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Abstract. We prove the spacetime Penrose inequality for asymptotically flat 2(n+ 1)-dimensional

initial data sets for the Einstein equations, which are invariant under a cohomogeneity one action of

SU(n + 1). Analogous results are obtained for asymptotically hyperbolic initial data that arise as

spatial hypersurfaces in asymptotically Anti de-Sitter spacetimes. More precisely, it is shown that

with the dominant energy condition, the total mass is bounded below by an explicit function of the

outermost apparent horizon area. Furthermore, the inequality is saturated if and only if the initial

data isometrically embed into a Schwarzschild(-AdS) spacetime. This generalizes the only previously

known case of the conjectured spacetime Penrose inequality, established under the assumption of

spherical symmetry. Additionally, in the time symmetric case, we observe that the inequality holds

for 4(n+ 1)-dimensional and 16-dimensional initial data invariant under cohomogeneity one actions

of Sp(n+1) and Spin(9), respectively, thus treating the inequality for all cohomogeneity one actions

in this regime.

1. Introduction

In an effort to find a counterexample to the weak cosmic censorship conjecture [36], Penrose put
forward a precise inequality [37] relating the ADM mass m of an asymptotically flat 4-dimensional
spacetime to any cross-sectional area Ae of the event horizons it contains, in the form

(1.1) m ≥
√

Ae

16π
.

It is typical to reformulate this inequality in the setting of initial data sets. Consider a triple
(Md, g, k) consisting of a d-dimensional connected and orientable manifold Md with boundary, a
complete Riemannian metric g, and a symmetric 2-tensor k denoting the extrinsic curvature of
an embedding into spacetime, with all objects being smooth. These quantities must satisfy the
constraint equations

(1.2) 16πµ = R+ (Trgk)
2 − |k|2g, 8πJ = divg (k − (Trgk)g) ,

where R is scalar curvature, and µ, J represent the energy-momentum density of matter fields. We
will say that the dominant energy condition is satisfied if µ ≥ |J |g. Moreover, the data will be referred

to as asymptotically flat if outside a compact set C there is a diffeomorphism φ :Md \ C → Rd \B1,
such that in the Caretesian coordinates x provided by this map

(1.3) φ∗g − δ = O2(|x|−τ ), φ∗k = O1(|x|−τ−1), µ, J = O(|x|−2τ−2), Trgk = O1(|x|−2τ−1),

for some τ > d−2
2 . The additional decay on the trace of k is usually not included in the definition of

asymptotically flatness, but will be useful when working with the generalized Jang equation below.
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With these asymptotics the ADM energy and linear momentum are well-defined [5,16] and given by

(1.4) E=
1

2(d− 1)ωd−1
lim
r→∞

ˆ
Sr

(gij,i − gii,j)ν
jdV, Pi=

1

(d− 1)ωd−1
lim
r→∞

ˆ
Sr

(kij − (Trgk)gij)ν
jdV,

where Sr are coordinate spheres with unit outer normal ν and ωd−1 is the volume of the unit (d−1)-

sphere. The ADMmass is then the Lorentz length of the energy-momentum vector,m =
√
E2 − |P |2.

The role of the event horizon is replaced by that of an apparent horizon, which may be computed
directly from the initial data. Recall that the gravitational field’s strength near a hypersurface
Σ ⊂Md may be probed by the null expansions (null mean curvatures)

(1.5) θ± = HΣ ± TrΣk,

where HΣ denotes the mean curvature with respect to the normal pointing towards infinity. These
give the rate of change for area of a shell of light emanating from the surface in the outward fu-
ture/past direction (+/−). Future or past trapped surfaces are defined by the inequalities θ+ < 0 or
θ− < 0, respectively, and may be interpreted as lying within a region of strong gravity. When θ+ = 0
or θ− = 0 the surface is called a future or past apparent horizon; these naturally arise as boundaries
of future or past trapped regions [4]. Furthermore, such a surface will be called an outermost appar-
ent horizon if it is not enclosed by any other apparent horizon. The conjectured Penrose inequality
for general dimensions may then be recast as

(1.6) m ≥ 1

2

(
Ah

ωd−1

) d−2
d−1

whenever the dominant energy condition holds, where Ah is the smallest area required to enclose
the outermost apparent horizon. Equality should be achieved only for slices of the Schwarzschild
spacetime.

In the (Riemannian) time symmetric case when k = 0, the 3-dimensional Penrose inequality
has been confirmed by Huisken-Ilmanen [27] and Agostiniani-Mantegazza-Mazzieri-Oronzio [1] for
a single black hole via inverse mean curvature flow and p-harmonic functions repsectively, and by
Bray [7] for multiple black holes using a conformal flow. The latter approach has been generalized
by Bray-Lee [11] up to dimension 7. Within the context of the general spacetime setting, there are
very few results. In fact, for this regime the conjectured inequality has only been verified in the
spherically symmetric case [25, 32] with the rigidity statement also obtained in [9, 12], [30, Theorem
7.46]; these results hold in all dimensions.

In the present note we consider cohomogeneity one initial data sets. Recall that a Riemannian
manifold (Md, g) is said to have cohomogeneity one if a (compact connected) Lie group G acts by
isometries on Md such that the principal orbits G/H are of codimension one, where H is a principal
isotropy subgroup (for general initial data sets we also assume that k is invariant under the action
of G). Within the setting of interest, the manifold will be asymptotically flat or asymptotically
hyperbolic with an outermost apparent horizon boundary; note that smooth outermost apparent
horizons inherit the symmetries of the initial data from which they arise [12, Lemma 3.1] ([3, Theorem
8.1], [35]). Therefore, the principal orbit theorem implies that the orbit spaceMd/G is diffeomorphic
to a half line [0,∞) with the origin corresponding to the apparent horizon, and Md ∼= [0,∞)×G/H.
This is discussed further in Section 2, where it is also shown that the structure at infinity ensures that
the surfaces of homogeneity will be spheres. A classification of the possible homogeneous metrics
on spheres has been obtained by Ziller [41]. In addition to the standard round metric, there are
odd-dimensional cases corresponding to S2n+1 = SU(n+1)/SU(n), S4n+3 = Sp(n+1)/Sp(n), and a
homogeneous metric on S15 = Spin(9)/Spin(7). We will establish the spacetime Penrose inequality



THE SPACETIME PENROSE INEQUALITY FOR COHOMOGENEITY ONE INITIAL DATA 3

for the first of these cases in the asymptotically flat and asymptotically hyperbolic contexts, namely
for initial data of dimension d = 2(n+ 1), n ≥ 1 which are invariant under the action of SU(n+ 1).
Note that in contrast to the spherically symmetric case, this class of initial data includes those with
non-vanishing angular momentum, and there are explicit rotating black hole solutions arising from
data in this class, see Appendix B. To accomplish this goal we will exploit a method proposed by
Bray and the first author [9,10] which involves coupling inverse mean curvature flow to the so called
generalized Jang equation. In these higher dimensions, lack of the Gauss-Bonnet theorem presents
difficulties for monotonicity of Hawking mass, however in the current setting a fortuitous cancellation
occurs which allows the procedure to go through.

Theorem 1.1. Let (M2(n+1), g, k), n ≥ 1 be an asymptotically flat SU(n+ 1)-invariant initial data
set, with outermost apparent horizon boundary of area A. If the dominant energy condition is satisfied
then

(1.7) m ≥ 1

2

(
A

ω2n+1

) 2n
2n+1

,

and equality occurs if and only if the initial data arise from an isometric embedding into a Schwarzschild
spacetime.

Consider now asymptotically hyperbolic initial data relevant for asymptotically Anti-de Sitter
(AdS) spacetimes. Let (Hd, b) denote the d-dimensional hyperbolic space with metric expressed in
geodesic polar coordinates as b = dr2+(sinh2 r)gSd−1 . Recall that hyperbolic space arises as a totally
geodesic spacelike slice of the Anti-de Sitter (AdS) spacetime, (R×Hd,−(cosh2 r)dt2+ b). An initial
data set (Md, g, k) satisfying the modified constraints

(1.8) 16πµ = R+ (Trgk)
2 − |k|2g + d(d− 1), 8πJ = divg (k − (Trgk)g) ,

will be referred to as asymptotically hyperbolic if outside a compact set C there is a diffeomorphism
φ :Md \ C → Hd \B1 such that

(1.9) g := φ∗g − b = O2(e
−qr), φ∗k = O1(e

−qr), µ, J = O(e−2qr),

for q > d/2. The dominant energy condition in this setting is again expressed as µ ≥ |J |g. Initial
data satisfying (1.8) and (1.9) arise as spacelike hypesurfaces in asymptotically AdS spacetimes with

(negative) cosmological constant Λ = −d(d−1)
2 . Well-defined global Hamiltonian charges, interpreted

as the total energy-momentum for such data, were obtained by Chruściel-Nagy [17] (see also [34] and
the exposition in [13]). In particular, if U = cosh r denotes the time translation lapse function then
the total energy is given by

(1.10) Ehyp =
1

2(d− 1)ωd−1
lim
r→∞

ˆ
Sr

[U(divbg)− U(dTrbg) + (Trbg)dU − g(∇bU)] (νb)dV,

where νb is the unit outward normal (measured in b) to the coordinate spheres Sr. An analogous ex-
pression gives rise to the total linear momentum by replacing U with the lapse functions Ui = xi sinh r,
i = 1, . . . d defined on Hd, where xi are Cartesian coordinates restricted to the unit sphere Sd−1. A
version of the spacetime Penrose inequality is conjectured to hold in this asymptotically hyperbolic
setting [8, 14,22,33], and is relevant in the context of the gauge theory/gravity correspondence [20].
The inequality has been established in spherical symmetry by Engelhardt-Folkestad [19, Theorem 6],
Folkestad [21, Theorem 1], and Husain-Singh [28], with various hypotheses. Moreover, it has been
proved when k = 0 for small perturbations of the Schwarzschild-AdS manifold by Ambrozio [2] (see
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also [29]), and for graphs by Dahl-Gicquaud-Sakovich [18] and Girão-de Lima [24]. We prove the
following result.

