. (5.56)
Since —1 + /1 + A; > 7/10 for ¢ > 1, it follows that
0-f1 + 180 f| = O(e27), (5.57)
and hence
IV flg = O(r?). (5.58)
By differentiating the expansion, similar considerations yield
V£l = O(r). (5.59)
O

6. The Equation for Y ¢

Let (M, g,k),u, and f be as in the previous section, although f is not required
to satisfy an equation here. In particular, v and f satisfy the asymptotics
(5.2)=(5.4) and (5.7)—(5.9). In this section we solve the equation

divgk(n) =0 on M, (6.1)
for solutions satisfying the following asymptotics
2
Y? = ——‘37 +os(r7%) in M, (6.2)
r
Y? =Y+ O0s(r°) in asymptotically flat M_, ,, (6.3)
Y? =Y+ Os(r) in asymptotically cylindrical M, (6.4)

where J and ) are constants. In order to obtain a unique solution the value of
J will be prescribed, and in this case the value of ) is determined by J and
the initial data. Note that these asymptotics are consistent with those of the
(sole component of the) shift vector field Ygk in the extreme Kerr spacetime,
as is shown in Appendix B.

The Eq. (6.1) may be expressed in a more revealing way as follows

AGgY? + Viog(utgye) - VY? = 0. (6.5)
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Since the metric g depends on Y ?, it appears that this should be a nonlinear
equation. However certain cancellations occur, and it turns out that when
expressed in terms of the metric g, the equation is linear elliptic

0= <gij T ) S > VY — umi; f! — QY
1+ w?|Vf[3 1+ u| V2

. 2 fif] 1
N (gm uff) (ai log g — W) oY%, (66)

IR 1+u?|Vf[2
where
¢ ¢
u 9isY j + 9o Y ;
Tij = — <Vijf + (logu)i f; + (log u); fi + J2—2j
1+ u| V2 u

(6.7)
is the second fundamental form of the graph M = {t = f(z)} in the
Lorentzian setting. It is important to note that the linear character of the
equation, arises from the fact that

L
(9 ‘1+uu2|Vf|g>”” (6.8)

does not depend on Y?. The equivalence of the three Eqgs. (6.1), (6.5), and
(6.6) will be proved in Appendix B.

We now prove existence and uniqueness. The first task is to construct a
radial function Yy = Y (r) which is an approximate solution in the asymptotic
regions. Following the same procedure as in (5.18) yields

AgYy + Vlog(u_lg¢¢,) - VY,

rr " 4~—1_-30U\y/ uilei?)U i
=g Yy + 0 log(r*u e %)Yy + Oy log P Yy ), (6.9)

where @ and eU are defined in (5.15) and (5.16), and where we have used
Gop = e 2Ur? sin? §. The remaining terms may be computed in a similar way.
If L denotes the differential operator on the right-hand side of (6.6), then

u2(fr)2
1@V

—1,-3U w2 FLAITT. 2fr£i9. |
+ (gwarlog (u ‘ >+ AR I i 0gg¢¢> Yy

LYy = (g”' ) Yy + g0, log(r4ﬂ_1e_30)Y0’

ule=sU)  1+w?|Vf[] 1+ w?|Vf[3

+<u%q%mgu 9" u?|V f120, log u

(1 +u?|Vf[2)? L+u?|Vf|2
y 2 ri g o
(o ) Ay, (6.10)
Va2 VIS 1wV
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Note that the term f'0; log Jss appears to cause a problem when 6 = 0,m,
since it involves %0y logsin @ = g% f0p log sin @ which could blow up at those
values of 6. However, for axisymmetric smooth functions f, one must have
0o f = 0 on the axis of rotation. Observe that Eq. (6.10) may be written more
simply as
B u? (fr)2
L+ u?[Vf[2
for some function B. With the help of (5.2)-(5.4), (5.7)-(5.9), (5.15), (5.16),

and the calculation of Christoffel symbols in Appendix D, it can be shown that
this function has the property that

LY, = <g”“ ) (YO” + (ar log(ra—te=30) +B) YO’), (6.11)

B:O(r_%) as 1 — 00, BzO(r%) as 1 —0. (6.12)
We are motivated to choose Y, as the solution to the ODE
Y + 8, log(r*a e 3U)Y] = 0 (6.13)

which satisfies the asymptotics (6.2)—(6.4), namely

oo

Yo(r) = c/r_4ﬂ 8U (6.14)

where the constant ¢ is chosen in order to realize the desired r—3-fall-off rate
in (6.2).

The desired solution of (6.6) will be constructed in the form Y¢ = Y;+Y7,
where Y7 solves the equation

LY; = —LY,, (6.15)
and has the same asymptotics as in (6.2)—(6.4) with J = 0.

Theorem 6.1. Given initial data (M, g,k) and smooth functions u > 0, f sat-
isfying (2.2)—(2.4), (5.2)~(5.4), and (5.7)—(5.9), there exists a unique, smooth,
uniformly bounded solution Y of (6.6) satisfying the asymptotics (6.2)(6.4).

Proof. The first task is to construct radial sub and super solutions Y; and Y.
The super solution will be chosen as a solution of the ODE

Y, + (@ log(rii—te 30 — E) Y, =—h, (6.16)
where the radial functions B > 0 and h > 0 are chosen so that
B () P
Bl < B e — LYyl < h 6.17
BI<B. (5"~ iage) IVl < (6.17)

with B satisfying the asymptotics (6.12), whereas
h=0("%) in M,
O(r*)  in asymptotically flat M__,, (6.19)

.
O(1) in asymptotically cylindrical M__,. (6.20)

(6.18)

E:
E:
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To see that Y is a super solution, observe that (6.11) and (6.17) imply

LY, = (grr . m) ( (6 log(riu 4~-1 —SU) +B) 7’1)

T ’U’Q(fT)Q 7 n Lval
(g —1+uﬂvf5)(—h+(B+B)YJ
< —LYy, (6.21)

if Y, < 0. Thus we choose

?1 _ /eforfr—élae?)ﬁ/e [0 B 4’LL_1 _SUh. (622)

T 0

Clearly Y, is positive, nonincreasing, and satisfies the asymptotics (6.2)(6.4)
with J = 0. Similar methods yield a negative, nondecreasing subsolution Y,
satisfying the same asymptotics.

Since (6.15) is linear elliptic without a zeroth order term, there exists a
unique smooth solution Y7, with zero Dirichlet boundary conditions, on the
annular domain Q, = {(r,¢,0) | ™! < r < r}. By the maximum/minimum
principle

Y, <Y<Y (6.23)

The interior Schauder estimates now yield uniform Cf . 2,6 bounds, and thus after
passing to a subsequence, we obtain a C? solution Y1 on M as r — oo. This
solution is smooth by elliptic regularity and satisfies the estimate

Y, <Y1 <Y (6.24)

Asymptotics for the derivatives may be established as in the proof of Theo-
rem 5.3. Namely, in M + "4 @ scaling argument is employed, and if ); denotes
lim,_Y; then the same is true for asymptotically flat M__,, although here
one must apply the method to Y; — );. Moreover, asymptotics for the deriv-
atives in asymptotically cylindrical M__ , may be obtained through the use of
eigenfunction expansions.

We now have a solution Y% = Y +Y] of (6.6), satisfying the asymptotics
(6.2)—(6.4). It remains to prove uniqueness. Thus, consider a solution of LZ = 0
having the asymptotics (6.2)—(6.4) with J = 0. We must show that Z = 0.

