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Abstract. Generalized torical band inequalities give precise upper bounds for the width of compact
manifolds with boundary in terms of positive pointwise lower bounds for scalar curvature, assuming
certain topological conditions. We extend several incarnations of these results in which pointwise
scalar curvature bounds are replaced with spectral scalar curvature bounds. More precisely, we
prove upper bounds for the width in terms of the principal eigenvalue of the operator −∆ + cR,
where R denotes scalar curvature and c > 0 is a constant. Three separate strategies are employed
to obtain distinct results holding in different dimensions and under varying hypotheses, namely we
utilize spacetime harmonic functions, µ-bubbles, and spinorial Callias operators. In dimension 3,
where the strongest result is produced, we are also able to treat open and incomplete manifolds, and
establish the appropriate rigidity statements. Additionally, a version of such spectral torus band
inequalities is given where tori are replaced with cubes. Finally, as a corollary we generalize classical
work of Schoen and Yau, on the existence of black holes due to concentration of matter, to higher
dimensions and with alternate measurements of size.

1. Introduction

In [17], Gromov-Lawson introduced a homotopy theoretic obstruction to positive scalar curvature
on closed spin manifolds, referred to as enlargeability. Informally, this notion contends that since the
Ricci endomorphism must have at least one positive eigenvalue at each point when scalar curvature
is positive, the manifold cannot expand dramatically in all directions simultaneously. The n-torus
Tn, therefore, cannot admit a metric of positive scalar curvature because it may be viewed as
expanding in all directions by passing to covers. This heuristic is exemplified in the so called torus
band inequality. More precisely, if the product Tn−1 × [−1, 1] admits a Riemannian metric having
scalar curvature bounded below by λ > 0, then the manifold’s width or rather distance between the
two boundary components is bounded above by

(1.1) width ≤ 2π

√
n− 1

nλ
.

This sharp inequality was first proved by Gromov in [15] for n ≤ 7 using minimal hypersurface
techniques, and was extended to all dimensions by Cecchini [5] and Zeidler [44] using spinorial
methods involving Callias operators. A variety of related band-width inequalities were established by
Cecchini-Zeidler [6] again using spinors, and by Räde [31] with the µ-bubble approach. Furthermore,
in [19] spacetime harmonic functions are applied to obtain a version of the 3-dimensional torus band
inequality with rigidity statement, and Chai-Wan [7] have established results of this type in the
setting of initial data sets for the Einstein equations.

In the current paper we present spectral versions of torical band inequalities, as well as Gromov’s
cube inequality [16, Section 3.8], and show how these can be used to obtain generalizations of
the Schoen-Yau [35] black hole existence result. In what follows, all manifolds are assumed to be
connected, oriented, Hausdorff, second-countable, and smooth. Given an n-dimensional Riemannian
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manifold (Mn, g) and a number c ∈ R, we define the c-spectral constant by

(1.2) Λc = inf

{∫
Mn

(
|∇u|2 + cRu2

)
dV

∣∣∣ u ∈ H1
0 (M

n),
∫
Mn

u2dV = 1

}
,

where R denotes scalar curvature and H1
0 (M

n) is the Sobolev space of L2 functions with square
integrable derivatives arising as the completion of C∞

0 (Mn), the space of smooth functions with
compact support, in the Sobolev H1-norm. When Mn is a compact manifold with boundary, Λc is
defined as the c-spectral constant of the interior M̊n which coincides with the principal Dirichlet
eigenvalue of the Schrödinger operator −∆ + cR, and the condition Λc > 0 may be interpreted as
a weak notion of positive scalar curvature if c > 0. This particular type of Schrödinger operator
appears in various geometric contexts for different values of c. The particular choice c = 1

2 plays a
special role in the search for black holes, while other values of c are used for the Yamabe problem,
minimal surfaces, and Ricci flow with surgery; we refer to the article by Li-Mantoulidis [24] for an
extended discussion.

The first spectral band-width result presented below is restricted to dimension 3, but provides the
strongest statement and conclusions. In particular, we are able to treat open (possibly incomplete)
manifolds and obtain rigidity in the case of equality, for an infinite range of c values. This theorem is
obtained using the level set technique involving spacetime harmonic functions. If E is a non-empty
collection of ends associated with a manifold Mn, and Σn−1 ⊂ Mn is a closed hypersurface, then
the distance between E and Σn−1 will be labelled by d(E,Σn−1) and is defined as the infimum of
lengths of paths traveling from points in Σn−1 to E. For further details concerning the notion of
ends and properties of open Riemannian manifolds, we refer to [19, Appendix C].

Theorem 1.1. Let (M3, g) be an open 3-dimensional Riemannian manifold with a smooth closed
hypersurface Σ2 separating the ends of M3 into two disjoint nonempty classes E− and E+. Assume
that there are no spherical classes in H2(M

3;Z), and that the scalar curvature of (M3, g) is bounded
from below infM3 R > −∞. If c > 1

6 and Λc(g) > 0 then

(1.3) d(E−,Σ
2) + d(E+,Σ

2) ≤ π

α
, where α =

√
Λc(6− c−1)

2c(8− c−1)
.

Moreover, equality is achieved in (1.3) if and only if (M3, g) is isometric to the warped product

(1.4)
((

0,
π

α

)
× Σ2, dρ2 + [sin(αρ)]

8c−2
6c−1 g0

)
,

where (Σ2, g0) is a flat torus.

It should be noted that the model geometries exhibit different asymptotic behavior at the ends
depending on whether 1

6 < c < 1
4 , c >

1
4 , or c = 1

4 , namely the cross-sectional tori either expand,
contract, or remain unchanged respectively, see Figure 1. Moreover, if we assume the pointwise
bound R ≥ λ > 0 and note that Λc ≥ cλ, then applying Theorem 1.1 while letting c → ∞ recovers
the original torus band inequality (1.1).

In order to treat higher dimensional spectral band-width inequalities, we will employ the use
of spinorial Callias operators [6]. These techniques, which involve modified Dirac equations, have
similarities with Witten’s proof of the spacetime version of the positive mass theorem [40]. The
statement of the next result requires certain terminology. A compact Riemannian manifold (Mn, g)
whose boundary components are separated into two disjoint and non-empty collections ∂Mn =
∂−M

n ⊔ ∂+M
n will be referred to as a Riemannian band, and its width is defined to be the dis-

tance between the two classes of boundary components d(∂−Mn, ∂+M
n). A Riemannian band is

called overtorical if there exists a smooth map F : Mn → Tn−1 × [−1, 1] of nonzero degree, with
F (∂±M

n) ⊂ Tn−1×{±1}. Furthermore, a Riemannian band which is spin is said to be Â-overtorical
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[43, Section 5] if there is an integer k ≥ 1 and a smooth map F : Mn → T k−1 × [−1, 1] such that
F (∂±M

n) ⊂ T k−1 ×{±1}, and the A-hat genus Â(F−1(p)) ̸= 0 for regular values p of F ; this latter
condition is equivalent to requiring that the Â-degree of F not vanish. Notice that in order for
the Â-genus of the fiber to be nonzero, the number k must be less than or equal to n and satisfy
n−k = 0 mod 4. For instance, the product of a K3 surface with an interval is an Â-overtorical band,
where the map F may be taken to be projection to the interval. If k = n, then the Â-degree agrees
with the usual degree of a map between oriented manifolds, and in this situation an Â-overtorical
band is an overtorical band.

Theorem 1.2. Let (Mn, ∂±M
n, g) be an odd dimensional Â-overtorical band with n ≥ 1. If c > n−1

4n
and Λc > 0 then

(1.5) d(∂−M
n, ∂+M

n) ≤ 2π

√
c

Λc

(
(4c− 1)n+ 2− 4c

(4c− 1)n+ 1

)
.

Recall that for n ≥ 3 the conformal Laplacian is given by −∆+cnR, where cn = n−2
4(n−1) . Thus, the

lower bound for c given by n−1
4n coincides with the conformal Laplacian constant of one dimension

higher cn+1. The pointwise version of this result was obtained by Zeidler in [43, Theorem 3.1,
Proposition 5.5], and states that if R ≥ λ > 0 then the Â-overtorical band width satisfies the upper
bound of (1.1). As with Theorem 1.1, the pointwise analogue may be obtained from the spectral
result by observing that Λc ≥ cλ and then sending c→ ∞.