Theorem 1.2. Let (M2(n+1), g, k), n ≥ 1 be an asymptotically hyperbolic SU(n+1)-invariant initial
data set, with outermost apparent horizon boundary of area A. If the dominant energy condition is
satisfied then

(1.11) Ehyp ≥ 1

2

(
A

ω2n+1

) 2n
2n+1

+
1

2

(
A

ω2n+1

) 2n+2
2n+1

,

and equality occurs if and only if the initial data arise from an isometric embedding into a Schwarzschild-
AdS spacetime.

A different type of asymptotically hyperbolic initial data, with second fundamental form k con-
verging to g rather than vanishing at infinity, appears naturally as asymptotically umbilic slices in
asymptotically flat spacetimes and are referred to as asymptotically hyperboloidal. In this setting,
the Penrose inequality [40] takes the form (1.7) instead of (1.11), and the case of equality should
give rise to an embedding into the Schwarzschild spacetime. This has also been established in spher-
ical symmetry by Hou [26], in the time symmetric graphical context by Girão-de Lima [23], and we
expect that the strategy outlined in [15] together with arguments of the current paper will yield the
SU(n+ 1)-invariant case as well.

Lastly, in the Riemannian asymptotically flat context, we are able to treat the Penrose inequality
for the full range of cohomogeneity one manifolds. In addition to the SU(n+ 1)-invariant case, this
also includes the Sp(n + 1) and Spin(9)-invariant cases. The proof will rely on a combination of
Bray’s conformal flow with inverse mean curvature flow.

Theorem 1.3. Let (Md, g), d ≥ 3 be a cohomogeneity one Riemannian manifold which is asymptot-
ically flat, with outermost minimal surface boundary. If the scalar curvature is nonnegative R ≥ 0,
then inequality (1.6) holds. Moreover, equality is achieved if and only if the manifold is isometric to
the canonical slice of a Schwarzschild spacetime.

This article is organized as follows. In Section 2 we describe cohomogeneity one initial data sets
in detail, while in Section 3 existence is established for the coupled Jang-IMCF system of equations
in this setting. The proofs of Theorems 1.1, 1.2, and 1.3 are then given in Sections 4, 5, and 6.
Finally, two appendices are provided with the first showing that linear momentum vanishes in the
asymptotically flat case, and the second exhibiting examples of relevant initial data.

Acknowledgements. The authors would like to thank McKenzie Wang for helpful comments.

2. Cohomogeneity One Initial Data Sets

Consider a cohomogeneity one Riemannian manifold (Md, g) which is asymptotically flat or asymp-
totically hyperbolic, and possesses a smooth outermost apparent horizon boundary. If G is the
compact connected Lie group of isometries giving rise to the cohomogeneity one structure, then as
discussed in the introduction the manifold is diffeomorphic to a product Md ∼= [0,∞)×G/H, where
H is a principal isotropy subgroup. To see this, first note that smooth outermost apparent hori-
zons inherit the symmetries of the initial data from which they arise [12, Lemma 3.1] ([3, Theorem
8.1], [35]), more precisely ∂Md is left invariant by G. Therefore, we have a well-defined G-action
on Md \ ∂Md, and may then apply the principal orbit theorem to conclude that the orbit space
(Md \ ∂Md)/G is diffeomorphic to a open half line (0,∞), with the origin corresponding to the
apparent horizon, and thus Md \ ∂Md ∼= (0,∞)× G/H. The desired conclusion now follows.
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We next claim that in light of the asymptotics, the orbits G/H must topologically be the sphere
Sd−1. Note that if s : Md → R+ is the distance function to the boundary ∂Md, then g = ds2 + gs
where gs is a 1-parameter family of G-invariant metrics on G/H. Let Σs denote the s-level set, then
there exists a sufficiently large s0 such that Σs0 lies completely within the asymptotic end Md \ C. If
not, then there exists a sequence of distances si → ∞ with |si−sj | > 1 for i ̸= j such that Σsi∩C ≠ ∅.
Since C is compact, a sequence of points pi ∈ Σsi ∩ C must have a convergent subsequence. However
this contradicts |si− sj | > 1, and we conclude that there is a Σs0 ⊂Md \C. Because Σs0 is compact,

there exists a large coordinate sphere Sr0 ⊂ Rd whose preimage under the asymptotic diffeomorphism

φ separates Σs0 from infinity. Let Ω̃s0r0 be the image of Ωs0r0 inside Rd \ B1, where Ωs0r0 is the
region bounded between Σs0 and φ−1(Sr0). By flowing along radial lines in Rd, we may continuously

deform Ω̃s0r0 into Sr0 . This induces a deformation retract of Md
s0 onto Md

r0 , where these are the

closure of the noncompact component of Md \ Σs0 and Md \ φ−1(Sr0), respectively. Since Md
s0 is

homotopy equivalent to Σs0 and Md
r0 is homotopy equivalent to φ−1(Sr0), it follows that Σs0 is a

homotopy sphere. Therefore, by the resolution of the generalized Poincaré conjecture we have that
G/H = Σs0 is homeomorphic to the standard sphere Sd−1. Moreover, since exotic spheres do not
admit smooth homogeneous space structures [39, Theorem 1.1], it follows that G/H is diffeomorphic
Sd−1.

The classification of homogeneous metrics on spheres has been given by Ziller [41, page 352]. In all
dimensions there is a unique SO(d)-invariant metric (up to homothety) on Sd−1 = SO(d)/SO(d− 1),
of constant curvature. This leads to spherically symmetric initial data, a setting in which the
spacetime Penrose inequality has already been established. In odd dimensions the Hopf fibrations
S1 ↪→ S2n+1 → CPn give rise to a 1-parameter family or 2-parameter family of SU(n+ 1)-invariant
metrics on S2n+1 = SU(n+1)/SU(n) depending on whether n > 1 or n = 1, respectively. For n > 1,
these metrics have an extra U(1) symmetry, and will be discussed in detail below. The remaining
cases include a 3-parameter family of metrics on S4n+3 = Sp(n+1)/Sp(n) and a 1-parameter family
of metrics on S15 = Spin(9)/Spin(7) up to homothety, which will be examined further in Section 6.

In what follows, an initial data set (Md, g, k) will be referred to as G-invariant if the Riemannian
manifold (Md, g) is cohomogeneity one with respect to G, and the Lie derivative vanishes Lηk = 0
for any Killing field η associated with the isometries of g.

2.1. SU(n + 1)-invariant initial data, n > 1. The 1-parameter family of Berger metrics on the
‘squashed’ sphere S2n+1 are given by

(2.1) gλ = λ(dψ +A)2 + gFS ,

where ψ is a 2π-periodic coordinate on the circles of the Hopf fibration, gFS is the Fubini-Study
metric on CPn scaled so that Ric(gFS) = 2(n + 1)gFS , and A is a connection 1-form such that
ω = dA/2 is the associated Kähler form. The normalization is chosen so that g1 is the unit round
metric on S2n+1. Note that the squashing parameter λ controls the size of the S1 fibers in the
fibration, and the metric (2.1) is invariant under the U(1) isometry generated by the Killing field ∂ψ.
Moreover, since the round metric inherits the subgroup of isometries SU(n+ 1) from Cn+1 and the
action descends by isometries to the complex projective space quotient, we find that Lη(dψ+A) = 0
for any Killing field η associated with the SU(n + 1) symmetry. It follows that the Berger metrics
inherit this symmetry, and they are the building blocks of SU(n+ 1)-invariant initial data.

Proposition 2.1. Let n > 1. Consider an asymptotically flat or asymptotically hyperbolic SU(n+1)-

invariant initial data set (M2(n+1), g, k), with outermost apparent horizon boundary. ThenM2(n+1) ∼=
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[0,∞)× S2n+1 and the metric and extrinsic curvature take the form

g =ds2 + ρ(s)2
[
e−4nB(s)(dψ +A)2 + e2B(s)gFS

]
,

k =kads
2 + 2ksρe

−2nBds(dψ +A) + ρ2
[
kbe

−4nB(dψ +A)2 + kce
2BgFS

]
,

(2.2)

for some smooth functions B, ka, kb, kc, ks, and ρ > 0 of s alone. In an asymptotically flat end

(2.3) ρ(s) = s+O2(s
1−τ ), B = O2(s

−τ ), ka, kb, kc, ks = O1(s
−τ−1), Trgk = O1(s

−2τ−1),

while in an asymptotically hyperbolic end

(2.4) ρ(s) = sinh s+O2(e
(1−q)s), B = O2(e

−qs), ka, kb, kc, ks = O1(e
−qs).

Proof. According to the discussion at the beginning of this section, and the classification of [41], the

manifold is topologically M2(n+1) = [0,∞)× S2n+1 and the metric is given by

(2.5) g = ds2 + P (s)2(dψ +A)2 +Q(s)2gFS

for some smooth positive functions P (s) and Q(s). We may then set

(2.6) ρ(s) :=
[
P (s)Q(s)2n

] 1
2n+1 , eB(s) :=

(
Q(s)

P (s)

) 1
2n+1

,

so that

(2.7) Q(s) = eB(s)ρ(s), P (s) = e−2nB(s)ρ(s).