A direct calculation shows that K := u™'gysy/1 4+ u2|Vf|2 € KerygL*, the

kernel of the formal L?(M, g) adjoint of L. Alternatively this may be proved
by observing, the immediately apparent fact, that u='g,g lies in the L?(M, g)-
kernel of the adjoint of the operator (6.5), and using (2.22) as well as (8.22).
Upon multiplying the equation LZ = 0 through by ZK and integrating by
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parts, several boundary terms cancel to yield

3 2 £i £
0=/IC<g” uff) ViZV;Z
M

EEERELZIP
5w
li A [V S A v 4
+:&(/ K(g 1+wwﬂ9”ﬁﬂ
OB(r)
g i
— 1 7 __ ") )y v.Z 2
i K (g 1+u2|Vfg) viViZ, (6:25)

9B(r)

where v is the unit normal to OB(r) pointing towards M1 ;. Note that the

€
boundary term at Mjnd clearly vanishes, while the boundary term at M_ ,

becomes I
- iy _ Wl v,
;Lr%yo / IC(g T2V v;V;Z, (6.26)
OB(r)

where )y = lim,_ Y. Now multiply the equation LZ = 0 by K alone to find

) 2 fi
0= lim K<w “ff>mwz

s T I+ a? VIR
OB(r)
- u2fifj
_ 1 ij _ Ava
}11% K (g T u2|Vf§) v;V;Z. (6.27)
OB(r)

Again, the boundary term at M, jnd vanishes, and hence the boundary term at
M_, 4 vanishes, which implies that (6.26) vanishes. It then follows from (6.25)

that Z = 0. O
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7. Appendix A: The Scalar Curvature Formula

The purpose of this section is to prove Theorem 2.3. We will follow the ideas in
[2]. In particular, (M, g) will be viewed as a graph {¢ = f(z)} in the Lorentzian
setting (2.13). An alternative approach, in which the calculations are made by
viewing (M, g) as the same graph in the Riemannian setting (2.9) is possible,
although not pursued here; in the static case this approach was carried out
in [1].

Let (M x R,q) denote the Lorentzian stationary spacetime with

g =g — 2Yidz'dt — pdt®. (7.1)
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The induced metric on the graph and its inverse are given by
95 =0i; — 1Y, — [iYi—fifi, ¢7 =797 - u VY +wle, (7.2)

where ,
o ughlf +u Y —
w' = gf]—i, u? =@+ |Y|§. (7.3)
N
The vector w is in fact the spatial component of the unit normal to the graph.
In particular, the unit normal to the ¢ = 0 slice and the graph are given given,
respectively, by

n:at—l—Y7 N — uVf+n

g Ji-elvr

Note that 9; is a killing vector on (M x R,g). Thus there is an obvious one-
to-one correspondence between M = {t = f} and M = {t = 0}. In that sense,
decomposing n into its normal and tangential components with respect to the
graph, and decomposing N into its normal and tangential components with
respect to the ¢t = 0 slice, yields

n=\[1+w2[VIEN —uVf, N=\1+@VI2n+uVf).  (75)

Here the identity (2.17) was used.

Let G = Ric; — $R3g denote the Einstein tensor. Using (7.5) and the
Gauss—Codazzi relations G(N,n) may be computed in two different ways,
namely

G(N,n) =4/1+u?|Vf2(G(n,n) + G(uVf,n))

— ST+ 2V f 2 [(R+(Trgk)?—[F|2) /24 divg(F— (Trsk)g) (¥ )],
(7.6)

(7.4)

and

G(N,n) = /1+u?|VfI2G(N,N) — G(N,uVf)

= 1+ W3[VF2(R+ (Trym)* = |7]3)/2 = divy(m — (Trym)g)(uV f),
(7.7)

where k and 7 denote the second fundamental forms of M and M, respectively.
It follows that
R+ (TTgE)2 — \E% + 2divg(k — (Trgk)g) (uV f)
=R+ (T’I“97T)2 — |7r\3 —2divy(m — (Trym)g)(v) (7.8)

where

uV f

SRV

v =

(7.9)
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The energy density and momentum densities for the initial data (M, g, k) are

87 =G(N,N) = (R+ (Trghk)* — |k[2)/2

87J(-) = G(N,-) = divy(k — (Tryk)g)(-). (7.10)

Thus, combining this with the fact that Trgk = 0 (Lemma 2.1) produces
R — [k[2 + 2divgk(uV )
— 167(s — J(v)) — Iml2 + [k]2 — 2div () (0) + 2div (k) (v)
+ (Trym)? — (Tryk)* + 20(Tr,m — Tryk). (7.11)
In what follows, several identities involving significant computation will

be proven, which when combined with (7.11) will yield the desired result. The

first task is to calculate the second fundamental form 7. Below, 4, 7,1 etc. will
denote indices associated with local coordinates z* on M, and fﬁj,fij, I‘éj will
represent Christoffel symbols for the metrics g, g, and g, respectively. Observe
that the inverse metric is

Gt = w2 gt = w2V G =g —u2YY, (7.12)

from which we find

I}, =0T}, = %?ij%’j = %@i7 ffj = u ki, ffj = fij + 1717[%@‘7
(7.13)
~¢ 1 I
=5 (i + Y (Y- Vi),
~ 1_. v’ —
I, = _§§jl(Yl,i =Yi)+ 202 (901‘ +Y (Y1, — Yu)) . (7.14)

Let X; = 9; + f;0; denote tangent vectors to the graph, then
mi = —g(Vx, X;, N)
uV f
N
..
NI
U — - ~ -
= (Vz‘jf +u kg + (05— T f)
Ji-lvs

5T =T ) + fifs (Tl = Thfi)) (7.15)

= (T4 + £T% + £ + £ ;T80T | 1,

— (0 f + T8+ fiT% + [T + fi£iT0)5 | 0,
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Therefore
uViif + ki + o= (fio; + fiei) — 21V ()
N
L. L,
+§fiw (Y, =Y + ifjw (Y1, —Yiy). (7.16)

This formula for the second fundamental form involves quantities associ-
ated with g. In order to obtain a formula involving only quantities associated
with g, we will employ Identity 1 below for the difference of Christoffel symbols.
In particular

7Tij =

! v

Fi’j _fij = 2u2(v Y+ V,Y;) — U”ng + fifiT tt+fz t+f]Fit
i —l
= %(vjm +ViYj) + %(r;ﬂ; — T Y
—w'mi; + fifiTh + T + £iT (7.17)
Multiply by Y; and solve for (I‘i»j - fij)Yl to obtain
Yl T _ Y13 ! T T T
@(sz -V = 202 (ViYi+ViY;) —migw Y+ fi fiTy Yo+ fil, Y+ fiT3 Y1

(7.18)
For simplicity we temporarily assume that ¢ does not vanish, however this will
have no affect on the final result, which is valid without any such restriction
on . Substituting (7.18) into the last line of (7.17) produces

—l
_ Y —
Tt — Fl = %(ij + VZY]) — Wij(wl + (p_lmemYl)

T —17m v - —17m I
+ fi(Fé‘t + 1thYmY )+ fj(rit +p 1Fit YY)
~ PSR
=+ flf] (Fit + ¢ 1Ftt YmY ) (719)

Use this and Y fi = 0 to compute the following expression from (7.16) in terms
of g

=l _
Visf +u" ki = Vi f+ 55 (Y,]+Y“) (Fl--—F--)(fz+u2Yz>
:_mj(wfl ) 1le)+V”f+ (VY+VY)