We may remove the spin assumption up to dimension 7 by utilizing (warped) µ-bubbles. These
hypersurfaces, introduced by Gromov [16, Section 5], satisfy a type of prescribed mean curvature
equation and come with a stability property that can be exploited in a similar manner to the classical
Schoen-Yau usage of stable minimal surfaces. Alternatively, from a mathematical general relativity
perspective, the µ-bubbles may be viewed as a stable apparent horizon within an auxiliary initial data
set for the Einstein equations. In the next theorem, we establish a spectral band width inequality
restricted to the case c = 1

2 . The pointwise version of this result, that is under the assumption
R ≥ λ > 0, again yields the same upper bound as in (1.1) and is given by Gromov [15, page 8] with
a proof via torical symmetrization. Moreover, the pointwise rendition may also be obtained from
the work of Radë [31] who also exploited µ-bubbles to obtain a variety of band-width estimates, or
separately by modifications of the arguments presented below in Section 4.

Theorem 1.3. Let (Mn, ∂±M
n, g) be an overtorical band with n ≤ 7. If Λ 1

2
> 0 then

(1.6) d(∂−M
n, ∂+M

n) ≤ π

√
2n

(n+ 1)Λ 1
2

.

Another type of width inequality has been obtained for cubes by Gromov [16, Section 3.8] for
dimensions n ≤ 8, by minimal surface techniques, and this was extended to all higher dimensions
by Wang-Xie-Yu [39, Theorem 1.1] (see also [41]) with Dirac operator methods. The result states
that if a Riemannian metric on the cube [−1, 1]n has scalar curvature bounded below by R ≥ λ > 0,
then

(1.7)
n∑

i=1

1

ℓ2i
≥ nλ

4π2(n− 1)

where ℓi is the distance between the ith pair of opposite faces of the cube; the constant 1
4π2 is optimal

[39, Remark 2.1]. The inverse square root of the quantity on the left-hand side of (1.7) is referred to
as the cubical-width. Here we establish a spectral version of the cube-width inequality for the case
when c = 1

2 .
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Theorem 1.4. Let ([−1, 1]n, g) be a Riemannian cube. If Λ 1
2
> 0 then

(1.8)
n∑

i=1

1

ℓ2i
≥

(n+ 1)Λ 1
2

2π2n
,

where ℓi is the distance between the ith pair of opposite faces of the cube.

This result implies the spectral torus-band inequality in all dimensions, namely if (Tn−1×[−1, 1], g)
satisfies Λ 1

2
> 0 then the width satisfies the upper bound (1.6). Indeed, the torus-band naturally

gives rise to a Riemannan n-cube, and since the spectral constant of the cube is no less than that of
the parent torus-band, it is positive. We may then apply Theorem 1.4, and utilize the fact that the
torus-band width is less than or equal to the distance between the corresponding pair of opposite
faces in the cube, to obtain the desired estimate. Unlike the other results presented so far, the proof
of Theorem 1.4 consists of showing how the spectral inequality follows from the pointwise inequality
by passing to a warped product constructed with the principal eigenfunction, in similarity to part
of the torical symmetrization process. This method of proof also extends to the spectral inequality
for Tn−1 × [−1, 1], giving an alternative proof to that mentioned above. Although this approach is
quite simple, it only applies to the case when c = 1

2 , and is not well-suited for rigidity statements
such as in Theorem 1.1.

While the spectral torical-band type inequalities are of independent interest, it is our intention
to apply them here to obtain black hole existence results, particularly in higher dimensions. In
[35, Theorem 2] (see also [42]), Schoen-Yau obtained such a result for 3-dimensional initial data
sets, which depends on a particular notion of radius. Given a region Ω, consider a simple closed
curve Γ ⊂ Ω which bounds a disc. Let r denote the supremum of values r with the property that
the r-distance neighborhood from Γ does not intersect ∂Ω, and Γ does not bound a disc in this
neighborhood. The Schoen-Yau radius Radsy(Ω) is then defined to be the supremum of r among all
curves Γ as above. An initial data set for the Einstein equations consists of a triple (Mn, g, k), where
(Mn, g) is a Riemannian n-manifold and k is a symmetric 2-tensor on Mn representing the extrinsic
curvature of the embedding into spacetime. By taking traces of the Gauss-Codazzi relations, these
quantities satisfy the constraint equations

(1.9) 2µ = R+ (Trgk)
2 − |k|2, J = divg (k − (Trgk)g) ,

where µ, J represent the matter energy and momentum densities respectively. Suppose that M3

is compact, with boundary satisfying the untrapped condition H > |Tr∂M3k| where H denotes the
(outward) boundary mean curvature, and µ − |J | ≥ Λ > 0 on a bounded domain Ω ⊂⊂ M̊3. The
Schoen-Yau black hole existence theorem states that if

(1.10) Radsy(Ω) ≥ π

√
3

2Λ
,

then M3 contains an apparent horizon Σ2. These surfaces, which are alternatively known as
marginally outer or inner trapped surfaces, satisfy one of the equations HΣ2 ± TrΣ2k = 0; we
refer to [23] for further properties of apparent horizons and their physical significance. Thus, for a
region of fixed size measured by the radius, sufficient concentration of matter induces gravitational
collapse. This yields a manifestation of Thorne’s hoop conjecture [37]. An advantageous feature
of this result, also shared by Theorem 1.5 below, is that it applies under quite general conditions.
This separates it from most other results on this topic, which require special hypotheses such as
symmetry or maximality (Trgk = 0) of the initial data, for instance [2, 3, 20, 21, 26, 38].

The proof in [35] proceeds in two steps. The first is to establish a spectral-radius inequality, and
the second consists of employing this estimate to show that (1.10) forces blow-up in the solution of
Jang’s equation on M3. Here Jang’s equation refers to the quasi-linear elliptic equation of prescribed
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mean curvature type, used heavily in their proof of the spacetime version of the positive mass theorem
[34]. We will follow a similar prescription, with alternate notions of radii motivated by the spectral
torical-band width inequalities described above. A Riemannian band (Nn, ∂±N

n, h) will be referred
to as a nonPSC-band if ∂−Nn and ∂+N

n are not separable by a smooth embedded hypersurface
Σn−1 ⊂ Nn which admits a metric of positive scalar curvature. As is discussed at the end of Section
4, overtorical bands are examples of nonPSC-bands for n ≤ 8. The torical-radius Radt(Ω) is defined
to be the supremum of widths of all nonPSC-bands (Nn, ∂±N

n, h) that are isometrically immersed
into Ω, and the cubical-radius Radc(Ω) is defined to be the supremum of cubical-widths of all cubes
([−1, 1]n, h) that are isometrically immersed into Ω.

Theorem 1.5. Let 3 ≤ n ≤ 7, and suppose that (Mn, g, k) is a compact n-dimensional initial data
set with untrapped boundary. Assume that there is a constant Λ > 0 and a compact submanifold
Ω ⊂ M̊n with Lipschitz boundary, such that µ− |J | ≥ Λ on Ω. If

(1.11) Rad(Ω) ≥ π

√
2n

(n+ 1)Λ

where Rad is either the torical-radius Radt or the cubical-radius Radc, then there exists a closed
properly embedded smooth apparent horizon Sn−1 within Mn. Moreover, if µ − |J | ≥ λ > 0 on the

apparent horizon then it is of positive Yamabe type with Rad(Sn−1) ≤ π

√
2(n−1)

nλ . In particular, if
the apparent horizon lies within Ω then its radius satisfies the estimate with λ = Λ.

In Section 6, a class of initial data will be constructed which satisfy the hypotheses of this theorem.
It should be noted that, analogously to the Schoen-Yau result [35], there are no examples to be found
among those that are maximal. To see this, note that if the data were maximal, then the constraint
equations (1.9) and the inequality µ − |J | ≥ Λ imply that R ≥ 2Λ on Ω. Thus, any overtorical

band isometrically immersed in Ω must have width no greater than π

√
2(n−1)
nΛ by the pointwise

overtorical band-width inequality, but this precludes Rad(Ω) from achieving (1.11). See Shi-Tam
[36] (and the realted [1]) as well as [22] for black hole existence statements in the time symmetric
case, when k = 0. A comparison between the torical-radius and the Schoen-Yau radius will also be
given in the last section. In particular, it is shown that Radt(Ω) ≥ Radsy(Ω) for any region Ω, and
therefore Theorem 1.5 in dimension 3 recovers [35, Theorem 2]. We would also like to point out
contemporaneous work by Chow and Wan [9] that involves similar results.