The desired expression for the metric now follows.
Consider now the structure of k. It is useful to introduce the orthonormal coframe

(2.8) e1 = ds, e2 = ρ(s)e−2nB(s)(dψ +A), ei = ρ(s)eB(s)êi, i = 3, . . . , 2(n+ 1),

where êi are members of an orthornoaml coframe for the Fubini-Study metric. The dual basis vectors
are given by

(2.9) e1 = ∂s, e2 = ρ(s)−1e2nB(s)∂ψ, ei = ρ(s)−1e−B(s) (êi −A(êi)∂ψ) .

We may then expand the extrinsic curvature as k = kije
i⊗ej for some symmetric matrix of functions

kij, with i, j = 1, . . . , 2(n+ 1). First observe that kij has no dependence on ψ, since the Killing field
∂ψ commutes with the frame (2.9). Next, note that gFS is the unique SU(n + 1)-invariant metric
(up to a scaling) on CPn. This implies that there can be no nontrivial SU(n+ 1)-invariant 1-forms
σ on CPn, for otherwise gFS + λσ2 would produce another invariant family of metrics. It follows
that an invariant k cannot contain terms of the form e1 ⊗ ei or e2 ⊗ ei for any i > 2. To see this,
write kℓie

1 ⊗ ei = eℓ⊗Kℓ where Kℓ = kℓie
i and ℓ = 1, 2. Let η be a Killing field associated with the

SU(n + 1) symmetry, then Lη(e
ℓ ⊗Kℓ) = eℓ ⊗ LηKℓ. However, since LηKℓ is a linear combination

of ei for i > 2, there is no possibility of canceling this term with any other expression in Lηk. We
then have that LηKℓ = 0. Thus, Kℓ is a SU(n + 1)-invariant 1-form as η was arbitrary, so that
Kℓ = 0. From this, one may further conclude that k11, k12, and k22 depend only on s, and that
α =

∑
i,j>2 kije

i⊗ ej is SU(n+1)-invariant. The latter statement implies that α must be a multiple
of gFS , otherwise for small ε the expression gFS + εα would furnish an invariant metric on CPn in
violation of the uniqueness property of the Fubini-Study metric. Putting this all together yields the
desired structure for k.

Lastly, to obtain the fall-off in (2.3), write the Euclidean metric of (1.3) in polar form with the
coordinate spheres expressed with respect to the Hopf fibration, and compare with the coefficients of
φ∗g. This gives relations between the two sets of coordinates and the quantities ρ, B, from which the
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desired decay may be derived. An analogous procedure applies to the extrinsic curvature. Moreover,
the asymptotically hyperbolic case is treated similarly. □

It will be useful to record some facts about the class of metrics (2.2). First note that the s-level
set spheres Σs have volume form

(2.10) dVΣ = ρ2n+1dψ ∧ dVCPn = ρ2n+1dVS2n+1 ,

and scalar curvature

(2.11) RΣ = −2nP 2

Q4
+

4n(n+ 1)

Q2
= −2n

ρ2

(
e−4(n+1)B − 2(n+ 1)e−2B

)
,

while the scalar curvature of g as expressed in (2.5) is given by

(2.12) R = −4nQ′′

Q
− 2P ′′

P
− 2nP 2

Q4
− 4nP ′Q′

PQ
+

4n(n+ 1)

Q2
− 2n(2n− 1)Q′2

Q2

where the prime notation indicates differentiation with respect to s. Furthermore

(2.13) Trgk = ka + kb + 2nkc, TrΣk = kb + 2nkc,

and the mean curvature of the level sets is

(2.14) HΣ = (2n+ 1)
ρ′

ρ
.

2.2. SU(2)-invariant initial data. For n = 1, S3 is diffeomorphic to the Lie group SU(2) and hence
there exist homogeneous metrics invariant under the left or right action of SU(2) that do not possess
the enhanced U(1) isometry. Consider the following right-invariant 1-forms [31, Appendix A]

(2.15) σ1 = sinψdθ − cosψ sin θdϕ, σ2 = cosψdθ + sinψ sin θdϕ, σ3 = dψ + cos θdϕ,

where θ ∈ (0, π), ϕ ∈ (0, 2π), and ψ ∈ (0, 4π). These satisfy dσi = −1
2ϵijkσ

j ∧σk, where ϵijk is totally
antisymmetric and ϵ123 = 1. We then have the following SU(2)-invariant metrics on the 3-sphere
gSU = hijσ

iσj , in which h is a constant positive definite matrix. Note that hij = 1
4δij gives rise

to the unit round metric. Furthermore, an orthogonal frame may be obtained with a diagonalizing
O ∈ SO(3) by setting σ̂i → Oijσ

j . It follows that

(2.16) gSU =
1

4

(
c21(σ̂

1)2 + c22(σ̂
2)2 + c23(σ̂

3)2
)
,

where ci > 0 are positive constants. The Berger class of SU(2)× U(1)-invariant metrics is obtained
by setting c1 = c2; in this case the additional Killing field is given by ∂ψ. A computation shows that
the volume form is dVgSU = c1c2c3dVgS3 , and the scalar curvature is given by

(2.17) RSU =
2

c21c
2
2c

2
3

(
2c21(c

2
2 + c23)− c41 − (c22 − c23)

2
)
.

Consider now SU(2)-invariant initial data (M4, g, k) satisfying the hypotheses of Proposition 2.1.
Then M4 ∼= [0,∞)× S3, the metric takes the form

(2.18) g = ds2 +
1

4

(
c21(s)(σ̂

1)2 + c22(s)(σ̂
2)2 + c23(s)(σ̂

3)2
)

where σ̂i also depends on s but only through the orthogonal transformation O, and the extrinsic
curvature may be expressed as

(2.19) k = ka(s)ds
2 + 2k̂i(s)e

ids+ k̂ij(s)e
iej
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for some smooth functions ka, k̂i, and k̂ij of s alone, where ei(s) = (ci(s)/2)σ̂
i is an orthonormal

frame for each coordinate sphere. Moreover, as in the proof of Proposition 2.1, it may be shown that
in an asymptotically flat end

(2.20) ci(s) = s+O2(s
1−τ ), ka(s), k̂i(s), k̂ij(s) = O1(s

−τ−1),

while in an asymptotically hyperbolic end

(2.21) ci(s) = sinh s+O2(e
(1−q)s), ka(s), k̂i(s), k̂ij(s) = O1(e

−qs).

3. The Cohomogeneity One Generalized Jang Equation

The goal of this section is to obtain existence and asymptotics for solutions of a coupled system
involving inverse mean curvature flow and the generalized Jang equation, in the setting of SU(n+1)-

invariant initial data sets (M2(n+1), g, k). Recall that the generalized Jang equation [9,10] associated
with the data set is given by

(3.1)

(
gij − ϕ2f if j

1 + ϕ2|∇f |2

)(
ϕ∇ijf + ϕifj + ϕjfi√

1 + ϕ2|∇f |2
− kij

)
= 0,

where f i = gijfj , fj = ∂jf , and ∇ is the Levi-Civita connection. Utilizing the structure of the metric
and extrinsic curvature from Proposition 2.1, and assuming that ϕ, f are functions of s alone, we
find that this equation is equivalent to

(3.2) v′ +
(2n+ 1)ρ′

ρ
v +

(
ϕ′

ϕ
v − ka

)
(1− v2)− kb − 2nkc = 0,

where prime indicates differentiation with respect to s and

(3.3) v =
ϕf ′√

1 + ϕ2f ′2
.

Since inverse mean curvature flow emanating from a SU(n + 1)-invariant apparent horizon remains
SU(n + 1)-invariant, following the proposal in [9, 10] to couple the generalized Jang equation with
inverse mean curvature flow leads to

(3.4) ϕ =
dρ

ds̄
=
√

1− v2ρ′ =

(
|Σs̄|
ω2n+1

) 1
2n+1 H̄

2n+ 1
,

where Σs̄ is the s̄-level set surface with mean curvature H̄ with respect to the Jang metric ḡ =
g + ϕ2df2, |Σs̄| is the area, and s̄ is the corresponding radial arclength parameter

(3.5) s̄ =

ˆ s

0

√
1 + ϕ2f ′2 =

ˆ s

0

1√
1− v2

.

This choice of ϕ ensures monotonicity of the Hawking mass along inverse mean curvature flow in the
Jang manifold (M2(n+1), ḡ).

The boundary of the initial data is assumed to be an outermost apparent horizon, and therefore
we must have

(3.6) 0 < θ± = H ± TrΣsk = (2n+ 1)
ρ′

ρ
± (kb + 2nkc)

for s > 0, and θ+(0) = 0 and/or θ−(0) = 0 depending on whether Σ0 = ∂M2(n+1) is a future and/or
past horizon. It follows that the g-mean curvature of radial surfaces is positive H = 1

2(θ+ + θ−) > 0
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away from the boundary, and hence on this region ϕ > 0 as long as f ′ is bounded. Inserting the
expression (3.4) for ϕ into the generalized Jang equation (3.2) and rearranging terms produces

(3.7) (1− v2)v′ + (1− v2)F∓(s, v)± θ∓ = 0,

where

(3.8) F∓(s, v) := ∓(2n+ 1)

1± v

ρ′

ρ
+
vρ′′

ρ′
− ka.