+ £ i+ @7 TEY) + fj<fétfl +¢ 7 'TLY)
+ fifi (Tl fi + 97 THYD). (7.20)
Also from (7.15)
Vi f +u" ki

=u 1= w?[Vf2my; — fiTh =T ) — £ =T ) + fifi Do fie

(7.21)
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Now compare (7.20) and (7.21) and solve for 7 to obtain

u

p\/1—u?|Vf2
/1 2217 £2
B 1 u |Vf|§ N lf N wl}/l

=|——twfit+t— | my
u ®

g

=Viif + 5= (V Y; + ViY;) + fi( 0, + ¢ TLY) + £ (T + o' TL )
=Vif + 5 (V Y + Vi) + fz(logw) + f1(10g90) (7.22)

Therefore

1
WijZ(wvuer (V;Yi + ViY5) + fl<pJ+ fg<p2>,

uy /1 +u?|Vf2
(7.23)

where (2.17) was used. Notice that Y; depends on f through the expression
T o w6 -
Yi=Y "Gy =Y (94i + [:Ys) =Y ggi + LilYIZ, (7.24)
from which it follows that
V,Yit VY, =2V 2V f40; fO5|Y 1240, f 0]V [24-9¢;0:Y * +94:0; Y ?. (7.25)
Inserting (7.25) into (7.23) then produces

o uVi [ +uif; +ujfi + ﬁ(ngj + gWij')) (7.26)
1] — . .
L+u?Vf|2

The remaining part of the proof consists of verifying several identities.

Identity 1
IR SR St - I
i Tl = WM U m+§fzfj90

-l
1, — _ Y
+ fi (_291 (Vij—Vij)‘Fﬁ(% +Y" (VY =V Yj)))

!
S = Y oo -
+f (—QQ“’L(ViYm = ViYi) + 55 (0 Y (Vi¥in — v,m)))

(7.27)

Proof. Observe that
N =w+ ———=0, (7.28)
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which yields
Vx,X; = Vx,X; — 3(Vx, X;, N)N
=T}, X, + ;N
= I‘éle + mw Xy A w1 - u%ﬁf%mj@t. (7.29)
Alternatively, using (7.15) produces
6X,;Xj = (fij + fifé't + fjflit + fifjfit)al
+ D f + T4 + fT% + fiT + fifiT)0,
= (ffj + f,if§t + f,jf‘ft + f,if,jfft)Xk
+ (aijf =+ ffj + fzfﬁt + fjf:ft + fifjfit
~( + £+ [T+ Sl T ) 1) 00
= (fig + fifjt + fjfét + fifjffft)Xl + u_l\/ 1- “2|ﬁf|%7rijat~
(7.30)
Therefore by comparing (7.29) and (7.30)
Th T, = —wlmy +u™ Y gy + LT+ T + fif, T (7.31)
from which the desired result follows with the help of (7.13) and (7.14). O

It will be assumed that k& and 7 are extended trivially to all of M x R,
in that k(9 ) = 7(d,-) = 0.

Identity 2

divyk(w) = v divg(uk(w, ) + w(k(w, w))
—g(k,m) —2g(k(w,-),n(w,-)) + (Trym)k(w,w)  (7.32)
Proof. Direct calculation yields
div k(w) = (gij T T wiwj> w'V ik
= (gij e A wiwj) w!(Vjka — (T =T ki

J
m

— (U5 = T )kim)
= divgk(w) — u?Vsk(Y,w) + Vi k(w, w)
- (ﬁij — u_27i7j + wiw])
' ((Fi? — T kot + (T — f}”})km) : (7.33)

Next, each term on the right-hand side of (7.33) will be computed separately.
Let

Aij = uilEij + fz(fﬁt - fétfl) + f](fﬁt - fitfl) - fzf]ffstfl (7-34)
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Identity 2-1

Viw; =5 + | 7m(w,d;) -y ,0; w;
uy /1 —u?|VfI2

3 ((log u); — u?A(Vf, 8j)) w; (7.35)

u(ﬁi]‘f + u_2ﬁ Y, + Yaju‘Q)
1— u2|vf|%

1
+
1wV

Now substitute the following expressions

_1\/ 1-— u2|vf|%7r” — Aiju (737)
G f Vi f
= <ulml — qul> u /1 — u2|Vf|37rlj> — A(V£,0;).

(7.38)
O

((logw); + u’g"™ £ Vis f) wi. (7.36)

Identity 2-2
divgk(w) = divg(k(w, -)) — gk, T)

Y
-9 k(wf)ﬂ"— W=
( ( uy/1=u?|Vf[5 ))

N g G " kim (Aij — u2V,Y5) N uw?g(k(w,-), AVf,-))

J1—w2[Vf2 1-w?VfZ
+2k | 7, Vu —k w,% (7.39)
N u(l— V)
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Proof. Since

divgk(w) = divg(k(w,-)) —

g ngklmv u}“
the desired result follows from Identity 2-1

(7.40)

O
Identity 2-3

Vyk(Y,w) = —k(VyY, w) = g(k(Y,),n(Y,"))
ug(k ) _

(Y, ), A(Y, ) k(Y. VyY)

(7.41)
V1-u? VS22 uy/1—u?|[Vf|2

+

Proof. Since Y = ?¢8¢

Vik(Y,w) =Y (k(Y,w)) — k (VyY,w) — k (Vyw,Y)
k(VyY,w) —k (Vyw,Y)

(7.42)
and
- WY Vaf +u" V'Y,
(vw)i =

1=V s

= w(@Z,Y) —

S — (A(ai,y) - (VY2Y)> . (7.43)
Ji- a2 u
Insert (7.43) into (7.42) to get (7.41).

O
Identity 2-4

Vwk(w, w)

= wli(,0) — 25k, ), 7, ) w2 (1 w2 [T 2k, wh()
— 2k(w, w)m(w, w)+ 4k(w, Y )w(u) + 2u3g(k(w, ), A(w, ) —2uk(w, V,,Y)

u2,/1 7u2|§f|%

(7.44)
Proof. Observe that

Vuk(w, w) = w(k(w,w)) — 2k (Vyw,w),

(7.45)
and with the help of Identity 2-1
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(Www)i = w'V,w,; = (0;, w) + w(w, w)w;

v A(0;,w) — w2 (ﬁwy) ) . 2w(u)

/_2*2( ‘ 2 /1 — 2% f2
1 —uw?|Vf[2 u?\ /1 —u?|Vf2

N (u—lw(u) —w’A(Vfw)  w(w,Y) ) w;. (7.46)

T2V uy/1— w2V

The last line of (7.46) will now be computed directly using definition of A, u,
and %, along with ¥ Vi f = —39 £;V, Y1, 5" fud fiV,Y; = 0. Namely

Y;

m(w,Y)

i — _ 1 . — . I —
= # (wZYJVijf—I—u_lk(mY)—|—2w1fiY g]lfl(Vin—VjY;))

J1- Vi

VP, VPRV | NIRY AT -V,

1—u?Vf[Z 2(1 - u?|Vf) 2(1 —w?[Vf]2)
= VPR - Vi), (7.47)
_w(e+ Y5
and
_ T L
AT w) = YT A(w,0) — AT )
N

=+ - <u1k(w, w) +u 2w’ fiw(p) — ;(wifz’)zvf(@)

u

_ % (k (Vf Y) + %wlfl?igjmfm(viyj _ijé))

u NeEE T
2|V £2 = ?iijm m ﬁn ﬁly
:w(¢)<| fl_q_|vf|3>+ " fm(V5Yi + V1)