We close the introduction with an immediate consequence of Theorem 1.5, which has the advantage
that each side of the black hole existence criteria is straightforward and, in principle, relatively easy
to compute. Moreover, it utilizes cubes which are topologically balls, and thus emulates the essence
of Thorne’s hoop conjecture [37] which posits that gravitational collapse occurs when enough mass
is compressed inside a perfect sphere.

Corollary 1.6. Let 3 ≤ n ≤ 7, and suppose that (Mn, g, k) is an asymptotically flat n-dimensional
initial data set. Assume that there is an n-cube within Mn on which

(1.12) µ− |J | ≥ 2nπ2

n+ 1

n∑
i=1

1

ℓ2i
,

where ℓi is the distance between the ith pair of opposite faces of the cube. Then the data contains a
closed properly embedded smooth apparent horizon.

This paper is organized as follows. The proofs of the spectral torical band-width inequalities,
namely Theorems 1.1, 1.2, and 1.3, will be given in Sections 2, 3, and 4 respectively. The spectral
cube inequality, Theorem 1.4, will be presented in Section 5. Moreover, as mentioned above, Section
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6 is dedicated to the black hole existence result Theorem 1.5. Additionally, an appendix is provided
that addresses certain existence and regularity issues concerning warped µ-bubbles.

Acknowledgements. The authors would like to thank Hubert Bray, Simon Brendle, and Richard
Schoen for insightful discussions, and their interest in this work.

2. The Spacetime Harmonic Function Approach

In this section we will utilize the technique of spacetime harmonic functions to establish the
spectral torical band-width inequality of Theorem 1.1. Such functions arise as solutions to a semi-
linear elliptic equation associated with initial data sets, and were introduced in [18] within the context
of the spacetime version of the positive mass theorem. Applications to comparison geometry were
recently studied in [19].

2.1. Background. In this paper we will only use a special case of spacetime harmonic functions in
which the associated auxiliary initial data set is umbilic. Thus, the spacetime harmonic equation
itself will take as input a single function f defined on a band, which shall be chosen later to extract
advantageous coercive behavior of the solution. The following proposition provides the basic exis-
tence result for this special class of spacetime harmonic functions, and is an immediate consequence
of the more general existence result discussed in [18, Section 4].

Proposition 2.1. Let (Mn, ∂±M
n, g) be an n-dimensional Riemannian band, and consider a func-

tion f ∈ Lip(Mn), as well as constants c− < c+. Then for any ς ∈ (0, 1), there exists a unique
solution u ∈ C2,ς(Mn) of the spacetime harmonic Dirichlet problem

(2.1)

{
∆u+ nf |∇u| = 0 in Mn,

u = c± on ∂±M
n.

We note a basic technical fact concerning spacetime harmonic functions, which is shared by
solutions to other elliptic equations, namely their set of critical points is small. This becomes useful
when expressing certain integral inequalities below, which involve dividing by |∇u|.
Proposition 2.2. Let u be a nontrivial spacetime harmonic function, with Lipschitz f , on a Rie-
mannian manifold (Mn, g), n ≥ 2. Then the critical set {x ∈ Mn | ∇u(x) = 0} is of Hausdorff
codimension at least 2.

Proof. The spacetime Laplace equation may be viewed as a linear equation ∆u = ⟨X,∇u⟩, where
X = −nf ∇u

|∇u| whenever ∇u ̸= 0 and X = 0 when ∇u = 0. Since X is L∞, the result follows
immediately from [28, Theorem 1.1]. □

The importance of spacetime harmonic functions rests to a large extent on a fundamental integral
inequality that they satisfy, which here will be specialized to dimension 3. The next result follows
directly from [18, Proposition 3.2], by setting k = fg so that µ = 1

2R+ 3f2 and J = −2∇f . In this
setting, the spacetime Hessian is given by

(2.2) ∇̄2u := ∇2u+ |∇u|fg.
Note that the spacetime Laplacian arises as the trace of this spacetime Hessian.

Lemma 2.3. Let (M3, ∂±M
3, g) be a 3-dimensional Riemannian band, and let f ∈ Lip(M3). If

u ∈ C2,ς(M3), ς ∈ (0, 1) solves boundary value problem (2.1), then∫
∂−M3

2|∇u|(2f −H)dA−
∫
∂+M3

2|∇u|(2f +H)dA

≥
∫
M3

(
|∇̄2u|2

|∇u|
+ (R+ 6f2)|∇u| − 4⟨∇f,∇u⟩

)
dV −

∫ c+

c−

4πχ(Σt)dt

(2.3)
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where H is the outward mean curvature of ∂M3, and χ(Σt) is the Euler characteristic of regular
level sets Σt := u−1(t).

Even though the function f is only Lipschitz, the appearance of ∇f in (2.3) is justified by
Rademacher’s Theorem, which ensures that the derivative exists almost everywhere. Furthermore,
the Euler characteristic integrand is in fact a measurable function, which may be seen as follows.
Observe that as explained in [18, Remark 3.3], the conclusion of Sard’s theorem still holds for u even
though it may not be C3-smooth. Moreover, u is a proper map and so its regular values form an
open set of full measure. Hence, if t0 is a regular value of u, then the function t 7→ χ(Σt) is constant
for all levels t near t0. We then have that χ(Σt) is continuous almost everywhere, and is therefore
measurable. For more information concerning spacetime harmonic functions, we refer to the survey
article [4].

2.2. Proof of Theorem 1.1: the inequality. Let Σ2 be the closed surface that separates M3 into
two connected components M3

±, where E± is contained in M3
±. Set w± = min{d(E±,Σ

2), πα}, and
suppose that w− + w+ ≥ π

α . Consider the signed distance function r(x) = ±d(x,Σ2) for x ∈ M3
±.

For ε > 0 small, define the band (M̃3
ε , ∂±M̃

3
ε , g) by

(2.4) M̃3
ε = {x ∈M3 | r(x) ∈ [−w− + ε, w+ − ε]},

where the assignment ∂±M̃3
ε respects E±. According to [19, Lemma C.2], M̃3

ε is compact. Next,
append the compact components of M3 \ M̃3

ε to M̃3
ε , and denote the resulting manifold by M̂3

ε .
Notice that each component of M3 \ M̂3

ε contains at least one end. By appealing to the long exact
sequence of the pair (M3, M̂3

ε ), and using the fact that the top homology group of an open manifold
is trivial, we find that the inclusion H2(M̂3

ε ;Z) → H2(M
3;Z) is injective. It follows that there are

no spherical classes in H2(M̂3
ε ;Z), since this property is assumed for M3. Moreover, because Σ2

separates the nonempty collections E±, we have that at least one component of each ∂±M̃3
ε remains

in ∂M̂3
ε , and that the distance within M̂3

ε from Σ2 to these components is unchanged. As in the
proof of [19, Main Theorem A], there is a small perturbation of M̂3

ε to a band (M3
ε , ∂±M

3
ε , g) with

smooth boundary, no spherical homology, and width at least w− + w+ − 3ε. We will proceed to
work with the bands M3

ε , eventually taking a limit as ε → 0 to obtain an integral inequality for a
nontrivial spacetime harmonic function, which will lead to a contradiction if w− + w+ > π

α .
Let uε,i be the spacetime harmonic function guaranteed by Proposition 2.1 satisfying

(2.5)

{
∆uε,i + 3fε,i|∇uε,i| = 0 in M3

ε ,

uε,i = ±1 on ∂±M3
ε ,

where fε,i is defined in (2.6) below. Denote w±
ε = d(∂±M

3
ε ,Σ

2), and observe that w±
ε ≥ w± − 2ε

along with w+
ε + w−

ε ≥ π
α − 3ε. Let h(t) be a Lipschitz cut-off function such that h(t) = 0 if t ≤ 0,

h(t) = t if t ∈ [0, πα ], and h(t) = π
α if t ≥ π

α . For all large positive integers i we define

(2.6) fε,i(x) =


(1 + 1

i )
2α
3 tan

(
αh(r(x) + w− − 2ε)− π

2 + 1
i

)
if r(x) ≤ min{−w−

ε
2 ,−w

−
ε + π

6α}
(1 + 1

i )
2α
3 tan

(
π
2 − αh(w+ − 2ε− r(x))− 1

i

)
if r(x) ≥ max{w+

ε
2 , w

+
ε − π

6α}
(1 + 1

i )
2α
3 tan (lε,i(r(x))) otherwise

,

where lε,i(r) are linear functions chosen to ensure that fε,i is Lipschitz. Since w+
ε +w−