Remark 3.1. The above computations have been performed for SU(n + 1)-invariant initial data
with n > 1. In particular, Proposition 2.1 has been utilized. For the special case when n = 1, we
may appeal to Section 2.2 to obtain an analogous equation (3.7). In what follows we will treat the
two cases simultaneously without noting differences when n = 1, as the modifications needed for this
dimension are straightforward.

Theorem 3.2. Let (M2(n+1), g, k), n ≥ 1 be an asymptotically flat or asymptotically hyperbolic
SU(n+1)-invariant initial data set, with outermost apparent horizon boundary. If the boundary mean
curvature satisfies H(0) ̸= 0, then given α ∈ (−1, 1) there exists a unique solution v ∈ C1([0,∞)) ∩
C∞((0,∞)) of (3.7) such that −1 < v(s) < 1 for s > 0 and v(0) = α. This remains true when

α = ±1 if ∂M2(n+1) is a past (future) apparent horizon, respectively. If H(0) = 0, then the same
existence statement holds with v(0) = 0 and v ∈ C0([0,∞))∩C∞((0,∞)). Furthermore, in all cases
the solution admits the following decay

(3.9) |v(s)|+ s|v′(s)| ≤ Cs−2τ0

in the asymptotically flat setting for any τ0 < min{τ, n+ 1
2}, and the decay

(3.10) |v(s)|+ |v′(s)| ≤ Ce−q0s

in the asymptotically hyperbolic setting for any q0 < min{q, 2n+2}, where C is a constant depending
on g (up to second derivatives) and k as well as on τ0 or q0, respectively.

Proof. Assume first that the initial data are asymptotically flat. Consider the case when v(0) = α
with |α| < 1 and H(0) ̸= 0. By standard methods there exists a C1 solution on some maximal
interval [0, s̄) of nonzero length. We claim that the solution must satisfy the basic uniform pointwise
bound

(3.11) |v(s)| < 1 for all s.

To see this, proceed by contradiction and assume that the estimate fails, then there exists a first
s0 > 0 such that v(s0) = ±1. Without loss of generality we may take v(s0) = 1, then there is an
increasing sequence si → s0 with v′(si) ≥ 0 and |v(si)| < 1. It follows that

(3.12) 0 ≤ lim
i→∞

(1− v2)v′(si) = lim
i→∞

[
−θ−(si)− (1− v2)F−(si, v(si))

]
= −θ−(s0) < 0,

which yields a contradiction. We conclude that (3.11) is valid. In fact, this estimate may be improved.
Observe that since H(0) > 0, with the help of Proposition 2.1 and the discussion preceding this
theorem, we have that ρ′(s) ≥ c globally for some constant c > 0. Thus, there exists a positive radial
function F̄− satisfying

(3.13) |F−(v, s)| ≤ F̄−(s) ≤
c1

1 + s
for all s ∈ [0,∞) whenever v(s) ≥ 0,

for some constant c1. If ∂M2(n+1) is not a past apparent horizon, that is θ−(0) > 0, then there
exists a constant δ > 0 such that F̄−(s)

−1θ−(s) > δ; the constant may also be chosen small enough
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to satisfy v(0) = α <
√
1− δ. If s1 is the first point at which v(s1) =

√
1− δ then v′(s1) ≥ 0 and

consequently

(3.14) 0 ≤ −θ−(s1) + (1− v2(s1))F̄−(s1),

which implies that 1 − v2(s1) > δ yielding a contradiction. We conclude that v(s) <
√
1− δ at all

points, and a similar argument with F− replaced by F+ provides a lower bound when ∂M2(n+1) is
not a future apparent horizon. If ∂M2(n+1) is a past apparent horizon, that is θ−(0) = 0, then since
θ− ≥ 0 we have

(3.15) v′(s) = −θ−(s)(1− v2(s))−1 − F−(s, v(s)) ≤ F̄−(s) ≤ c1

whenever v is nonnegative. It follows that v(s) ≤ c1s+α for s ∈ [0, s̄1) where s̄1 = min{s̄, c−1
1 (1−α)}.

Since θ− is strictly positive at s̄1/2, by applying the same arguments in the non-past apparent horizon
case to the region s ≥ s̄1/2, we find that globally v(s) <

√
1− δ for some δ > 0 depending on α. As

before, analogous arguments with F− replaced by F+ yield a lower bound when ∂M2(n+1) is a future
apparent horizon. Therefore, in all cases

(3.16) |v(s)| <
√
1− δ

on the domain of existence. These pointwise estimates imply uniform control on first derivatives
immediately from equation (3.7). The function v is then uniformly continuous, and thus has a
unique and continuous extension to [0, s̄]. By differentiating the equation, the same holds true for
all derivatives of v. Hence the solution has an unrestricted domain, that is v ∈ C∞([0,∞)).

Consider now the case when α = 1, ∂M2(n+1) is a past apparent horizon, and H(0) ̸= 0. Observe
that for −3

2 ≤ w ≤ 1
2 or equivalently |v| ≤ 1 equation (3.7) may be expressed as

(3.17) (1 + v(w))w′ = −θ− + F−(s, v(w))
(
1− 2w − 2

√
1− 2w

)
,

where w = v − v2

2 and v(w) = 1 −
√
1− 2w. Notice that (3.17) is no longer degenerate in that the

principal symbol does not vanish. To produce a solution in the required range, we may take a limit
of solutions wε with initial condition wε(0) =

1
2 − ε. Due to the nondegeneracy of this equation and

the estimate (3.16), the solution w := limε→0wε is C
1 up to the boundary, and satisfies −3

2 ≤ w ≤ 1
2 .

In fact, since θ−(s) > 0 for s > 0 we must have that w(s) < 1
2 for s > 0; similarly, replacing the F−

with F+ as before shows that also w(s) > −3
2 . It may further be shown that the corresponding v

has continuous first derivatives up to the boundary. To see this rewrite equation (3.7) once more as

(3.18) (u+ F−)u
′ = 2vθ−,

where u = 1 − v2 − F− and F− =
´ s
0 2vF−. Integrating (3.18) and then dividing by s2 yields a

quadratic equation for u/s, with coefficients that have finite limits as s→ 0. This implies existence
of the first derivative for v at s = 0, which may be found as the nonpositive solution of

(3.19) 2v′(0)2 + 2F−(0)v
′(0)− θ′−(0) = 0.

It follows that v ∈ C1([0,∞)) ∩ C∞((0,∞)) satisfies (3.7) with v(0) = 1. An analogous argument

shows that one may solve the equation with v(0) = −1 when ∂M2(n+1) is a future apparent horizon.
Lastly, consider the case when H(0) = 0. The primary difference in this situation concerns the

functions F∓, namely they must blow-up at the boundary due to the term v ρ
′′

ρ′ , unless v(0) = 0.

Thus, in this case we will only consider the initial condition v(0) = 0. Note that with this condition,
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the principal part of the equation is nondegenerate near s = 0, however there is a singular behavior
in the coefficients:

(3.20) v′ +
ρ′′

ρ′
v = ka +

(2n+ 1)ρ′

(1 + v)ρ
− θ−

1− v2
.

Approximate solutions vε ∈ C∞([ε, 1)), with vε(ε) = 0 and |vε| < 1, may be obtained with uniform
estimates on compact subsets of (0, 1) as ε→ 0. Thus, a diagonal argument ensures subconvergence
to a solution v ∈ C∞((0, 1)). Using the inverse of the linear operator on the left-hand side of (3.20),
we find that the limit function may be represented by v(s) = ρ′(s)−1

´ s
0 ρ

′u where u is uniformly
bounded. It follows that the solution is continuous up to the boundary with v(0) = 0, and this may
then be extended globally using the methods above, so that v ∈ C0([0,∞)) ∩ C∞((0,∞)).

Finally, it will be shown that v has the correct asymptotics at infinity. Recall that we have already
assumed the asymptotically flat hypothesis. By the fall-off conditions (2.3) and the estimate (3.16),
we may write equation (3.7) as

(3.21) v′ +
(2n+ 1)s−1

1− v2
v = O(s−2τ−1 + s−τ−1|v|), s ≥ s0 > 0.

The solution on this exterior region can then be represented by

(3.22) v(s)=exp

(
−
ˆ s

s0

(2n+ 1)r−1

1− v2
dr

)[ˆ s

s0

O(r−2τ−1+r−τ−1|v|) exp
(ˆ r

s0

(2n+ 1)t−1

1− v2
dt

)
dr+v(s0)

]
.

From this it follows that v decays to zero polynomially. To estimate the rate, choose any positive
τ0 < min{τ, n + 1

2} and denote the exponential function inside the integral as E(r). Note that

r−2τ0E(r) is increasing for r ≥ s0 if s0 is large enough. Then extracting this function from the
integral at its maximum value shows that the term involving O(r−2τ−1) decays on the order of s−2τ0 ;
clearly also the last term involving v(s0) decays at this rate as well. For the term involving |v|,
extracting r−τ0E(r) in the same way yields decay for v on the order of s−τ0 . Inserting this estimate
back into the same term and extracting r−2τ0E(r) produces the desired decay, namely, with the help
of (3.21) for the derivative fall-off we find that

(3.23) |v(s)|+ s|v′(s)| ≤ Cs−2τ0

for some constant C.
Assume now that the initial data are asymptotically hyperbolic. Only a slight modification of

the above arguments is needed to obtain global existence of a solution satisfying the required initial
conditions. More precisely, in this case F− = −(2n+1)+O(e−2s) and θ− = 2n+1+O(e−2s) in the
asymptotic end, and therefore the function F̄−(s) used in (3.13)-(3.15) should be taken instead to be
a large constant. Consider now the asymptotics of the solution, and with the help of (2.4) rewrite
equation (3.7) as

(3.24) v′ +

(
(2n+ 1)ρ′

(1− v2)ρ
+
ρ′′

ρ′

)
v = O(e−qs + e−qs|v|), s ≥ s0 > 0.