2 u? 20\ /1 —u?|V fIZ
VY g™ fun(V,Yi = ViY))
2uy /1 — u?[Vf|2

(7.49)
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Upon using (7.47), (7.48), and (7.49), the last line of (7.46) simplifies by

m(w,Y) B w(u) u?A(V f,w) _ (1- uﬂﬁf%)w(g@)
uy/1 - u2[Vf|2 u(l—=u?|[VFfZ)  1-u?Vf2 2u? '
(7.50)

The desired result is now obtained by substituting (7.46) and (7.50) into (7.45).
U

The following term from (7.33) may be rewritten by combining Identity
2-2, Identity 2-3, and Identity 2-4
divgh(w) — u*Vyk(Y,w) + Vi k(w, w)
= divg(k(w, ) + wk(w, w)) = 3g(k(w, ), 7(w, )
— 2k(w, w)m(w,w) —g(k, )
+u?g(k(Y, ), (Y, ) + u %k (VeY,w) — u™(1 = u’[Vf[3)k(w, w)w(y)
n 4k(w, Y )w(u) 3 2k (uuvw?)
u2\/1 —u2|Vf uy /1 —u?|[Vf|2
k(Y,VyY) N 2k (Y, Vu)
wd\ /1 —u?|VfZ w2 /1 —u?[Vf]
B k (w,ﬁu) ug (k, (A - quWY)) N ug(k(w,-), A(w,-))
u(l = u?|Vf2) m 1 — u2[Vf]
glk(w, ), 7(V,))  glk(w, ), A(Y,))  g(k(Y,), A(Y,")
uy /1 —u?|Vf[2 1=w?|Vf[7 uy/1 —u2|Vf

:

+

2
g

Qo

~—

+

(7.51)

:
:

Each term involving A will now be computed with (7.13), (7.14), and

Vi=u""\/1-uwVfZw-u?Y. (7.52)
Namely

ug (k, (A — u’zﬁY))

1—u2|§f|%
v L
=2k | w— —7,§Jl(r§t - ﬁfm)al
uy /1 —u?|Vf2

_ v — _
Ty fik | w— —————= v\ 1 = [V [w - u?Y
uy /1 —u?|VfI2
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v < 1—u2|ﬁf|3 L _
HPTY P S L SN R A
217 £12 2’u,2 2u
uy /1 —u?|Vf2
_ v _ -
_ Vi), we 12V 2w—u V|, (7.53)
2 u 17u2|Vf|%

u?(k(w’ ')’ A(w7 ))
T

:mmeum»h%(mw_ v )W@Z_ﬁm)

1—w?|Vf2 V1w Vi

- (wlfl)fitflk (w,w — Y)

uy/1—u?|Vf[2
WV

T (0 @ - 50
g

2v 2 - 1—U2‘§f‘* . pgp— =

B 17u2|ﬁf|% " 2u2 2u g

P P G W B\ 71
uy/1—u?|Vf[2 2u?
Nt (V.Y VY
ko, TV A VY0 ) (7.54)
2u\ /1 —u?|Vf|2

glk(w, ). 7V, ) glh(w, ). AT, ) k(" VYD) o

uy/1—u?|Vf|2 1-w?| V[ 1—u?|VfI2

and

BT, ). AT, ) _F (V8" T(T% +.5)0)

uy /1 —u?|Vf2 2uP\ /1 —u? |V f[2
K|V, 5 - _
u ud\ /1 —u?|Vf2

Now use (7.53)—(7.56) as well as the formula

~

) 7(w,Y).  (7.56)

_ 1_ i
WV = §Vl<p + YV, (7.57)
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to rewrite the last four lines of (7.51) together with the last term on the third
line by

uy /1 —u?|Vf2 20\ /1 —u?|Vf[2
3+u?|VSIZ
T
_ 4 VI-wVIgw(e) 1
hw¥) () VT . Y)
u?y /1 —u?[Vf2 v u

iy w(¢p) W(w,?) 1* ﬂ
o ( 20t *m) (e 2W><u2<1 —eIG)

(7.58)

— — 1 —
+u?k (Y, V,Y) +k <w 2gﬂw’(iji - vin)aZ) (

Note also that

FAV;Y; = _?ivijf
=—u 1 /1— u%ﬁf%ﬁ(?, 9;) + A(Y,9))
— _ 1 i _
=—u 1 -w?Vf]Zn(Y,0;) + 5u*QY (V,;Y; + V,Y;)

— _ (7w Y.
—uy/1— 2 [V 2n(w, V) | T - i |, (7.59)
u u3w/1—u2\Vf|%

and

G Y VY= Y'YV f = —u 1 -2V 2a(Y.Y),  (7.60)

so that (7.51) becomes

divgk(w) — u 2Vyk(Y,w) + Vi k(w, w)
= divy(k(w7 )) (k(w’ w)) ( ( )’ 7T(’LU, ))
— 2k(w, w)m(w,w) — gk, m)

+2ug(k(Y,),n(Y,") —u k(Y. V)n(Y,Y
+uk (0, VyY) +u %k (Y, V,Y)

1+ u?Vf2
u?(1— w2V f[7)

~—

—uw(w)k(Y,Y) + ik(w,vw
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= o) 1@V 2
+ k(w,¥) — o w(6) + (. V)
u?\ /1 —u?[Vf2 w

3+u?Vf2
uy /1 —u?|Vf[2

The last line of (7.33) will now be computed.

1 _ _ -
+ §k (w,w" (VY — V,Y;)379;)

Identity 2-5

(g’j — Y + wiwj> w! ((I‘Z’; - fg)kml + ( T fz)kim>
= —(Trym)k(w, w) — 2k(w, w)r(w,w) — g(k(w, ), m(w,-))

- ik (w,§|?|%) +u %k (w,VyY) +u %k (Y, VYY) —uwu)k(Y,Y)

2u?2
— 4w (u) V13- “2|§f|%
+ k(wvy) — - 3 w(@)
u?\ /1 —u?|Vf2 2u

1 _ _ 5 3+ u|VSf2 _ V2
+ ik (’LU, wl(Vin — VlYi)g”c?j) —|£|g +k (U}, VQO) %
uy /1 —u?|Vf2 1—w?|VfIZ
(7.62)
Proof. Recall that
Féj — fig = —’wlﬂ'ij + u_l?ZEij + fzfét + fjffit + fifjfét, (763)
and so
~ij i —ij £ 10 T £12T
g7(Ty; = Ty;) = —w'Trgm + 297 f;T5, + [V 215, (7.64)

. i - -
L) = —wr(w,w) +u Y k(w,w) + 20™ frw! T,

+ (W™ fn )T, (7.65)
g7wl( =T kim = —g(k(w, ), m(w,-)) + ug(k(Y,-), k(w, )

+w! fig T ki + w' f1k(V f, T Oy

+ k(Y f,w'T70,), (7.66)

and

V'Vl (0 = T ki = —k(w, V) (w, V) + u™ k(Y V)k(w, V)
— — ]~

+w' fk(Y,Y T0,,). (7.67)
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Next, evaluate (7.64)—(7.67) with (7.13) and (7.14). Using also (7.52) and