ε ≥ π
α − 3ε, an

elementary but tedious calculation shows that the slope of lε,i is positive and less than α(1 + C̃ε),
where the constant C̃ > 0 is independent of ε and i. Let Ωε be the region defined by the third case
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in (2.6). Then outside of a set of measure zero we have

4α2

9
+ f2ε,i −

2

3
|∇fε,i| ≥ 0, on M3

ε \ Ωε,

4α2

9
+ f2ε,i −

2

3
|∇fε,i| ≥ −C0(ε+ i−1), on Ωε,

(2.7)

where C0 is a constant independent of ε and i. Note that fε,i → ±∞ on ∂±M
3
ε as i → ∞, so that

|fε,i| ≥ |Hε| for all i large enough, where Hε is the mean curvature of ∂M3
ε with respect to the unit

outer normal.
We will now apply the integral inequality of Lemma 2.3. However, in order to obtain an optimal

estimate for w+ + w−, an additional divergence term is added to produce∫
∂−M3

ε

|∇uε,i|
(
3(8− c−1)

6− c−1
fε,i − 2Hε

)
dA−

∫
∂+M3

ε

|∇uε,i|
(
3(8− c−1)

6− c−1
fε,i + 2Hε

)
dA

=

∫
∂−M3

ε

|∇uε,i| (4fε,i − 2Hε) dA−
∫
∂+M3

ε

|∇uε,i| (4fε,i + 2Hε) dA

−
∫
M3

ε

c−1

6− c−1
div(fε,i∇uε,i)dV

≥
∫
M3

ε

[
|∇̄2uε,i|2

|∇uε,i|
+ |∇uε,i|(R+ 6f2ε,i)− 4⟨∇uε,i,∇fε,i⟩

]
dV −

∫ c+

c−

4πχ(Σt)dt

−
∫
M3

ε

c−1

6− c−1
div(fε,i∇uε,i)dV

=

∫
M3

ε

[
|∇̄2uε,i|2

|∇uε,i|
+ |∇uε,i|

(
R+

3(12− c−1)

6− c−1
f2ε,i

)
− 3(8− c−1)

6− c−1
⟨∇uε,i,∇fε,i⟩

]
dV

−
∫ c+

c−

4πχ(Σε,i
t )dt,

(2.8)

where {Σε,i
t } are the level sets of uε,i. Notice that in the above inequality the Euler characteristic term

is nonpositive, due to the maximum principle for spacetime harmonic functions and the property
that M3

ε has no spherical classes. Moreover, for sufficiently small ε and large i, we may apply (2.7)
while using the scalar curvature lower bound R ≥ −R0, for some constant R0 > 0, to find

R+
3(12− c−1)

6− c−1
f2ε,i −

3(8− c−1)

6− c−1
|∇fε,i|

≥ −R0 +
3c−1

2(6− c−1)
f2ε,i −

4α2

9
· 9(8− c−1)

2(6− c−1)
− 1

≥−R0 − c−1Λc − 1.

(2.9)

Next, choose a fixed region Ω = M̃3
ε0 , with ε0 sufficiently small depending only on c, R0, and Λc.

Then on M3 \ Ω it follows that r(x) ≤ −w− + ε0 or r(x) ≥ w+ − ε0, which guarantees that |fε,i| is
large enough to yield

(2.10)
3c−1

2(6− c−1)
f2ε,i ≥

c−1f2ε,i
6− c−1

+R0 + c−1Λc + 2 on M3
ε \Ω,

for sufficiently large i. While on Ω, |fε,i| is uniformly bounded. Moreover, since fε,i blows-up on
∂±M

3
ε , the boundary integrals of (2.8) are nonpositive for large i. Hence, utilizing the second and
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third line of (2.9), as well as (2.10) produces

0 ≥
∫
M3

ε

|∇uε,i|
(
R+

3(12− c−1)

6− c−1
f2ε,i −

3(8− c−1)

6− c−1
|∇fε,i|

)
dV

≥−
∫
Ω
(R0 + c−1Λc + 1)|∇uε,i|dV +

∫
M3

ε \Ω

(
c−1

6− c−1
f2ε,i + 1

)
|∇uε,i|dV.

(2.11)

In order to extract a convergent subsequence, we now rescale uε,i similarly to that which is done
in [19, proof of Main Theorem A], and define

(2.12) ũε,i(x) =
uε,i(x)−Aε,i

supΩ |∇uε,i|
, Aε,i =

1

|Ω|

∫
Ω
uε,idV.

The normalized function ũε,i satisfies supΩ |∇ũε,i| = 1, and has vanishing average value on Ω.
Therefore, (2.11) yields

(2.13)
∫
M3

ε \Ω

(
c−1

6− c−1
f2ε,i + 1

)
|∇ũε,i|dV ≤

∫
Ω
(R0 + c−1Λc + 1)|∇ũε,i|dV ≤ (R0 + c−1Λc + 1)|Ω|.

Since |fε,i| is uniformly bounded on Ω we have

(2.14)
∫
M3

ε

(
f2ε,i + 1

)
|∇ũε,i|dV ≤

(
6− c−1

c−1
+ 1

)
(R0 + c−1Λc + 1)|Ω|+ |Ω| sup

Ω
(|fε,i|2 + 1) ≤ C1,

where C1 is independent of ε and i. Since the average of ũε,i vanishes on Ω, we may apply a version
of the Poincaré inequality on M3

ε [25, Theorem 1] to conclude that ∥ũε,i∥W 1,1(M3
ε )

is bounded by a
constant independent of the index i. Therefore, by passing to a subsequence (in i), ũε,i converges
to a function ũε in Lp(M3

ε ), for p ∈ [1, 32), as i → ∞. Because ũε,i solves the elliptic spacetime
Laplace equation, uniform Lp(M3

ε ) bounds for ũε,i imply uniform control in C2,ς
loc(M̃

3
2ε), ς ∈ (0, 1);

here we have used the fact that fε,i → fε pointwise on the interior of M̃3
2ε as i→ ∞. Thus, ũε,i also

converges subsequentially as i → ∞ to ũε in C2,ς
loc(M̃

3
2ε) for some ς ∈ (0, 1), and the limit satisfies

∆ũε + 3fε|∇ũε| = 0 on the interior of M̃3
2ε.

To obtain further properties of |∇ũε| observe that from (2.8), the fact that the boundary terms
are nonpositive, together with (2.11) and (2.14) we obtain

(R0 + c−1Λc + 1)|Ω| ≥
∫
M3

ε

∣∣∇2ũε,i + fε,i|∇ũε,i|g
∣∣2

|∇ũε,i|
dV

=

∫
M3

ε

|∇2ũε,i|2

|∇ũε,i|
− 3f2ε,i|∇uε,i|dV

≥
∫
M3

ε

4|∇|∇ũε,i|
1
2 |2dV − 3C1.

(2.15)

Since |∇ũε,i|
1
2 is bounded in H1(M3

ε ) independent of i, it has a weak subsequential limit in H1(M3
ε )

which also converges strongly in L2(M3
ε ). In light of the fact that fε,i blows-up uniformly on

M3
ε \ M̃3

2ε, the inequality (2.14) implies that the limit function |∇ũε|
1
2 ≡ 0 a.e. on this domain.