The solution on this exterior region can then be represented by

(3.25) v(s) = e
−
´ s
s0

A(r)dr
(ˆ s

s0

O(e−qr + e−qr|v|)e
´ r
s0

A(t)dt
dr + v(s0)

)
, A(s) =

(2n+ 1)ρ′

(1− v2)ρ
+
ρ′′

ρ′
.

From this it follows that v decays to zero exponentially. Since A(s) = 2n + 2 + o(1), an argument
analogous to that in the asymptotically flat case may be used to obtain

(3.26) |v(s)|+ |v′(s)| ≤ Ce−q0s,
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for any q0 < min{q, 2n+ 2}. □

4. Proof of Theorem 1.1: Asymptotically Flat Penrose Inequality

Here we will establish the spacetime Penrose inequality for asymptotically flat SU(n+1)-invariant
initial data sets. This will be accomplished with an averaged monotonicity for the Hawking mass
along inverse mean curvature flow within the Jang deformed manifold. A crucial observation in this
setting, which replaces the use of Gauss-Bonnet, is that the scalar curvature of the leaves cannot
be ‘too large’. Let Σ ⊂ (Md, g) be a smooth hypersurface in a d-dimensional Riemannian manifold,
then the Hawking mass of Σ is given by

(4.1) mH(Σ) :=
1

2

(
|Σ|
ωd−1

) d−2
d−1

1− 1

(d− 1)2ω
2

d−1

d−1 |Σ|
d−3
d−1

ˆ
Σ
H2dV

 ,
where H is the mean curvature of Σ and |Σ| denotes its area. If {Σt}∞t=0 denotes a smooth inverse
mean curvature flow, then a direct computation (see e.g. [30, Theorem 4.27] for the case d = 3)
shows that

d

dt
mH(Σt) =

1

2

(
|Σt|
ωd−1

) d−2
d−1

d− 2

d− 1
− 1

(d− 1)2ω
2

d−1

d−1 |Σt|
d−3
d−1

ˆ
Σt

RΣdV


+
1

2

(
|Σt|
ωd−1

) d−2
d−1 1

(d− 1)2ω
2

d−1

d−1 |Σt|
d−3
d−1

ˆ
Σt

(
|∇ΣH|2

H2
+ |II|2 − H2

d− 1
+R

)
dV,

(4.2)

where RΣ is the scalar curvature and II is the second fundamental form of Σt.

Proposition 4.1. Let (M2(n+1), g) be an asymptotically flat or asymptotically hyperbolic SU(n+1)-
invariant Riemannian manifold with outermost minimal surface boundary, for n ≥ 1. If Σ is a level
set of the distance function to the boundary then

(4.3)

ˆ
Σ
RΣdV ≤ cn|Σ|

2n−1
2n+1 ,

where cn = 2n(2n+ 1)ω
2

2n+1

2n+1. Moreover, equality is achieved if and only if Σ is a round sphere.

Proof. Consider first the case n > 1. According to Proposition 2.1, (2.10), and (2.11) we have

(4.4) 2n+ 1− 1

2nω
2

2n+1

2n+1|Σ|
2n−1
2n+1

ˆ
Σ
RΣdV = 2n+ 1 + e−4(n+1)B(s) − 2(n+ 1)e−2B(s).

Setting ϱ = e−2B yields the polynomial

(4.5) In(ϱ) = 2n+ 1 + ϱ2(n+1) − 2(n+ 1)ϱ.

This function satisfies In(0) = 2n+ 1, it monotonically decreases on (0, 1) to a minimum In(1) = 0,
and then increases monotonically for ϱ ≥ 1. It follows that (4.4) is always nonnegative, and vanishes
only when B = 0 which coincides with a round Σ.

Consider now the case n = 1. According to Section 2.2 we have

(4.6) 3− 1

2ω
2/3
3 |Σ|1/3

ˆ
Σ
RΣdV = 3− 1

(c1c2c3)4/3
[
2c21(c

2
2 + c23)− c41 − (c22 − c23)

2
]
.
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Since this quantity is invariant under rescalings of the metric, we may set c3 = 1 and rearrange terms
to find that it becomes

(4.7) I1(c1, c2) = 3 +
(1− c21 − c22)

2

(c1c2)4/3
− 4(c1c2)

2/3.

In the first quadrant c1, c2 > 0 this function has a local minimum I1(1, 1) = 0, which corresponds
to the round metric, and there are no other critical points on this domain. Limits to the c1 and
c2-axes are infinitely positive, except at the two points (c1, c2) = (1, 0) or (0, 1) where the limit is 3.
Moreover, limits to infinity are also infinitely positive, except in one direction when c1 = c2 where
the limit is 3. It follows again that (4.4) is nonnegative, and vanishes only for a round Σ. □

This proposition shows that the first line of (4.2) is nonnegative along a SU(n+1)-invariant inverse
mean curvature flow. When combined with weak nonnegativity of the scalar curvature for the Jang
deformation, it will lead to an averaged monotonicity for Hawking mass in the Jang setting. The
next result gives the expected upper bound for the limiting Hawking mass in terms of the ADM
energy E. In dimension three this has been established [30, Proposition 4.52], [27, Lemma 7.4] using
the Gauss-Bonnet Theorem. Here we avoid the need for Gauss-Bonnet with help from the proof of
Proposition 4.1.

Proposition 4.2. Let (M2(n+1), g) be an asymptotically flat SU(n+1)-invariant Riemannian man-
ifold with outermost minimal surface boundary, for n ≥ 1. If Σs denotes the surface of distance s
from the boundary, then

(4.8) lim
s→∞

mH(Σs) ≤ E.

Proof. We will closely follow the arguments of [30, Proposition 4.52]. Taking two traces of the Gauss
equations along Σs yields

(4.9) H2 = 2Ric(ν, ν)−R+RΣ + |II|2,

where ν is the unit normal pointing towards infinity. Let d = 2(n + 1) and note that by Cauchy-
Schwarz (d− 1)|II|2 ≥ H2, therefore

(4.10) −(d− 2)H2 ≤ −(d− 1)RΣ − 2(d− 1)Ric(ν, ν) + (d− 1)R.

We then have

mH(Σs) ≤
(d− 1)

2(d− 2)

(
|Σs|
ωd−1

) d−2
d−1

d− 2

d− 1
− 1

(d− 1)2ω
2

d−1

d−1 |Σs|
d−3
d−1

ˆ
Σs

RΣdV


− 1

(d− 2)(d− 1)ωd−1

(
|Σs|
ωd−1

) 1
d−1
ˆ
Σs

G(ν, ν)dV,

(4.11)

where G = Ric− 1
2Rg is the Einstein tensor. According to the discussion in Section 2 it holds that

(4.12)

(
|Σs|
ωd−1

) 1
d−1

= s+O(s1−τ ),

and hence [30, Theorem 3.14] implies the last term converges to the ADM energy to produce

(4.13) lim
s→∞

mH(Σs) ≤ lim
s→∞

1

2(d− 1)

(
|Σs|
ωd−1

) d−2
d−1

In(s) + E,
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where In(s) is the function from the proof of Proposition 4.1. Since B = O(s−τ ) for n > 1 and
ci = 1 +O(s−τ ) for n = 1, a calculation shows that In(s) = O(s−2τ ). Hence

(4.14) lim
s→∞

mH(Σs) ≤ E + lim
s→∞

O(sd−2−2τ ) = E,

as τ > d−2
2 . □

We are now in a position to complete the proof of Theorem 1.1. Let (M2(n+1), ḡ) be the Jang
manifold associated with the given initial data set, which is constructed from the solution given in
Theorem 3.2 with v(0) = ±1 if ∂M2(n+1) is a past (future) apparent horizon having H(0) ̸= 0, or
with v(0) = 0 if H(0) = 0; in this last case the boundary is both a past and future apparent horizon.
Note that this manifold is asymptotically flat, SU(n + 1)-invariant, and possesses an outermost
minimal surface boundary. This last assertion follows from the fact that the ḡ-mean curvature of
surfaces having constant distance to the boundary is H̄ =

√
1− v2H, so that H̄(0) = 0 and H̄(s̄) > 0

for s̄ > 0. Moreover, these surfaces provide a smooth inverse mean curvature {Σt̄}∞t̄=0 in the Jang
manifold. Next, recall that the scalar curvature of the Jang metric [9, 10] takes the form

(4.15) R̄ = 16π(µ− J(w)) + |h− k|2ḡ + 2|X|2ḡ − 2ϕ−1divḡ(ϕX),

where

(4.16) wi =
ϕfi√

1 + ϕ2|∇f |2g
, hij =

ϕ∇ijf + ϕifj + ϕjfi√
1 + ϕ2|∇f |2g

, Xi =
ϕf j√

1 + ϕ2|∇f |2g
(hij − kij).