~ —em 1, _

B = T4V - Sgm(ViYi - Viv)), (7.68)
leads to (7.62). O

To complete the proof of Identity 2, subtract Identity 2-5 from (7.61) to
find

divgk(w) = divg(k(w, ")) + vk (w, Vu) + wlk(w,w)) + (Trgm)k(w, w)
— gk, m) + 2u2g(k(Y, ), n(Y,") —u *k(Y,Y)n(Y,Y)
—2g(k(w, ), m(w,-)) + 2u™?k(w,Y)w(w,Y)
= u_ldivg(uk:(w, )) + w(k(w’ w)) - g(k" 7T) - 25(]4;(11), ')7 7T(’LU, ))
+ (Trym)k(w, w). (7.69)
O
Identity 3
div,k(9y) = divg(k(Dg, ) +u™ divg(uk(9y, w)w) — g(k(Dy, ), m(v,-))
+9(k(9g, ) k(uV f,)) = u™ 'V f(u)k(9s,Y) (7.70)
Proof. Observe that
9T ki = %klj(ajgw — digj) =0, (7.71)
and so
divgk(9y) = g7V ki
= g"(8;(kig) — Tt kip — Tl skus)
= (97 = w2 VT + wiw ) (Vo, (k(0s,))(&) — (Th; = T3, kg
= divg(k(0y, ")) +u 2k (VY ,05) + Vi (k(9g, ) (w)
- (g” WY 4 wuﬂ) (T = T, kg (7.72)

Identity 3-1

o (D)) () = w(k(w,05)) = 9(K(0s ), 7(0,-)) + 9K (Do, ), FuT 1. )

k(06.VuY) | 20(uk(95,Y)
——+ —

N T

|§f|%k (84757 uﬁu) k <a¢7 flﬁzylai)
1—u2‘Vf% 1—u2|§f|%

—uT VF(w)k(9s,Y)~

(7.73)
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Proof. First note that
Vo (k(0y, ) (w) = w(k(w,dy)) — k (ﬁww, 8¢) . (7.74)
Use (7.46) and (7.50) to evaluate V,w as in Identity 2-4, then
Vu(k(9g,))(w) = w(k(w,0p)) = G(k(Dg, ), m(w, ) — k(Dy, w)m(w, w)

1, = o 2w(u)k(94,Y)
— —u “w ¢ 1—u*|V 7 k w, 0p) + —

9 ( )( | f|) ( ¢>) u2m
u(G(k 0y, ), Aw,-) — u" k0, VuY)) (7.75)

Consider the first term on the last line of (7.75). With help from (7.53) and
the trivial identity

w'(V;Y; = V,Y;) = —w'(V,Y; + V,Y;) + 20V, Y, (7.76)
it follows that

u?(k(adﬂ ')7 A(wv ))

_|_

- w213
7w (V,Y; + V;Y;)0
2u 1—u2|Vf\2

WPV f2)w(yp)
k| Oy,
(¢w u 1—u2|Vf|2> 2u?

W[V 2 Vo (1-wIVIE _
+ - -9 k 8¢, ﬁ + —2u g-7 w (VJY; — VZYJ)&

1= wVIE
J1 —uzﬁﬂ2 ) _
= Tk (06, "0 (VY + ViY;)0))

P G V(S0
7 uy /1 —u?|Vf[2 2u?
M = u?|V£IZ

k(9y, uVu) + - k(9,97 f1V,;Y;0,) . (7.77)

e EENT
Now use (7.47), as well as
T
v=w— +——Y,
u (7.78)

V1I-w?VIE _ _ _
(Y, 0;) = = 'V Y +u T R(Y,0;) — fim(w,Y),
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to find
g(k(a% ')7 W(wv )) + k(a¢77 w)ﬂ(wa w)
= g(k(3g,), (v, ) +u"k(9y, Y )7 (v,Y)

N
Y (0 w)n(w, V) + 5Ky, ). 77, )]

+ u
= g(k(a¢7 -),71’(’[)7 )) + u_lg( (a¢7 ) 7( ) ))
o 1
— k(05,5 f'V;Yi01) + 55 k(05, V)V F(IY]2). (7.79)
Substituting (7.77) and (7.79) into (7. 75) yields (7.73), with the help of (7.52).
g
Identity 3-2
(77— u™V'V 4 wiod ) (T T, ) kg
= —k(w, 0y)(Trgm + 7(w,w)) + u "k (04, VyY)
L k0, VT 20, Y) |
uy/1— w22 PN T
= V2 k (95,9 f'V;Y,0;)
1 k(D, uN L _ 7.80
OtV e T 1w (7:50)

Proof. Proceed in the same way as in the proof of Identity 2-5. Namely use
(7.63)—(7.65), (7.68), and substitute the expressions (7.13) and (7.14). O

Combining Identity 3-1 and Identity 3-2 produces
divgk(9y) = divg(k(Dp, ) + W(k(w, 8y)) + k(w, 0p)(Trzm + m(w, w))
~9(k(9,), (v, ) +G(k(Ds, ), k(uV £, ) = u™ Vf(u)k(9g,Y). (7.81)
Identity 3-3

1

79V w; = Trgm + m(w, w) — u™ w(u) (7.82)

Proof. By Identity 2-1

79V jw; = Trgm + m(w,w) — (

D S IS ) N
wuy /1 — uQ\vﬂ%’ u(l - u2|Vf|%)

S
Y G (A —uAV,Y) — %
/1—u2|vf|% 1—u |Vf|§

7 £|2
= Trgrm + m(w, w) — 7(Y,w) (( U|V£|§ gt - )

1—u?|Vf2) uy /1 —u?|Vf|2
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B uk(w,Vf) w(u)
1—u?[VI2  u(l—u2[VFf2)
w(p) [V Zw(p)

(=) 21—V
=Trgm + m(w,w) —u *7(Y,Y) — u tw(u)

= Trzm + m(w,w) — u  w(u). (7.83)

The last line holds since
AV, 7) = - v Vi (7.84)

1—u?VfIZ
O
Inserting (7.82) into (7.81) yields Identity 3. O
Identity 4
1

divg(m(Dy,-)) = divg(uN £(9g, ) — u™ divg(um (D, w)w)

NCR

+9(m(9g, ), m(v,)) = G(m (0, ), k(uV f, ) + u™'V f(u)m(dy,Y) (7.85)

Proof. The following condition will be used throughout this proof
divgk(dy) = 0. (7.86)
A direct computation with (7.16) produces

divg(m(9y,-))

= [aivy(V7(05,) = F (9,2 V) = VS (r(w,0,))]
J1- w2V
un(w,09)) g f - u
_ — + 7 | Oy, Vlog — . (7.87)
,/1—u2|Vf|§ ( ’ (,/1—u2Vf|§))

Identity 4-1

95, Viog | —— 2
ﬂ(d) (\/1—u2vfli))

= g(m(9y, ) m(v,)) = G(1 (D, ), k(uV ")) +7 (Ig,u™ V)

V)1 - VI _ B
o (O, ) + u= T (w)w(Dp. V)

2u
(7.88)

— (0, w)m (W, w
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Proof. Observe that

7 | 9y, Vog S
(d’ (\/wziwri))

IVfIZ u?