Note that even though ũε may not be defined M3
ε \ M̃3

2ε, with a slight abuse of notation we still
denote the limit of |∇ũε,i|

1
2 (which is defined globally on M3

ε ) in terms of ũε. Moreover, for a.e. ε
the boundary ∂M̃3

2ε is a Lipschitz submanifold [32], and therefore by applying the trace theorem we
find that |∇ũε|

1
2 vanishes up to a set of measure zero on this set. It follows that |∇ũε|

1
2 ∈ H1

0 (M̃
3
2ε)

for all such ε; below, it will always be assumed that ε satisfies this property.
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We are now ready to return to the integral inequality. Taking the limit as i → ∞ and applying
Fatou’s Lemma to (2.8) yields

0 ≥
∫
M̃3

2ε

[
|∇2ũε + fε|∇ũε|g|2

|∇ũε|
+ |∇ũε|

(
R+

3(12− c−1)

6− c−1
f2ε

)
− 3(8− c−1)

6− c−1
⟨∇ũε,∇fε⟩

]
dV.(2.16)

Consider the first two terms of (2.16). Using a Kato inequality similar to [19, Remark 4.4], Propo-
sition 2.2 which shows that the set of critical points for ũε is of measure zero, and the spectral
hypothesis, we obtain∫

M̃3
2ε

(
|∇2ũε + fε|∇ũε|g|2

|∇ũε|
+R|∇ũε|

)
dV

≥
∫
M̃3

2ε

(
3|∇|∇ũε|+ fε∇ũε|2

2|∇ũε|
+R|∇ũε|

)
dV

=

∫
M̃3

2ε

(
6|∇|∇ũε|

1
2 |2 + 6⟨∇|∇ũε|

1
2 , fε|∇ũε|−

1
2∇ũε⟩+

(
R+

3

2
f2ε

)
|∇ũε|

)
dV

=

∫
M̃3

2ε

(
(6− c−1)

∣∣∣∣∇|∇ũε|
1
2 +

3

6− c−1
fε|∇ũε|−

1
2∇ũε

∣∣∣∣2 + c−1|∇|∇ũε|
1
2 |2

+R|∇ũε|+
(
3

2
− 9

6− c−1

)
f2ε |∇ũε|

)
dV

≥
∫
M̃3

2ε

(
c−1Λc|∇ũε|+

(
3

2
− 9

6− c−1

)
f2ε |∇ũε|

)
dV.

(2.17)

Combining (2.16) and (2.17) then produces

0 ≥
∫
M̃3

2ε

[(
c−1Λc +

9(8− c−1)

2(6− c−1)
f2ε

)
|∇ũε| −

3(8− c−1)

6− c−1
⟨∇ũε,∇fε⟩

]
dV

≥
∫
M̃3

2ε

c−1Λc

(
1 +

9

4α2
f2ε − 3

2α2
|∇fε|

)
|∇ũε|dV,

(2.18)

where α =
√

Λc(6−c−1)
2c(8−c−1)

.
To proceed, we shall inspect the limit as ε → 0. First note that applying Fatou’s lemma to

equation (2.14) yields

(2.19)
∫
M̃3

2ε

|∇ũε|dV ≤ lim inf
i→∞

∫
M̃3

2ε

|∇ũε,i|dV ≤ C1.

Moreover, since ũε,i has vanishing average on Ω, the same is true of ũε, and thus utilizing again
a version of the Poincaré inequality we obtain uniform W 1,1(M̃3

2ε) bounds for ũε. By passing to a
subsequence, ũε → u in Lp

loc(M̄
3) for any p ∈ [1, 32), where

(2.20) M̄3 = ∪εM̃3
2ε = {x ∈M3 | r(x) ∈ (−w−, w+)}.

As before, since ũε satisfies the elliptic spacetime Laplacian, we may boot-strap to find subsequential
convergence ũε → u in C2,ς

loc(M̄
3), for some ς ∈ (0, 1). Furthermore, ∆u+ 3f |∇u| = 0 on M̄3 with

(2.21) f(x) =


2α
3 tan

(
αh(r(x) + w−)− π

2

)
if r(x) ≤ min{−w−

2 ,−w− + π
6α}

2α
3 tan

(
π
2 − αh(w+ − r(x))

)
if r(x) ≥ max{w+

2 , w+ − π
6α}

2α
3 tan (l(r(x))) otherwise

since limε→0w
±
ε = w±, where l(r) is a linear function which ensures that f is Lipschitz.
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Finally, if w−+w+ > π
α then the slope of l would be strictly less than α in some region of nonzero

measure, which produces

(2.22) 1 +
9

4α2
f2 − 3

2α2
|∇f | > 1 + tan2(l(r(x)))− sec2(l(r(x))) = 0.

Furthermore, taking the limit of (2.18) with Fatou’s lemma implies that

(2.23) 0 ≥
∫
M̄3

c−1Λc

(
1 +

9

4α2
f2 − 3

2α2
|∇f |

)
|∇u|dV.

Since u is nontrivial as supΩ |∇u| = 1, Proposition 2.2 shows that |∇u| can only vanishes on a set
of measure zero, and therefore a contradiction is obtained. We then have that w− + w+ ≤ π

α , from
which the desired conclusion follows.

2.3. Proof of Theorem 1.1: the case of equality. We now assume that equality holds in (1.3).
Since w−+w+ ≤ π

α , neither one of w± can be π
α as both d(E±,Σ

2) must be positive. It follows that
w− + w+ = π

α . Therefore, since r(x) ∈ (−w−, w+) on M̄3, in this region (2.21) gives

(2.24) f(x) =
2α

3
tan

(
αr(x) + αw− − π

2

)
= −2α

3
cot(αρ(x)),

where ρ(x) = r(x) + w−. By inspecting (2.16)-(2.18), using Fatou’s lemma, and Proposition 2.2 we
find that

∇|∇u|
1
2 +

3

6− c−1
f |∇u|−

1
2∇u = 0(2.25)

holds almost everywhere. Then integrating this equation along curves emanating from regular points
for u, shows that in fact |∇u| ≠ 0 holds globally on M̄3.

Let {e1, e2, e3 = ∇u
|∇u|} be an orthonormal frame. From (2.18), we deduce that ∇u is a multiple of

∇f , and therefore e3 = ∇ρ. This implies that u is a function of ρ. Furthermore, the first two lines
of (2.17) combined with [19, Remark 4.4] show that

(2.26) ∇iju = 0 if i ̸= j, ∇11u = ∇22u.

Thus, (M̄3, g) is a warped product with g = dρ2 + ϕ2(ρ)g0, where g0 is a metric on Σ2 and ϕ is
a positive continuously differentiable function on (0, πα). Next observe that inserting e3 into (2.25)
yields

(2.27) ∇3|∇u| = − 6

6− c−1
f |∇u|,

which implies that up to a scaling constant we have

(2.28) |∇u|(ρ) = [sin (αρ)]
4c

6c−1 .

Moreover, using the spacetime harmonic equation combined with (2.27) produces

(2.29)
2ϕρ
ϕ

= H =
∆u−∇33u

|∇u|
=

3c−1 − 12

6− c−1
f,

where H is the mean curvature of level sets with respect to e3. Hence, it follows that up to scaling
ϕ(ρ) = [sin(αρ)]

4c−1
6c−1 . When c ̸= 1

4 , due to the behavior of ϕ at the ends we find that M̄3 cannot
be strictly contained in a connected open manifold, and thus M̄3 = M3. If c = 1

4 , then ϕ = 1 and
M̄3 is a cylinder. After taking the limit in (2.17), we conclude that the function |∇u|

1
2 = sin(αρ)

minimizes the Rayleigh quotient (1.2). It follows that the c-spectral constant of M̄3 must be Λc. If
M̄3 was properly contained in M3, then its c-spectral constant would be strictly larger than that of
M3, which is also Λc. Therefore M̄3 =M3, in this case as well. See Figure 1, for a depiction of the
different types of behavior for the warped product according to the value of c.
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Figure 1. Case of equality model geometries from left to right: c > 1
4 , c =

1
4 , c <

1
4 .

It remains to show that (Σ2, g0) is a flat torus. According to [30, Corollary 43] we have

(2.30) Ric(∂ρ, ∂ρ) = −2ϕρρ
ϕ

.

Moreover taking two traces of the Gauss equations, denoting the Gaussian curvature of g0 by K0,
and noting that the second fundamental form of (Σ2, g0) ↪→ (M3, g) is given by II = ϕϕρg0 with
mean curvature H = 2ϕ−1ϕρ, yields

R =2Ric(∂ρ, ∂ρ) + 2ϕ−2K0 + |II|2 −H2

=− 2ϕ−2
(
ϕ2ρ + 2ϕϕρρ

)
+ 2ϕ−2K0.