Here h is the second fundamental form of the Jang graph in a dual Lorentzian setting, and |w|g ≤
1. Although the computation appearing in [9, 10] was set in dimension three, it extends without
modification to all higher dimensions. We may now integrate (4.2) from t̄ = 0 to ∞, apply the
coarea formula as well as Propositions 4.1 and 4.2, to find

Ē − 1

2

(
A

ω2n+1

) 2n
2n+1

≥ 1

2(2n+ 1)2ω2n+1

ˆ
M2(n+1)

(
|Σt̄|
ω2n+1

) 1
2n+1

H̄R̄dVḡ

≥ 1

(2n+ 1)ω2n+1

(ˆ
∂M2(n+1)

ϕX(ν̄)dV −
ˆ
Σ∞

ϕX(ν̄)dV

)(4.17)

where Ē is the ADM energy with respect to the Jang metric and A = |∂M2n+1|. In the second
inequality the dominant energy condition used, as well as the expression (3.4) for ϕ together with

the divergence theorem for the last term in (4.15). Here ν̄ = ∂s̄ =
√
1− v2∂s, and Σ∞ indicates a

limit to the asymptotic end along s-level sets.
Consider now the boundary terms of (4.17). According to [10, pg. 582], the Jang equation implies

that

(4.18) (h− k)(ν, ν) = (1 + ϕ2|∇f |2g)

− ϕν(f)√
1 + ϕ2|∇f |2g

H +TrΣk

 = (1− v2)−1(−vH +TrΣk)

for any level set Σ of f with unit normal ν. Therefore, on each Σs it holds that

(4.19) ϕX(ν̄) = ϕ
√

1− v2

(
ϕf ′√

1 + ϕ2f ′2

)
(hss − kss) = vρ′ ((±1− v)H ∓ θ∓) .

Since |v(s)| = O(s−2τ0) for 2τ0 > d− 2 = 2n and H, θ± = O(s−1), the boundary integral at infinity
converges to zero. Moreover, if the boundary is a past (future) apparent horizon with H(0) ̸= 0 then
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v(0) = ±1, and if the boundary is an apparent horizon with H(0) = 0 then v(0) = 0. It follows
that the inner boundary integral vanishes in all cases. The desired Penrose inequality (1.7) involving
ADM mass now follows from the agreement between the ADM energies Ē = E in light of the decay
of v, and the vanishing ADM linear momentum as shown in Appendix A.

It remains to establish the rigidity statement. If equality holds in (1.7), then equality must hold
in Proposition 4.1 for each surface Σs. This shows that each such surface is round, implying that
the original initial data set (M2(n+1), g, k) is spherically symmetric. In this case it is known that the
Jang graph yields the desired embedding into the Schwarzschild spacetime [12, Theorem 3.4].

5. Proof of Theorem 1.2: Asymptotically Hyperbolic Penrose Inequality

In this section we will show how the arguments presented for the asymptotically flat case can be
modified to establish the spacetime Penrose inequality in the asymptotically hyperbolic setting. A
3-dimensional ‘hyperbolic Hawking mass’ was defined by Bray-Chuściel in [8, Section 4.1], and its
generalization to d-dimensions may be expressed as

(5.1) mhyp
H (Σ) :=

1

2

(
|Σ|
ωd−1

) d−2
d−1

1 + ( |Σ|
ωd−1

) 2
d−1

− 1

(d− 1)2ω
2

d−1

d−1 |Σ|
d−3
d−1

ˆ
Σ
H2dV

 .
Under a smooth inverse mean curvature flow its first variation is given by

(5.2)

d

dt
mhyp
H (Σt) =

1

2

(
|Σt|
ωd−1

) d−2
d−1

d− 2

d− 1
− 1

(d− 1)2ω
2

d−1

d−1 |Σt|
d−3
d−1

ˆ
Σt

RΣdV


+

1

2

(
|Σt|
ωd−1

) d−2
d−1 1

(d− 1)2ω
2

d−1

d−1 |Σt|
d−3
d−1

ˆ
Σt

(
|∇ΣH|2

H2
+|II|2− H2

d− 1
+R+ d(d− 1)

)
dV.

Note that this differs from the asymptotically flat formula only by the addition of the last term
involving d(d−1), which is relevant for the hyperbolic dominant energy condition. In the SU(n+1)-
invariant case, Proposition 4.1 implies that the first line is again nonnegative, moreover the following
analogue of Proposition 4.2 yields the appropriate asymptotics for this quasi-local mass.

Proposition 5.1. Let (M2(n+1), g) be an asymptotically hyperbolic SU(n+1)-invariant Riemannian
manifold with outermost minimal surface boundary, for n ≥ 1. If Σs denotes the surface of distance
s from the boundary, then

(5.3) lim
s→∞

mhyp
H (Σs) = Ehyp.

Proof. We will assume that n > 1, as the case n = 1 may be treated similarly. The hyperbolic defect
tensor from the definition of hyperbolic mass (1.10), when expressed in the coordinates provided by
Proposition 2.1, is given by

(5.4) g = g − b =
(
ρ2e−4nB − sinh2 s

)
(dψ +A)2 +

(
ρ2e2B − sinh2 s

)
gFS .

We proceed to compute the relevant terms of (1.10). Note that g(νb, ·) = 0, and therefore

(5.5) (divbg)(νb) = νjb∇∇∇
igij = −(∇∇∇iνjb )gij = −(coth s)Trbg,

where ∇∇∇ denotes covariant differentiation with respect to b. Moreover

(5.6) Trbg = −(2n+ 1) +
( ρ

sinh s

)2 (
e−4nB + 2ne2B

)
, g(∇bU, νb) = 0,
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in which U = cosh s is the lapse function. A further calculation and rearrangement shows that the
energy becomes

Ehyp =
1

2(d− 1)ωd−1
lim
s→∞

ˆ
Σs

[U(divbg)− U(dTrbg) + (Trbg)dU − g(∇bU)] (νb)dV

= lim
s→∞

(sinh s)2n

2

[
1− γ

(
ρ2

sinh2 s
− 2

ρ2 cosh2 s

sinh2 s
+ 2

ρρ′ cosh s

sinh s

)]
+ lim
s→∞

2nρ2 cosh s(sinh s)2n−1

(2n+ 1)
B′(e−4nB − e2B),

(5.7)

with

(5.8) γ =
e−4nB + 2ne2B

2n+ 1
= 1 +O(e−2qs).

Observe that the last term of (5.7) decays on the order of O(e(2n+2−2q)s), and hence

(5.9) Ehyp= lim
s→∞

[
(sinh s)2n

2

(
1 + ρ2 − ρ′2 +

(
ρ′− ρ cosh s

sinh s

)2
)
+O

(
e(2n+2−2q)s

)]
= lim
s→∞

mhyp
H (Σs),

since

(5.10) mhyp
H (Σs) =

ρ2n

2
(1 + ρ2 − ρ′2)

and q > n+ 1. □

We are now in a position to complete the proof of Theorem 1.2. As in the asymptotically flat
case, let (M2(n+1), ḡ) be the Jang manifold associated with the given initial data set, which is

constructed from the solution given in Theorem 3.2 with v(0) = ±1 if ∂M2(n+1) is a past (future)
apparent horizon having H(0) ̸= 0, or with v(0) = 0 if H(0) = 0. The asymptotics of v imply that
ḡ = g + O2(e

−2q0s) where q0 > n+ 1, and hence the Jang manifold is asymptotically hyperbolic. It
is also SU(n+1)-invariant, has an outermost minimal surface boundary, and the surfaces {Σt̄}∞t̄=0 of
constant ḡ-distance from the boundary give a smooth inverse mean curvature flow. Utilizing (5.2),
the hyperbolic dominant energy condition, and the weak nonnegativity of the Jang scalar curvature
(4.15), together with the arguments leading to (4.17) produces

(5.11) Ēhyp−
1

2

(
A

ω2n+1

) 2n
2n+1

−1

2

(
A

ω2n+1

) 2n+2
2n+1

≥ 1

(2n+ 1)ω
2

2n+1

2n+1

(ˆ
∂M2(n+1)

ϕX(ν̄)dV −
ˆ
Σ∞

ϕX(ν̄)dV

)
,

where Ēhyp is the total energy with respect to the Jang metric and Propition 5.1 has been employed.
The boundary integral vanishes for the same reasons as presented in the proof of Theorem 1.1.
Furthermore the decay recorded in Section 2 and (3.10) imply

(5.12) ϕX(ν̄) = vρ′(−vH +TrΣk) = O
(
e(1−2q0)s

)
.

It follows that the last term in (5.11) is also zero, since the integrals of Σs fall-off on the order of

O(e(2n+2−2q0)s). Therefore, if the original energy Ehyp agrees with that of the Jang manifold Ēhyp,
then (5.9) confirms the desired Penrose inequality (1.11). To see that this is indeed valid, first observe
that

(5.13)

(
dρ

ds̄

)2

= (1− v2)

(
dρ

ds

)2

=

(
dρ

ds

)2

+O
(
e(2−2q0)s

)
,



THE SPACETIME PENROSE INEQUALITY FOR COHOMOGENEITY ONE INITIAL DATA 17

and then apply (5.10) as well as Proposition 5.1 to find

(5.14) Ēhyp = lim
s̄→∞

m̄hyp
H (Σs̄) = lim

s→∞

(
mH(Σs) +O

(
e(2n+2−2q0)s

))
= Ehyp,

where m̄hyp
H denotes Hawking mass with respect to the Jang metric.