L 719y, uVu) + ————=—(0y, VIV f|2
e OV oq ey T e VIV

= 7(0g,u”"Vu) +

_ (0, Vu) +g(n S (0, ")
u(l— w2V f2) Jimewse )
u?Gg(AVf,), 7(0s,")) . (7.89)
1— u2|§f|%

In order to evaluate the last term in (7.89), follow the computations in (7.54),
replacing k(w, -) by m(0, ) to find

w?G(ANVS, ) m(0,) _ ug(A(w, ), m(0s,7) _ gAY, ), 7(0s,))

1—u?Vf2 /1—u2|§f|% 1—u?Vf2
i (VY V.Y Y
=7 8¢,g UJ(V]Y;-F?Y})& + 8¢7w—%
2u /1 — w2V 12 w1 — s

(1 —w?[VfR)uw(p)

x 2u?
u?[Vf|2 Vo J1-wAVIE _
7 2y vV YE(YYLY — VLY
v (%eae T ¢ Vi Vada
L2V
Moreover

g (W (qu7> 77r(a¢7.))
Ji-emie
:g (ﬂ- (U_ Wa) 77T(a¢v')>
1 —u?|VF2

= g(w(v, ')7 7T(8¢7 )) + u_27r(8¢,7)7r(v7?)
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— e
_g (W (W7.) ,7T(3¢7-))
1 —u? V2

( 1—u2[Vf2_ )
—7m(Dp, ) [ W — F————Y , w | . (7.91)

u

Substitute (7.90), (7.91) into (7.89), and use the following relations to get the
desired result:

u[Vf2Y CIVIE o _
——3 9| = ——=L_(— V.Y, + AY, D)), 7.92
W( L= VTG ) A .

v 1=V -
% ngjlwl(vjyi —ViY))a =7 'V, Yo,

S L—wVfE
Ve N i (W, 4 VYA, (7.93)

u 2u

g(A(?, ')? 7r(8¢7 ))

7Y (V,Y:+V:Y; 1-w?Vf vy _
=7 <8¢,, g (VJQU;FV J)al> - ((%, —gw [ F(w,Y)

E

u2

S V31—V I _
= —9(m(9p,-), k(uV f,-)) + AW (06, "' (V;Yi + ViY;)0)

2u g
- ((%, '1_1;2Vf|§w - ;) m(w,Y), (7.94)
and
0,7 = flijj;/; )y TR
O
We now finish the proof of Identity 4. Employ Identity 2 and
SR SRl VR ST /1Y T & /16

2 N

(7.96)
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to find

Agf =u"'\/1 = w2V f]2Trgm — TrgA
_ = _ = Ll 0 sanne
=u"1/1 —u?|VfI2Trgm — 2u 2r(w,Y) — 5 (2u™% - \Vf%) Vi(p)
:u’1\/1—u2|ﬁf|%Tr§ﬂ'+u73\/1—uﬂﬁf%ﬂ'(?,?)

—2u %7 (w,Y) — % (2u? - |vf|%) Vi(e)

21T £12\ T
= T VT - w ) - LIV g

Substituting Identity 4-1 and (7.97) into (7.87) produces

divg(m(9s, )

= (Aivy(V* (05, )) — w *K(Dy, Tur) ) + (05, V)
N
+ g(ﬂ-(8¢7 ')7 F(”? )) - g(ﬂ-(a¢a ),E(va, )) + U’_lﬂ-(8¢>?)vf(u)
—w(m(9p,w)) — m(0g,w) (Trym + m(w,w) — u  w(u)). (7.98)
The desired result may now be achieved with the help of (7.82) and

Identity 5
. =2
divy (uV (0, ))

Proof. Replace k by 7 in Identity 3 to obtain
div,m(0g) = divg(m(9p, ) + u~ tdivg(um(dy, w)w)
—g(7(Dgs ), 7(0,)) + (D ), KWV £, ) = u™ T f(w)m(Dp, V). (7.101)
Now employ Identity 4. O
Identity 6

divym(0y) =

divy(k —m)(v) = |x[2 — g(m, k) — ug(F, V" f)

1. =2 — udf
+utdivg [u [V, ) + (k=) (w, ) + (k — 7) (0w, w) ——e—
( ( N —quVflz))

(7.102)
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Proof. We have

divy(k — 7)(v) = divy(k — m)(w) —u~'4/1 - u?|V f|2 divy(k —7m)(Y).

(7.103)

Replace k by (k — ) in Identity 2 to calculate divy(k — 7)(w). Next use
Identity 5 to evaluate Y¢div,7m(9,), and note that Y ?div,k(9,) = 0 as well as
k(Vf,Vu) =0 to find
divy(k — m)(v)
= |7T‘!27 - E(ﬂ-a k) + 2|7T(wa ) 521 - 2&(77(10’ ')a k(wa ))
vyl — ), ) + w((k — m)(w,w)) + (k — 7)(w,w) (Trym)
+utdivg(uV (Y1) — ug(k, Vo f). (7.104)
Next observe that

= |7T‘52;1 - 7'('(11)7 U))27

2 2
iy 42l —_—

§(7Tv k) + 25(7T(U), ')a k(w’ ) = g(ﬂ—v k) - W(fwa w)k(wv w)v
as well as the fact that Identity 3-3 together with gijﬁjYi = 0 imply
w((k —m)(w, w)) + (k = 7)(w, w)(Trgm + 7(w, w))

= u " divg(u(k — 7)(w, w)w)

= u 'divg (u(k —7)(w, w)Udf) . (7.106)

T

Combining (7.104)—(7.106) yields the desired result. O
Identity 7
B T2 2
R — |kl5 =167 (p — J(v)) + |k — [,
2
—|—;divg(uQ(')) + (Trym)* — (Tryk)? + 20(Trym — Tryk) (7.107)

where @ is the 1-form defined by

Q) =V F(7.) — FuT 1) + (k= m)(w. ) + (k — ), ) ——F
Ji- v
(7.108)
Proof. Recall the formula for R in (7.11), and observe that
divy R (u¥f) = %divg(uﬁ(uv £.9) = ug(h, V). (7.109)

Apply Identity 6 and solve for R — \E%. O
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8. Appendix B: Computations Related to Y¢

The purpose of this section is twofold. Namely, to give several equivalent ver-
sions of the equation satisfied by Y?, and to compare the prescribed asymp-
totics of Y¢ with examples from the extreme Kerr spacetime.

Recall the basic defining equation for Y¢

divg k(n) = 0. (8.1)

Let (p, ¢, %Z) denote Brill coordinates (3.1) for g, with corresponding Christoffel
symbols féj. By Lemma 2.1 and the fact that Jy4 is a Killing field

- g _ii=l o+ 151, _ _

kig = %jaiY¢7 971 gk = ikj (9391 — 3lgj¢) =0, (82)
so that

divgk(n) = 57V ki
—ii = =l + =l =
=g (ajkm — T Ty — Fj¢kli)

i 1 _ ] —
=g J (28J(u 1g¢¢8iY¢) — Fijkhﬁ)

g¢¢ —1ij 1 —iq —1
= _Fg J@juaiY¢ + %g J (6] (g¢¢8iY¢) — g¢¢Fij65Y¢>
Yo —ij 9o = =
=57 10;udY® + S (AgY? 4+ Vlog gse - VY?)
= % (A§Y¢ + Viog(u tgss) ~§Y¢) . (8.3)

Equation (8.3) may also be expressed explicitly in Brill coordinates.
Observe that

g = 62U—2a5pq7 gpaﬁ — _ApeQU—Qa7 (8 4)
pa=p, %g° =p 2 + V(AL 4 A2,
and B B
=", — Aydys),p =P Z e =7 1eV0 (8.5)
€p e D pU¢ ), D Py % €p p € Op, .
so that

= U—a /7 =z 27%
9(Ve,epez) = e (U5 — 24515 + AZL )

U-= (Y — — —Zdo —
= ( 5 (20595z = 0z95) + 7 ¢abgp¢)

—a —ZZ — — —Z 1 —a —ZZ
— VT AL (G (050 4= — O=09) +T d’aﬁgw)—ie[] A2G7 02946
= 0-(U —a)e’ °. (8.6)
Similarly

G(Ve.ez,e5) = 0,(U —a)e” (8.7)

and

_—y— —1 —U+ar ]- U—& —
9(Veyes:ep) = ggge TG, = —5e" "0, log ggo, p=1,7. (8.8)
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It follows that

ep P
pP=p,Z
> (eﬁ—aap(eU—aapW) — U2y (U —@)9,Y?
P=p,Z
1 2U —2a 1)
+§e 0p10g gpe0pY
. 1 or
= (eZU‘2“8§Y¢ + 5ew—map log g¢¢8pY¢> : (8.9)
P=p,Z
and
Viog(utgys) - VY? = Z U2 (g;(;apgw — uilﬁpu) Y%, (8.10)
p=p,Z
Hence

divg k(n) = g%j’ (AgY? 4+ Viog(u'ggs) - VY?)