(2.31)

Let L = −∆+ cR−Λc, then a tedious but elementary calculation using the explicit expressions for
|∇u|

1
2 and ϕ along with the relation between α and Λc in (1.3), shows that

L(|∇u|
1
2 ) =− ∂ρρ(|∇u|

1
2 )−H∂ρ(|∇u|

1
2 ) + (cR− Λc)|∇u|

1
2

=− ∂ρρ(|∇u|
1
2 )− 2ϕρ

ϕ
∂ρ(|∇u|

1
2 )−

(
2c

ϕ2
(ϕ2ρ + 2ϕϕρρ)− 2cϕ−2K0 + Λc

)
|∇u|

1
2

=2cK0ϕ
−2|∇u|

1
2 .

(2.32)

Again using the explicit expressions for function and metric, it may be verified that |∇u|
1
2 ∈ H1

0 (M
3)

for c > 1
6 . Furthermore, as observed at the end of the previous paragraph, the Rayleigh quotient

evaluated at |∇u|
1
2 agrees with Λc, and thus L(|∇u|

1
2 ) = 0. Hence K0 = 0, and (Σ2, g0) is a flat

torus. This completes the ‘only if’ direction in the case of equality statement.
To verify the ‘if’ direction, it must be shown that given α > 0, c > 1

6 , and a flat torus (T 2, g0),
the c-spectral constant Λc of the warped product (M3, g) = ((0, πα)× T 2, dρ2 + ϕ2(ρ)g0) agrees with
Λ′
c =

2c(8−c−1)α2

6−c−1 . According to (2.32), the function u0 = |∇u|
1
2 given by (2.28) satisfies

(2.33) (−∆+ cR)u0 = Λ′
cu0,

and u0 > 0 on M3. This implies that Λc ≤ Λ′
c. If Λc < Λ′

c, then there exists a test function with
compact support having Rayleigh quotient strictly less than Λ′

c. We can therefore find a smooth
manifold with boundary M̃3

ε containing this support, and conclude that the principal eigenvalue
λ for this domain with Dirichlet boundary conditions is strictly less than Λ′

c. Let û > 0 be the
corresponding principal eigenfunction for this domain, so that

(2.34) (−∆+ cR)û = λû in M̃3
ε , û = 0 on ∂M̃3

ε .

Observe that
∆(ûu−1

0 ) =u−1
0 ∆û+ 2∇û · ∇u−1

0 + û∆u−1
0

=u−1
0 (cR− λ)û− 2∇(ûu−1

0 ) · ∇ log u0 − 2ûu−3
0 |∇u0|2 − ûu−2

0 ∆u0 + 2ûu−3
0 |∇u0|2

=(Λ′
c − λ)ûu−1

0 − 2∇(ûu−1
0 ) · ∇ log u0.

(2.35)
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Thus, by applying the maximal principal to ûu−1
0 on M̃3

ε , we see that this function must vanish,
which is a contradiction. Hence Λc = Λ′

c.

3. The Spinorial Callias Operator Approach

The purpose of this section is to establish Theorem 1.2. It will be assumed in what follows that
n > 1, as the inequality (1.5) for n = 1 is trivially satisfied. Before beginning the proof, we will first
introduce the requisite machinery and notation.

3.1. Background. The following fact describes the fundamental property, from the perspective of
this work, of bands that admit the Â-overtorical condition. It is well known, see [6, Example 7.5].

Proposition 3.1. Suppose that (Mn, ∂±M
n, g) is an odd dimensional Riemannian spin band which

is Â-overtorical. For any δ > 0, there exists a Hermitian bundle E over Mn with a metric compatible
connection ∇E such that

(1) the curvature RE of (E ,∇E) satisfies |RE | < δ,
(2) the wedge product of the Â form of ∂−Mn with the Chern character of E|∂−Mn satisfies

(3.1)
∫
∂−Mn

Â(∂−M
n) ∧ ch(E|∂−Mn) ̸= 0.

The next task is to introduce the relevant bundles and structure required to describe the spinors
used to prove Theorem 1.2. We will closely follow the exposition in [6, Sections 2 and 3]. Consider
an odd dimensional Riemannian band (Mn, ∂±M

n, g) with a spin structure. Let S′ → Mn denote
the associated complex spinor bundle, equipped with the connection induced by the Levi-Civita
connection. Given a Hermitian bundle E → Mn with a metric connection, consider the bundle
S = (S′ ⊗ E) ⊕ (S′ ⊗ E) =: S− ⊕ S+. This bundle may be equipped with an action of the Clifford
algebra which interchanges its summands according to the formula

(3.2) v · =
(

0 v · ⊗ IE
v · ⊗ IE 0

)
,

where v ∈ TMn is a vector and IE denotes the identity on E . Here and throughout, we use the sign
convention v ·w+w · v = −2g(v, w) for vectors v, w. The bundle S also carries a natural involution
σ defined by

(3.3) σ =

(
0 −i
i 0

)
,

where we are implicitly making reference to the direct sum description of S. In a standard manner,
S inherits a connection from Mn and E , and one may form the corresponding Dirac operator /∂.
Given a Lipschitz function f on Mn, we may also consider the Callias operator

(3.4) Bfφ = /∂φ+ fσφ.

Notice that there is a decomposition Bf = B+
f ⊕ B−

f where B±
f maps S± to S∓.

Appropriate boundary conditions are required to set up an elliptic boundary value problem,
namely we will consider

(3.5)

{
Bfφ = 0 in Mn

∓ν · σφ = φ on ∂±Mn

where ν denotes the unit outward normal to ∂Mn. This yields elliptic boundary value problems
associated to B±

f which are adjoint to each other, and therefore

(3.6) Index(B±
f ) = dim(ker(B±

f ))− dim(ker(B∓
f )).
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According to [6, Corollary 3.10], the expression in (3.1) is the Fredholm index of the boundary value
problem associated to B±

f . Hence, if (Mn, ∂±M
n, g) is Â-overtorical, Proposition 3.1 implies that

there is a source of Hermitian bundles E such that there are nontrivial solutions to this boundary
value problem.

Proposition 3.2. Suppose that (Mn, ∂±M
n, g) is an odd dimensional Riemannian spin band which

is Â-overtorical. Let E be a Hermitian bundle given by Proposition 3.1. Then for any Lipschitz
function f and ς ∈ (0, 1), there exists a nontrivial C1,ς solution to (3.5).

3.2. Proof of Theorem 1.2. Let f be a Lipschitz function on Mn such that f is positive on
∂+M

n and negative on ∂−Mn, to be determined later. Proposition 3.2 yields a nontrivial spinor φ
satisfying (3.5). In order to express the associated Böchner-Lichnerowitz-Weitzenbock formula, let
P denote the Penrose operator acting on spinors according to the formula

(3.7) PXφ = ∇Xφ− 1

n
X · /∂φ,

for any vector field X. Fix p ∈ Mn and let {el}nl=1 be an orthonormal basis at p. Consider the
quantities vl = el ·∇elφ+

f
nσφ, and note that according to equation (3.5) we have

∑n
l=l vl = 0. Write

v = (v1, v̄) and observe that by Cauchy-Schwarz (n−1)|v̄|2 ≥ |v1|2. Thus |v|2 = v21+ |v̄|2 ≥ n
n−1 |v1|

2,
and we arrive at the following Kato-type inequality

(3.8) |Pφ|2 =
n∑

l=1

∣∣∣∣∇lφ− f

n
el · σφ

∣∣∣∣2 ≥ n

n− 1

∣∣∣∣∇1φ− f

n
e1 · σφ

∣∣∣∣2 .
By expanding the right-hand side and denoting β = n

n−1 − 1
4c > 0, it follows that

|Pφ|2 ≥ n

n− 1
|∇1φ|2 −

2

n− 1
f⟨∇1φ, e1 · σφ⟩+

1

n(n− 1)
f2|φ|2

=
1

4c
|∇1φ|2 + β

∣∣∣∣∇1φ− 1

β(n− 1)
fe1 · σφ

∣∣∣∣2 + ( 1

n(n− 1)
− 1

β(n− 1)2

)
f2|φ|2

≥ 1

4c
|∇1φ|2 +

(
1

n(n− 1)
− 1

β(n− 1)2

)
︸ ︷︷ ︸

β1

f2|φ|2.