It remains to establish the rigidity statement. If equality holds in (1.11), then equality must
hold in Proposition 4.1 for each surface Σs̄. This shows that each such surface is round, implying
that the Jang manifold is spherically symmetric. Furthermore, from (5.2) it follows that R̄ =

−(2n+1)(2n+2) is constant, and we conclude that (M2(n+1), ḡ) is isometric to a constant time slice
of the Schwarzschild-AdS spacetime. Therefore, (3.4) implies the following expression for the change
of raidal coordinates

(5.15) ḡ = ds̄2 + ρ2(s̄)gS2n+1 =
dρ2

ϕ2(ρ)
+ ρ2gS2n+1

where gS2n+1 is the unit sphere metric, with

(5.16) ϕ2(ρ) = 1−
2Ehyp

ρ2n
+ ρ2.

Note that this formula ϕ may also be found from (5.10), together with the fact that the Hawking

mass is constant m̄hyp
H (Σs̄) = Ehyp. The original metric g = ḡ−ϕ2df2 is then induced from the graph

(over a constant time slice) given by f inside Schwarzschild-AdS. Lastly, the second fundamental
form of this isometric embedding agrees with k due to the fact that the second term (in fact each
term except for µ) of (4.15) vanishes.

6. Proof of Theorem 1.3: All Cohomogeneity One Cases

In this section we will establish the Riemannian Penrose inequality for all cohomogeneity one
manifolds. According to the discussion at the beginning of Section 2, in addition to the SU(n+ 1)-
invariant setting considered above there are two other cases to consider, namely the Sp(n + 1) and
Spin(9)-invariant cases. Let (Md, g), d ≥ 3 be an asymptotically flat cohomogeneity one Riemannian
manifold with outermost minimal surface boundary and nonnegative scalar curvature. As previously
mentioned,Md ∼= [0,∞)×Sd−1 and g = ds2+gs where s is the distance function to the boundary, and
gs is a 1-parameter family of G-invariant metrics on Sd−1. Interestingly, when G is either Sp(n+ 1)
or Spin(9), the analogue of Proposition 4.1 does not hold in general, and therefore the inverse mean
curvature flow approach breaks down. To deal with this issue, we utilize the conformal flow method of
Bray [7] until the outermost minimal surface reaches an appropriate location in the asymptotic end.
From there, a modified version of this proposition may be implemented to complete the argument
with inverse mean curvature flow. This bypasses the more involved problem of showing that the
conformal flow converges to Schwarzschild in the asymptotic end.

6.1. Sp(n + 1)-invariant metrics. Let d = 4n + 4 for n ≥ 0. The group G = Sp(n + 1) acts
transitively on the sphere S4n+3 with isotropy subgroup H = Sp(n). Any G-invariant metric gc on
this sphere depends (up to an overall scaling) on three positive parameters c = (c1, c2, c3), and arises
as a Riemannian submersion for the Hopf fibration S3 ↪→ S4n+3 → HPn in which the parameters
scale the fiber directions and the base is equipped with the canonical Einstein metric on quaternionic
projective space. In this notation, the round metric of unit curvature is then described by c = (1, 1, 1).
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Moreover, the s-level set metrics from the discussion above are then given by gs = ρ2(s)gc(s) for some
positive function ρ(s). According to [6, Section 8] the scalar curvature of gc takes the form

Rc =
2

c1c2c3

(
c21 + c22 + c23 − (c2 − c3)

2 − (c3 − c1)
2 − (c1 − c2)

2
)

− 4n(c1 + c2 + c3) + 16n2 + 32n.

(6.1)

Notice that setting ci = c2 yields

(6.2) Rc =
6

c2
− 12nc2 + 16n2 + 32n,

showing that a collapse of the Hopf fibers results in blow-up of curvature, which is in contrast to
the SU(n + 1)-invariant setting. Furthermore due to this behavior, Proposition 4.1 does not hold
here without additional qualification. The next result provides a regime for which the result remains
valid.

Proposition 6.1. Let (M4(n+1), g) be an asymptotically flat Sp(n+ 1)-invariant Riemannian man-
ifold with outermost minimal surface boundary, for n ≥ 0. There exists a distance s0 > 0 such that
if Σs denotes the surface of distance s to the boundary and s ≥ s0, then

(6.3)

ˆ
Σs

RΣdV ≤ Cn|Σs|
4n+1
4n+3

where Cn = (4n+2)(4n+3)ω
2

4n+3

4n+3, with equality achieved in this regime if and only if Σs is a round
sphere.

Proof. Since the volume form for gc is given by dV = (c1c2c3)
1/2dVS4n+3 , we have

(6.4) I(c) := (4n+ 2)(4n+ 3)− 1

ω
2

4n+3

4n+3|Σs|
4n+1
4n+3

ˆ
Σs

RΣdV = (4n+ 2)(4n+ 3)− (c1c2c3)
1/(4n+3)Rc.

A direct calculation shows that c = (1, 1, 1) is a local isolated minimum for the function I. Thus,
since Σs uniformly approaches the unit round sphere as s → ∞, there exists s0 such that s ≥ s0
implies I(c(s)) ≥ I(1, 1, 1) with equality if and only if gs is a round metric. Moreover, as in the proof
of Proposition 2.1, asymptotic flatness produces

(6.5) ρ(s) = s+O2(s
1−τ ), ci(s) = 1 +O2(s

−τ ), i = 1, 2, 3.

Hence, since I(1, 1, 1) = |∇I(1, 1, 1)| = 0 we have I(c(s)) = O(s−2τ ) as s→ ∞. □

6.2. Spin(9)-invariant metrics. The group G = Spin(9) acts transitively on S15 with isotropy
subgroup H = Spin(7). Any G-invariant metric gc on this sphere depends (up to an overall scaling)
on one positive parameters c, and arises as a Riemannian submersion for the Hopf fibration S7 ↪→
S15 → S8 in which the parameter scales the fiber and the base is equipped with the unit round
metric. In this notation, the round metric of unit curvature on S15 is then described by c = 1.
Moreover, the s-level set metrics from the discussion at the beginning of this section are then given
by gs = ρ2(s)gc(s) for some positive function ρ(s). According to [6, Section 8] the scalar curvature of
gc takes the form

(6.6) Rc =
42

c
− 56c+ 224.

Notice that as in the Sp(n+1)-invariant case, collapse of the Hopf fibers results in blow-up of curva-
ture, again in contrast to the SU(n+ 1)-invariant setting. Thus, we must again replace Proposition
4.1 with an asymptotic version.
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Proposition 6.2. Let (M16, g) be an asymptotically flat Spin(9)-invariant Riemannian manifold
with outermost minimal surface boundary. There exists a distance s0 > 0 such that if Σs denotes the
surface of distance s to the boundary and s ≥ s0, then

(6.7)

ˆ
Σs

RΣdV ≤ C|Σs|
13
15

where C = 210ω
2
15
15 , with equality achieved in this regime if and only if Σs is a round sphere.

Proof. Since the volume form for gc is given by dV = c7/2dVS15 , we have

(6.8) I(c) := 210− 1

ω
2
15
15 |Σs|

13
15

ˆ
Σs

RΣdV = 210− c7/15Rc.

A direct calculation shows that c = 1 is a local isolated minimum for the function I. Thus, since
Σs uniformly approaches the unit round sphere as s → ∞, there exists s0 such that s ≥ s0 implies
I(c(s)) ≥ I(1, 1, 1) with equality if and only if gs is a round metric. Moreover, as in the proof of
Proposition 2.1, asymptotic flatness produces

(6.9) ρ(s) = s+O2(s
1−τ ), c(s) = 1 +O2(s

−τ ), i = 1, 2, 3.

Hence, since I(1) = |I ′(1)| = 0 we have I(c(s)) = O(s−2τ ) as s→ ∞. □

6.3. Combining the conformal flow with inverse mean curvature flow. Let (Md, g) be as
described at the start of this section, with G = Sp(n+1) or Spin(9). Consider the conformal flow of

metrics defined by gt = u
4

n−2

t g where d
dtut = vt satisfies

(6.10) ∆gvt = 0 on Md
t , vt = 0 on ∂Md

t , vt(x) → −e−t as |x| → ∞,

and vt = 0 on Md \Md
t . Here Md

t denotes the region outside of the outermost minimal surface
(denoted ∂Md

t ) in (Md, gt). The conformal flow was initially studied [7] in dimension 3, and was
extended to higher dimensions in [11]. In particular, the flow exists as long as the outermost minimal
surfaces involved remain smooth. In the current cohomogeneity one setting, the relevant minimal
surfaces ∂Md

t must be level sets of the distance function to ∂Md, and are therefore smooth. Moreover,
the functions vt as well as ut depend only on s, showing that the conformal metrics gt are also G-
invariant. According to [11, Lemma 2.3], existence of the flow guarantees that the areas |∂Md

t |
remain constant in t. Furthermore, the mass decrease law, which was partially responsible for the
dimensional restriction in [11] due to its reliance on the positive mass theorem, is valid here since each
Md
t is a spin manifold. More precisely, the positive mass theorem is applied to a doubled manifold

with one of the two ends being compactified, and in this context we may apply the ‘corners’ version
of this result obtained with harmonic spinors [38, Theorem 3.1]. It follows that the mass m(t) of
(Md

t , gt) is nonincreasing in t.
We now claim that the flow surfaces ∂Md

t reach the asymptotic end of Md in finite time, and in
fact eventually leave every compact set. This was originally established in dimension 3 [7, Theorem
13], while in [11] this issue is avoided altogether. Although the original proof relied on the Gauss-
Bonnet theorem which is not available here, a weaker version of this result [7, Theorem 12] extends to
higher dimensions with only minor changes. An immediate corollary of this theorem shows that ∂Md

t

cannot be entirely enclosed by a single coordinate sphere in the asymptotic end, for all t. Because
the flow surfaces in the current setting are G-invariant, if they did not eventually leave every compact
set then they would be entirely enclosed by a coordinate sphere. Thus, we may apply the higher
dimensional analogue of Bray’s observation to obtain the desired conclusion. Note that the proof of
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[7, Theorem 12] makes use of harmonic asymptotics, however this is not necessary as the relevant
harmonic functions may be expanded in spherical harmonics to produce the same outcome.