_ 9o ™ 92y ¢ 3 —lg —uwlou)oye
= o > (ave 596¢ 9p9ss — U ~Opl | Op
p=pz
_ U NN g (g0 v 11
= p\U YGepp Yp : (8.11)
EN

We will now express (8.1) in terms of the metric g. Observe that
AFY? =g (0,Y? —TLOY?) + g9 (T, —T,)av? (8.12)
and
vlog(uflgw) VY? =399, log(uflgw)@jY‘b, (8.13)

where Fﬁj are Christoffel symbols for g. In Identity 1 of Appendix A the dif-
ference between Christoffel symbols is computed, so that

g, —T,)ave
= —w(Y?)Trgm + % | VfEVe-VY? —g7 f{(VY; = V;Y)0;Y?. (8.14)
In order to proceed, we will also need
Y' =YY= g7 (Y0 + IYI30if) = YOS5, + [Y3f, (8.15)
W2 f YO(SLT + fi6%) VIRV 9)2600,

_ - . (816
1+ u?|Vf[2 L+ u?|Vf2 * L+ u?|Vf2 (510

?ij _ gij
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It follows that

gij(ai .Y¢ _ Fl @Yd)) — gij _ u2fifj VQY'qﬁ((Q)z a)
J 1] 1 +U2|Vf|£2] » Y]
YO FITL OV VRV, a7 517
14+ u?|Vf|2 L+u?|VFZ 7

_uVf(Y?)(Trgr) N IVf2Ve - VY?
/1+U2|Vf|g 2(1+u2|Vf|3)
CIVIZV () VFY?)  2Y2(Y)T},0:f
21+ u?|Vf2)2 1+ u?|Vf[2
Yy VIZIVY 212 Yy(VF(V?))?

—ij (b _ T ¢ _
g](rij_rij)aly =

— 8.18
L+ u?|Vf2 L+u?|Vf2° (8.18)
and
2 £i g
V1 -1 VY? = (g4 — M 1 -1 Yo
V log(u 9¢¢) \Y (g 1+u2\Vf\§ i log(u g¢¢)aj

2 rl -1 i vé
— Viog(ugyy) - VY — LS 0108 900) 1OV

L+u?|Vf2
(8.19)
Next note that with the help of (2.34) and (8.16)
g i gooY?
Trom= (g0 — — 21 \p, 967
= (05 +u2Vf3) w2V

x( uVf(Y?) ) (Y¢)2|Vf|3( uly 0L ) (8.20)

Ji+avz ) LEeIVIAG e vrp

Therefore employing (8.17), (8.18), (8.19), (8.20), and the identity

1
5@1 — (YO)Th, + Yy (Y9) = wd, (8.21)
produces

A§Y¢ + ﬁlog(uilgw) . ﬁyq&

B 2 ri g orl
_ (QU_%> Vve - UMl gy
+ u?| f|g /1+u2|Vf\!2]

y u fifi 0; logu
LA N R ~ TP ) 9. Y. (8.22
(o7 - ey ) (Gomsee— g o o

We now record what has been shown.
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Lemma 8.1. The following equations are equivalent:

divg k(n) =0, (8.23)
AgY? + Vlog(utgse) - VY? =0, (8.24)
— 3 o, (uiga,Y?) =0 (8.25)
2\/94¢ P oo o '
p=p,z
- 2 rir7 ol
(9” -t 2) Ve - gy
1+ u?| VI3 J1+u| V2

. ulfifi 0;logu
w_ YT ) (g1 — 2 9;Y? =0. (8.26
+(9 1+u2|Vf|g>( o600 1+u2Vf|§> ’ 520

Lastly, the prescribed asymptotics (6.2)—(6.4) for Y¢ will be compared
with the example from the (extreme) Kerr spacetime. Recall that in Boyer—
Lindquist coordinates the Kerr metric takes the form

A a? sin? edtz n 4ma’7;sir12 odtdqﬁ

b
72 1 62)2 — Aa2sin2 by
(T o) —Aasin®b o pag? - gy vagr (827
n A
where
A =7 4a? - 2m7F, ¥ =7 + a®cos? 0. (8.28)

The event horizon is located at the larger of the two solutions to the quadratic
equation A = 0, namely 7 = m + vm?2 — a?. For r > r it holds that A > 0,
so that a new radial coordinate may be defined by

= %(~—m+x/E), (8.29)

or rather
- m? — a?
r=r+m-+ ——-,
4r
F=r+m,m?=d>

m* # a* (8.30)

Note that the new coordinate is defined for r > 0, and a critical point for
the right-hand side of (8.30) (m? # a?) occurs at the horizon, so that two
isometric copies of the outer region are encoded on this interval. Moreover the
t = 0 slice of the metric takes the form (5.1), showing that (r,¢,0) are an
appropriate set of Brill coordinates.

Observe that

2mar
V¢ — %%V, — — . 8.31
I (72 + a2)? — Aa?sin® 6 (8:31)
Therefore at spatial infinity
2
Ll N 00, (8.32)

r3



890 Y. S. Cha and M. A. Khuri Ann. Henri Poincaré

which is consistent with (6.2) since J = am. Furthermore
Y?=0(3), m?+#d® asr—0,

2 2
ﬁ +0(r), m?*=ad* asr—0. (8.33)

This is consistent with (6.4), but not (6.3). The reason for the inconsistency
is that the lapse function for the Kerr spacetime does not satisfy the required
asymptotics (5.3), whereas the lapse function for the extreme Kerr spacetime
does satisfy the desired asymptotics (5.4).

Y¢ — _

9. Appendix C: Boundary Terms

Consider the basic inequality (3.7). Under the hypotheses of Theorem 3.1 this
yields

m—MU,w) > —?lir&/uQ(v)dAg— iﬂ;iir%)/uQ(v)dA@ (9.1)

+

where 7 is the unit normal pointing towards M , for the coordinate spheres

end

Sr. Here (7, ¢,0) are spherical coordinates as in (5.1), but with respect to g.
The purpose of this section is to show that

lim [ uQ(P)dAg — lir%/uQ(ﬁ)dAg =8 Y(I)NT - T), (9.2)
Sy S
where Y(J) = lim,_o Y? asin (6.3), (6.4). Thus, the choice J = J guarantees
(3.13).
Recall that

QL) =V (V) =K@V f,) + (= m)(w, ) + (k= ) (w, w)y /1 + 2|V |2 udf.
(9.3)
It is clear from the asymptotics (2.31), (2.40) that the first term on the left-

hand side of (9.2) vanishes, so we will focus on the second term. In what
follows, it will be assumed that

klg + |k(Dg,)|g + [K(Dp, 0g)| < ¢ on M. (9.4)
Note also that (5.2)—(5.4) and (5.7)—(5.9) imply that
[7lg + [7(Dg, )lg + |(0p, 0g)| < ¢ on M, (9.5)
and
u—0, |Vflg—0 asr—0. (9.6)
Let us now consider terms in (9.3) when applied to 7. Since
uVyf4ulY