(3.9)

Since |φ| is Lipschitz, Radamacher’s Theorem ensures that it is differentiable almost everywhere.
Now if ∇|φ| ̸= 0 at p, then we may choose a basis with e1 given by the unit gradient so that
|∇1|φ|| = |∇|φ||, whereas if ∇|φ| = 0 at p then this equality holds trivially for any choice of e1.
Thus, (3.9) implies that

(3.10) |Pφ|2 ≥ 1

4c
|∇|φ||2 + β1f

2|φ|2

holds almost everyhwere.
According to [6, Proposition 4.2] and the proof of [6, Theorem 4.3], we have as a consequence of

the Böchner-Lichnerowitz-Weitzenbock formula that∫
∂−Mn

(f − n

2(n− 1)
H)|φ|2dA−

∫
∂+Mn

(f +
n

2(n− 1)
H)|φ|2dA

=

∫
Mn

(
n

n− 1

(
|Pφ|2 + ⟨φ, R

4
φ+REφ⟩

)
+ ⟨φ, f2φ+∇f · σφ⟩

)
dV

≥
∫
Mn

(
n

n− 1

(
1

4c
|∇|φ||2 + β1f

2|φ|2 + R

4
|φ|2 − γn|RE ||φ|2

)
+ ⟨φ, f2φ+∇f · σφ⟩

)
dV,

(3.11)
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where RE is the E-curvature acting on sections of S and γn is a dimensional constant encountered
when applying Cauchy-Schwarz to ⟨φ,REφ⟩. To continue, notice that from an integration by parts
the following identity holds∫

∂Mn

⟨ν · φ, fσφ⟩dA =

∫
Mn

(
⟨/∂φ, fσφ⟩ − ⟨φ, /∂fσφ⟩

)
dV

=−
∫
Mn

(
2f2|φ|2 + ⟨φ,∇f · σφ⟩

)
dV,

(3.12)

where we have made use of the fact that σX· = −X ·σ for vector fields X. Leveraging the boundary
condition for φ, one may multiply (3.12) by n

n−1β1 and sum the result with (3.11) to obtain∫
∂−Mn

[(
1− nβ1

n− 1

)
f − n

2(n− 1)
H

]
|φ|2dA

−
∫
∂+Mn

[(
1− nβ1

n− 1

)
f +

n

2(n− 1)
H

]
|φ|2dA

≥
∫
Mn

n

n− 1

(
1

4c
|∇|φ||2 + R

4
|φ|2 − γn|RE ||φ|2

)
dV

+

∫
Mn

〈
φ,

(
1− nβ1

n− 1

)
︸ ︷︷ ︸

β2

f2φ+

(
1− nβ1

n− 1

)
∇f · σφ

〉
dV.

(3.13)

Since β > 0, we find that β1 = 1
n(n−1) −

1
β(n−1)2

< 1
n(n−1) , and so

(3.14) β2 = 1− nβ1
n− 1

> 1− 1

(n− 1)2
> 0.

It follows that, provided ±f is sufficiently large on ∂±M
n, the boundary terms of (3.13) are non-

positive.
We now proceed by contradiction and assume that there exists an ε > 0 such that

(3.15) d(∂−M
n, ∂+M

n) > w := π

√
4β2c(n− 1)

nΛc
+ ε = 2π

√
c

Λc

(
(4c− 1)n+ 2− 4c

(4c− 1)n+ 1

)
+ ε.

Next, define a sequence of bounded Lipschitz functions fj on Mn, which satisfy a certain differential
inequality and have the property that ±fj → ∞ on ∂±M

n as j → ∞, in the following way. Let
r±(x) = d(x, ∂±M

n), and for each j consider

(3.16) fj(x) =


− π

w cot
(

π
wr−(x) +

1
j

)
if r−(x) ≤ w

π (
π
2 − 1

j )

π
w cot

(
π
wr+(x) +

1
j

)
if r+(x) ≤ w

π (
π
2 − 1

j )

0 otherwise

.

For each j, we may apply Proposition 3.2 to obtain a nontrivial solution φj to (3.5). Now fix a
compact subset Ω ⊂ M̊n, where M̊n denotes interior, such that for all sufficiently large j we have

3

2
f2j − |∇fj | ≥ 1 on Mn \ Ω,

β2f
2
j − β2|∇fj |+

nΛc

4c(n− 1)
≥ Cε on Mn,

(3.17)
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where Cε > 0 depends on ε, n, c, and Λc. Then equations (3.12) and (3.17), together with the
boundary condition of (3.5) and sign of fj |∂±Mn , imply

(3.18)
∫
Mn\Ω

(
1

2
f2j + 1

)
|φj |2dV ≤

∫
Mn\Ω

(2f2j − |∇fj |)|φj |2dV ≤
∫
Ω
(|∇fj | − 2f2j )|φj |2dV.

Note that maxΩ |φj | ≠ 0, otherwise this estimate implies that φj vanishes globally. Thus by appro-
priate rescaling, it may be assumed without loss of generality that maxΩ |φj | = 1, and (3.17) along
with (3.18) yield

(3.19)
∫
Ω
|φj |2 +

∫
Mn\Ω

(
1

2
f2j + 1

)
|φj |2dV ≤

(
nΛc

4c(n− 1)β2
+ 1

)
|Ω|.

It then follows from (3.13), (3.17), and (3.19) that

n

4c(n− 1)

∫
Mn

|∇|φj ||2dV +

∫
∂Mn

Υj |φj |2dA

≤
∫
Mn

(
−β2f2j + β2|∇fj |

)
|φj |2dV +

n

n− 1

∫
Mn

(
|R|
4

+ γn|RE |
)
|φj |2dV

≤C1

(3.20)

for some constant C1 independent of j, where

(3.21) Υj = min
∂Mn

(
β2|fj | −

n

2(n− 1)
|H|
)

which satisfies Υj → ∞ as j → ∞.
The inequalities (3.19) and (3.20) show that the sequence |φj | is uniformly bounded in H1(Mn),

and thus |φj | weakly subconverges to a function |φφφ| in H1(Mn) with strong convergence in Hs(Mn)
for any s ∈ [12 , 1), see [14, Theorem 9.22] or [29, Corollary 7.2]. Moreover, since the trace map
τ : Hs(Mn) → Hs− 1

2 (∂Mn) is continuous [29, Proposition 3.8], we find that |φj | converges sub-
sequentially to τ(|φφφ|) in L2(∂Mn). However, since Υj → ∞ we find that (3.20) yields τ(|φφφ|) = 0

on ∂Mn, and hence |φφφ| ∈ H1
0 (M̊

n). Then taking the limit in (3.13) while utilizing weak lower
semi-continuity of the H1-norm, strong convergence in L2, Fatou’s lemma together with (3.17), and
applying the definition of the c-spectral constant produces

0 ≥
∫
Mn

(
n

4c(n− 1)

(
|∇|φφφ||2 + cR|φφφ|2

)
+

(
β2f

2 − β2|∇f | −
nγn
n− 1

|RE |
)
|φφφ|2

)
dV

≥
∫
Mn

(
β2f

2 − β2|∇f |+
nΛc

4c(n− 1)
− nγn
n− 1

|RE |
)
|φφφ|2dV

≥
∫
Mn

(
Cε −

δnγn
n− 1

)
|φφφ|2dV,

(3.22)

where in the last line we used Proposition 3.1. By choosing δ << Cε, we arrive at a contradiction
since maxΩ |φφφ| = 1. It follows that

(3.23) d(∂−M
n, ∂+M

n) ≤ 2π

√
c

Λc

(
(4c− 1)n+ 2− 4c

(4c− 1)n+ 1

)
.

4. The µ-Bubble Approach

In this section we will establish Theorem 1.3, and for convenience will use the notation Λ = Λ 1
2
.

The result is trivial if n = 1, and thus it will be assumed that n > 1 below. Suppose that the
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conclusion of the theorem is false, then there exists ε > 0 such that

(4.1) d(∂−M
n, ∂+M

n) ≥ π

√
2n

(n+ 1)Λ
+ 2ε.

Let u be the positive principal eigenfunction associated to Λ, so that

(4.2)
(
−∆+

1

2
R

)
u = Λu in Mn, u = 0 on ∂Mn.

In order to obtain a band on which u has a uniform positive lower bound, we may push in by a
small amount from the boundary and consider

(4.3) M̌n =
{
x ∈Mn | d(x, ∂Mn) ≥ ε

2

}
.