To complete the proof, run the conformal flow until time t0 when ∂Md
t0 reaches sufficiently far out

in the asymptotic end to enclose Σs0 , the designated surface appearing in Propositions 6.1 and 6.2.
Properties of the flow discussed above guarantee that

(6.11) m ≥ m(t0), |∂Md
t0 | = A,

where m is the ADM mass of (Md, g) and A is the area of its boundary. On the other hand,
the aforementioned propositions give rise to monotonicity for the Hawking mass in (Md

t0 , gt0), as in
Section 4. Moreover, since the functions I from the proof of these propositions vanishes to second
order at the round metric, the asymptotic limit of the Hawking mass is no greater than m(t0); this
is established in the same manner as Proposition 4.2. Therefore

(6.12) m(t0) ≥
1

2

(
|∂Md

t0 |
ωd−1

) d−2
d−1

,

and combining (6.11) with (6.12) produces the desired Penrose inequality since Ah = A. Lastly,
consider the case of equality for (1.6). This forces equality between the masses of (6.11), and thus
the rigidity statement of the positive mass theorem used for the (conformal flow) mass decrease
law, implies that (Md

t , gt) is spherically symmetric for t ≤ t0. In particular, (Md, g) is spherically
symmetric and is therefore isometric to the canonical slice of a Schwarzschild spacetime [12, Theorem
3.4].

Appendix A. Vanishing of Linear Momenta

In this appendix we show that under the hypotheses of Theorem 1.1, the ADM linear momenta
Pi vanish so that the ADM mass agrees with the ADM energy m = E. Let n > 1 and use the
expressions for the metric and extrinsic curvature given in Proposition 2.1, to compute the following
two components of the momentum density

(A.1) J(e1) = J(∂s) = −k′b − 2nk′c +
(2n+ 1)ρ̇

ρ
ka − (kb + 2nkc)

ρ′

ρ
+ 2nB′(kb − kc),

(A.2) J(e2) = k′s + ks

(
(2n+ 2)

ρ̇

ρ
− 2nB′

)
,

where e1 and e2 are a part of the orthonormal frame from (2.9). Recalling the formula for Trgk in
(2.13) motivates a rewriting of (A.1) by

(A.3) k′a + (2n+ 2)
ρ′

ρ
ka = J(e1) + (Trgk)

′ +
ρ′

ρ
Trgk − 2nB′(kb − kc).

Since the asymptotically flat fall-off conditions (1.3) imply that the right-hand side is O(s−2τ−2), it
follows that

(A.4) ka = ρ−2τ−2

[ˆ s

s0

ρ2τ+2O(t2τ+2)dt+ C

]
= O(s−2τ−2)

for some constant C. Similarly, we also find that ks = O(s−2τ−2) from (A.2). Moreover, because
the only possible nonzero components of the ADM linear momentum involve only k(e1, e1) = ka or
k(e1, e2) = ks, and τ > n, we conclude that the ADM linear momentum vanishes. The case n = 1
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is treated analogously using Section 2.2. Note that the additional decay of Trgk from (1.3) is only
used here, to obtain the vanishing linear momentum.

Appendix B. An Example

In this last appendix we will exhibit cohomogeneity one asymptotically flat and asymptotically
hyperbolic initial data, which deviate in a significant manner from spherical symmetry by allowing
for nonzero angular momentum. Consider the 2-parameter family of asymptotically flat SU(n+ 1)-
invariant initial data ([r+,∞)× S2n+1, g, k) in which

(B.1) g = U(r)2dr2 + P (r)2 (dψ +A)2 + r2gFS , k = −r−1U(r)W ′(r)P (r)3dr(dψ +A),

where ψ, A, and gFS are as in (2.1) and

(B.2) U(r)2 =

(
1− 2m

r2n
+

2ma2

r2n+2

)−1

, P (r) = r

(
1 +

2ma2

r2n+2

)1/2

, W (r) =
2ma

r2nP (r)2
,

with m and a denoting the mass and angular momentum parameters. The value r+ is the largest
positive root of U(r)−2, and corresponds to an outermost minimal surface. This initial data set arises
from the 2-parameter family of Myers-Perry stationary asymptotically flat black hole solutions of
the vacuum Einstein equations given by

(B.3) g = −r2U(r)−2P (r)−2dt2 + U(r)2dr2 + P (r)2 (dψ +A−W (r)dt)2 + r2gFS .

Note that when a = 0 the Schwawrzschild solution is recovered. The event horizon is located at
r = r+ and has null generator

(B.4) ξ = ∂t +Ω∂ψ, Ω =
2ma

r
2(n+1)
+ + 2ma2

,

where Ω is the angular velocity. Moreover, a calculation shows that for the black hole to be subex-
tremal the parameters must satisfy r2+ > n−1(n + 1)a2, with equality corresponding to an extreme
Myers-Perry solution having a degenerate horizon. It is convenient to use r+ and a express relevant
quantities. In particular, the mass parameter m coincides with the ADM mass and takes the form

(B.5) m =
r
2(n+1)
+

2(r2+ − a2)
,

while the area of a cross section of the event horizon becomes

(B.6) A = ω2n+1P (r+)r
2n
+ =

ω2n+1r
2(n+1)
+√

r2+ − a2
,

and the only nonzero ADM angular momentum occurs in the ψ-direction and is given by Jψ = ma
where by definition

(B.7) Jψ =
1

2(n+ 1)ω2n+1

ˆ
S∞

(k − (Trk)g)(∂r, ∂ψ)dV.

We now have the relation

(B.8) m =

(
r2+

r2+ − a2

) n+1
2n+1 1

2

(
A

ω2n+1

) 2n
2n+1

.

Note that this satisfies the Penrose inequality since a2r−2
+ < 1, and equality holds only for the case

of Schwarzschild, when a = 0.
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An asymptotically hyperbolic generalization of the above rotating black hole initial data may be
obtained by setting

(B.9) U(r)2 =

(
1 + r2 − 2m(1− a2)

r2n
+

2ma2

r2n+2

)−1

.

The resulting data coincides with the canonical slice of a Myers-Perry-AdS black hole, a solution of
the stationary vacuum Einstein equations with negative cosmological constant, having equal angu-
lar momenta. Again letting r+ denote the largest positive root of U(r)−2, there will be an event
horizon at r = r+ provided m > 0 and 0 ≤ a < 1. Notice that when m = 0 the spacetime is the
(2n+ 3)-dimensional AdS space, whereas when a = 0 the solution reduces to Schwarzschild-AdS. A
computation reveals the total energy to be

(B.10) Ehyp = m

(
1 +

a2

2n+ 1

)
,

while as before the angular momentum is Jψ = ma. Expressing the mass parameter in terms of r+
and a yields

(B.11) m =
(1 + r2+)r

2(n+1)
+

2(r2+(1− a2)− a2)
,

and therefore

(B.12) m =
1

2 (1− α)
n+1
2n+1 (1− β)

(
A

ω2n+1

) 2n
2n+1

+
1

2 (1− α)
n

2n+1 (1− β)

(
A

ω2n+1

) 2n+2
2n+1

where

(B.13) α =
a2

r2+
, β =

a2

r2+(1− a2)
.

Next observe that a calculation provides the nondegeneracy condition

(B.14) r2+(n+ (n+ 1)r2+)− a2(1 + n)(1 + r2+)
2 ≥ 0.

Hence, because restrictions on the parameters imply that α < 1 and β < 1, and Ehyp ≥ m with
equality only when a = 0, it follows that the hyperbolic Penrose inequality holds with saturation
only for Schwarzschild-AdS.
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Ann. Henri Poincaré, 17 (2016), no. 6, 1505–1528.

[14] Y. Cha, and M. Khuri, Transformations of asymptotically AdS hyperbolic initial data and associated geometric

inequalities, Gen. Relativity Gravitation, 50 (2018), no. 1, Paper No. 3, 48 pp.

[15] Y. Cha, M. Khuri, and A. Sakovich, Reduction arguments for geometric inequalities associated with asymptotically

hyperboloidal slices, Classical Quantum Gravity, 33 (2016), no. 3, 035009, 33 pp.
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Poincaré, 14 (2013), no. 5, 1135–1168.

[19] N. Engelhardt, and A. Folkestad, General bounds on holographic complexity, J. High Energy Phys., (2022), no. 1,

Paper No. 040, 48 pp.

[20] N. Engelhardt, and G. Horowitz, Holographic argument for the Penrose inequality in AdS spacetimes, Phys. Rev.

D, 99 (2019), no.12, 126009.

[21] A. Folkestad, Penrose inequality as a constraint on the low energy limit of quantum gravity, Phys. Rev. Lett., 130

(2023), no. 12, Paper No. 121501, 7 pp.

[22] G. Gibbons, Some comments on gravitational entropy and the inverse mean curvature flow, Classical Quantum

Gravity, 16 (1999), no. 6, 1677–1687.

[23] F. Girão, and L. de Lima, Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces,

Gen. Relativity Gravitation, 47 (2015), no. 3, Art. 23, 20 pp.

[24] F. Girão, and L. de Lima, An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a

Penrose inequality, Ann. Henri Poincaré, 17 (2016), no. 4, 979–1002.
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