N
it follows that

k(w,7) = uw'k(Y,7) + O (u|Vf2|k(Y, )| + ulk(V f,7)|) . (9.8)
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Moreover -
(Y, D) < [Y?|[k(Dg, )3, (9.9)
and
k(9. )2 = g7 k' kejmn™
= |k‘(8¢, )|§ — 'r]lnmwiwjk'ilkjm + U72’I7l7]m?l?j kitkjm

< [k, )5 +u™2(Y?)?|k(Ds, 05) %, (9.10)
so that o
k(Y. 7)] < e(|k(Dg,)]g +u " [k(Ds, 0)))- (9.11)
Similarly
k(V£,D)] < c(klglV g +u™ kD, )V fly)- (9.12)
Hence -
k(w,7) = u" (Y, 7) + OV f,). (9.13)
Analogous computations show that
k(w,w) =u2k(Y,Y) + O(|V£,), (9.14)
and also
W(va) = uilﬂ-(?a P) + O(|Vf|g), ﬂ-(wvw) = u72ﬂ-(?7 ?) + O(|Vf|g)
(9.15)

We now have
QW) =V f(V,7) —uk(Vf,7) +u(k —7)(Y,7)
+u (k= m) (Y, Y)P(f) + O(Vfl,)- (9.16)
According to (7.16) and (7.47)

7(V,) = uy/1+ 2912 (T 1V, )+ u BT, ) — n(@,V)df),  (9.17)
so that
7V, 0) = uV f(V,7) + k(Y. 7) — n(V,V)0(f) + OW|Vfl,).  (9.18)

Combining this with (9.16), and the fact that k(V f,7) = 0 (as ¥ is the normal
for an axisymmetric surface), produces

QW) =u kY, ) +u k(Y Y)O(f) —u'k(Y,D) + O(|Vf]y).  (9.19)

In sum

lim [ uQ(v)dAg
S#
= %13(1) (k(Y,0) + k(Y,0)u(f) — k(Y,7) + O(u|V f|y)) dAg
S
=lim [ (k(Y,7) + k(Y Y)2(f) + O(ulVf],) dAg — 87¥T,  (9.20)
S

where the last line is obtained from the definition of angular momentum and
(2.30).
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In order to proceed, it will be necessary to express 7 in terms of quantities
associated with the metric g. Recall that (M,g) is embedded via a graph
t = f(x) in the spacetime (M x R,§ = g — 2Y;dz'dt — pdt?). Let S C M
be the natural lifting of S C M to the graph. The goal is to compute 7 in
terms of &, the unit normal to S pointing towards Metld. Observe that an
orthonormal frame for (M, g) is given by

_ U—a U
v=er=e" (0~ Ar0s), €5 = ———(05—Ag0y), ey=——=0s, (9.21)
T 7sin 6
and that
X;=¢ + ei(f)at, 1=, g, ¢, (922)

is a basis for the tangent space of (M, g). Thus, a normal to Sy may be written
as

¢ = X5+ CoXyg+ Cy Xy (9.23)
for some constants Cy, Cy. In order to calculate these constants, note that
0=g(¢, Xgs)
= 9(Xz + CgXg + Cp Xy, €4)
= 9(ex ()01, e) + Cqgleg(f)Or, e4) + C
= —er(f)Y (ep) — Cyeg(f)Y (e4) + Cop (9.24)
and
0=79(¢ Xp)
= 9(X5+ CyXg + Cs X, 5 + eg(f)0r)
= gler + ex([f)0s, eg + eg(f)Or) + Cygleg + ez(f)Or, eg + eg(f)0r)
+ Coeq(f)gleq, 0)
= —eg(f)Y (er) — ex(f)Y (e5) — per(f)eg(f)
+ Cg(1 — 2¢5(f)Y (eg) — peg(f)?) — Coeg(f)Y (es)
= —per(feg(f) + Cg(l — weg(f)?) — Coeg(f)Y (es), (9.25)

where in the last line the identity Y (er) = Y (ez) = 0 is used. Solving for Cy
and Cy yields

. wer(feg(f) | er(f)Y (en)
ST T (T T O
and hence
- & _ 1 —uQez(f)2
el ~ \ 1- v

y <y+u(f)8t + %Xe+ %X¢> . (9.27)
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Consider now the integrand on the right-hand side of (9.20). Since k(0;, -)
=0 and

Vg
1+u?|Vf|

lei()| < |V flz = <|Vflg, Y(egley =Y,

)

dA, = /1 —u?eq(f)2dAg, (9.28)

I

it follows that
(k(?, 7) + k(Y 7)?(]“)) dAgz = (k(?, &)+ O(u|Vf|g)) dA, as 7 — 0. (9.29)

Note also that the area |Sy| grows like 72 when M__, is asymptotically flat,
and is bounded when M_ , is asymptotically cylindrical. Therefore with the
help of the asymptotics (5.2)—(5.4) and (5.7)—(5.9)

liny [ uQ@)d; = lim [ (V) + O(ulV11,)) d4, - 87YT
S+ S+

= 87V(T — 7). (9.30)

10. Appendix D: Miscellaneous Formulae

In this section we will compute certain Christoffel symbols used in Sect. 6, and
record how the twist potential encodes angular momentum.

Christoffel symbols will be expressed in terms of the Brill coordinate
system (5.1), where p = rsin . Observe that components of the inverse metric
are given by

g'r'r _ 62U—2a7 909 _ T—2€2U—20¢7 g¢¢ — p_2€2U + €2U_2a(A$ + 7’_2A§),
(10.1)

gTG =0, gr¢ — _AT62U72a’ 9045 — _7,72A062U72a. (102)
It follows that

1
F:r — §€2U72aar(672U+2a 4 p2672UA72") - 62U72O¢AT8T(p2672UAT)’ (103)
1
1—150 _ §€2U72a [289(/_72672[]1474149) . ar(r2€f2U+2oc 4 p2672UA3)}
762U72QAT89([)2672UA9), (104)
r 1 —2a -
e —562[] 2 ar(pQG 2U)’ (]_05)
77:0 _ %e2U—2aae(e—2U+2a + p2€_2UA72«) o %€2U—20¢Ar
x [0r(p*e Y Ag) + Op(pe 2V A,)] (10.6)

' 1 — —
h = 5P T4 (P ), (10.7)
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1

e _ 1 5y on ~ _
g¢:_§e2U 2 Aﬂ%(p% 2U)—|-*€2U 2 [69(,026 QUA,.)—&.(er 2UA9)].

2
(10.8)

We now record how the twist potential encodes angular momentum.
Again, consider the coordinate system in (5.1). An orthonormal basis is given
by
U—«a eU
(89 — A98¢>7 €p =

r rsin 6
The twist potential may be calculated in terms of k£ by

1 .
Eaiw = eikd n'n™, (10.10)
where €;;; is the volume element of g. It follows that

e

er = eV 7%0, — A0y), ep= dg.  (10.9)

U—« 1
62r Opw = 569(&))
= _6(67“; €g, ed?)k(e?”’ e¢)|77|2

= —¢ Yk(e,,Dg)rsin, (10.11)

or rather
€2U—a

—————— Oyw. 10.12
22 sing % ( )

k;(er, 8¢) =

Hence, if there are only two ends

1 o
J=q /(kij — (Trk)gij)v'n’

(Wlr, —wlr). (10.13)
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