Note that it may be assumed without loss of generality that ε is sufficiently small to guarantee
that ∂M̌n is smooth and is divided into classes ∂±M̌n corresponding with ∂±M

n. Next denote
r±(x) = d(x, ∂±M̌

n), and for 0 < ε0 << ε define a potential function on the interior of M̌n by

f0(x) =


−
√

2nΛ
n+1 cot

[(√
(n+1)Λ

2n − ε0

)
r−(x)

]
0 < r−(x) ≤ π

2

(√
(n+1)Λ

2n − ε0

)−1

√
2nΛ
n+1 cot

[(√
(n+1)Λ

2n − ε0

)
r+(x)

]
0 < r+(x) ≤ π

2

(√
(n+1)Λ

2n − ε0

)−1

0 elsewhere

.(4.4)

Observe that f0 is Lipschitz and limits to ±∞ on ∂±M̌
n. Let Bσ(x) be the geodesic ball of radius

σ centered at an interior point x ∈ M̌n, and set

(4.5) Lf0(x) = lim sup
σ→0

LipBσ(x)(f0).

Then at all such points the following inequality holds

(4.6)
n+ 1

2n
f20 − Lf0 + Λ ≥

√
2nΛ

n+ 1
ε0.

This strictly positive lower bound for the left-hand side of (4.6) is the impetus for introducing the
constant ε0.

We now seek to replace f0 with a smooth approximation that agrees with it near ∂M̌n. Let
M̌n

r0 = {x ∈ M̌n | r±(x) ≥ r0}, where r0 > 0 is chosen sufficiently small so that r± are smooth (and
hence f0 is smooth) within M̌n \ M̌n

r0 . We may approximate f0 by fδ ∈ C∞(M̌n
r0/2

) which, for each
small δ > 0, satisfies

(4.7) |f0(x)− fδ(x)| ≤ δ, |∇fδ(x)| ≤ LipBδ(x)
(f0) + δ,

with x ∈ M̌n
r0/2

. Such an approximation fδ may be constructed as in [10, Theorem 2.2]. Furthermore
given δ′ > 0, the property (4.7) implies that Lfδ ≤ Lf0 + δ′ for all δ sufficiently small, and therefore
we find that (4.6) yields

(4.8)
n+ 1

2n
f2δ − Lfδ + Λ ≥

√
2nΛ

n+ 1
ε0 − 2δ′

on M̌n
r0/2

. Now let η be a smooth nonnegative cut-off function on M̌n which is 1 on M̌n
r0 and zero

on M̌n \ M̌n
r0/2

. Define f = ηfδ + (1− η)f0 and observe that this function is smooth on M̌n, agrees
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with f0 on M̌n \ M̌n
r0/2

, and by virtue of (4.6) and (4.8) it satisfies

(4.9)
n+ 1

2n
f2 − |∇f |+ Λ ≥

√
2nΛ

n+ 1
ε0 − 3δ′ > 0

on M̌n, if δ is sufficiently small and δ′ << ε0.
The next step is to introduce the warped µ-bubbles which serve as the central geometric tool in

this proof. We will closely follow the exposition developed in [8, Section 3] and [46, Proposition 2.1].
Fix a Caccioppoli set Ω0 having smooth boundary with ∂+M̌n ⊂ Ω0, and such that ∂Ω0 \∂+M̌n lies
within the interior of M̌n. For instance, one may take Ω0 to be an appropriate sublevel set of the
distance function r+. For any Caccioppoli set Ω ⊂ M̌n with symmetric difference Ω∆Ω0 compactly
contained within the interior of M̌n, define the functional

(4.10) Au,f (Ω) =

∫
∂∗Ω

udHn−1 −
∫
M̌n

(χΩ − χΩ0)fudHn

where ∂∗Ω denotes the reduced boundary, χΩ is the characteristic function of Ω, and dHn is the n-
dimensional Hausdorff measure. Using that f blows-up at ∂±M̌n, it may be shown that a minimizer
Ω̌ of Au,f exists within this class of sets, and since n ≤ 7 its boundary ∂Ω̌ is smooth. Using the
fact that Ω̌∆Ω0 does not intersect ∂M̌n, we find that ∂+M̌n lies within Ω̌, and hence the smooth
hypersurface Σn−1 := ∂Ω̌ \ ∂+M̌n must separate ∂−M̌n from ∂+M̌

n. This surface is referred to as
a warped µ-bubble, see Figure 2.

Remark 4.1. Instead of approximating f0 by a smooth function f and citing the existence theory
for µ-bubbles in the smooth setting as done above, one may directly construct C2,ς-regular µ-bubbles
with respect to the Lipschitz potential function f0. This existence result is carried out in Appendix
A, which may be of independent interest.

∂−M
n ∂−M̌

n
r0

∂−M̌
n

∂+M
n∂+M̌

n
r0

∂+M̌
n

∂Ω0 Ω0Σn−1

Figure 2. The relevant regions in the µ-bubble approach.

A direct computation yields the first variation formula for the µ-bubble

(4.11) Hu− fu+ ⟨∇u, ν⟩ = 0,

where ν is the unit outer normal to Σn−1, and H is the mean curvature of Σn−1 with respect to ν.
Moreover, the second variation with test function ϕ ∈ C∞(Σn−1) produces

0 ≤
∫
Σn−1

(
−uϕ∆Σϕ− |A|2ϕ2u− Ric(ν, ν)ϕ2u+H⟨∇u, ν⟩ϕ2

)
dA

+

∫
Σn−1

(
−fϕ2⟨∇u, ν⟩ − ϕ2u⟨∇f, ν⟩+ ϕ2∇ννu− ϕ⟨∇Σu,∇Σϕ⟩

)
dA,

(4.12)
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where A denotes the second fundamental form. Utilizing the Gauss equations, the basic inequality
|A|2 ≥ 1

n−1H
2, and the decomposition ∆u = ∇ννu+H⟨∇u, ν⟩+∆Σu gives rise to

0 ≤
∫
Σn−1

(
−uϕ∆Σϕ− n

2(n− 1)
H2ϕ2u− 1

2
Rϕ2u+

1

2
RΣϕ

2u

)
dA

+

∫
Σn−1

(
−fϕ2⟨∇u, ν⟩ − ϕ2u⟨∇f, ν⟩+ ϕ2(∆u−∆Σu)− ϕ⟨∇Σu,∇Σϕ⟩

)
dA,

(4.13)

with RΣ denoting the scalar curvature of Σn−1. Equations (4.2) and (4.11), along with the Cauchy-
Schwarz inequality |⟨∇f, ν⟩| ≤ |∇f |, then imply

0 ≤
∫
Σn−1

(
−uϕ∆Σϕ− n

2(n− 1)
(f − ⟨∇ log u, ν⟩)2ϕ2u− Λϕ2u+

1

2
RΣϕ

2u

)
dA

+

∫
Σn−1

(
−fϕ2⟨∇u, ν⟩ − ϕ2u⟨∇f, ν⟩ − ϕ2∆Σu− ϕ⟨∇Σu,∇Σϕ⟩

)
dA

≤
∫
Σn−1

(
−uϕ∆Σϕ− n

2(n− 1)
f2ϕ2u− n

2(n− 1)
⟨∇ log u, ν⟩2uϕ2 − Λϕ2u+

1

2
RΣϕ

2u

)
dA

+

∫
Σn−1

(
1

n− 1
uϕ2f⟨∇ log u, ν⟩+ ϕ2u|∇f | − ϕ2∆Σu− ϕ⟨∇Σu,∇Σϕ⟩

)
dA.

(4.14)

Observe that by Young’s inequality

(4.15)
1

n− 1
uϕ2f⟨∇ log u, ν⟩ ≤ n

2(n− 1)
uϕ2⟨∇ log u, ν⟩2 + 1

2n(n− 1)
uϕ2f2,

the therefore (4.14) becomes

0 ≤
∫
Σn−1

(
−uϕ∆Σϕ− n+ 1

2n
f2ϕ2u− Λϕ2u+

1

2
RΣϕ

2u

)
dA

+

∫
Σn−1

(
ϕ2u|∇f | − ϕ2∆Σu− ϕ⟨∇Σu,∇Σϕ⟩

)
dA.

(4.16)

Next, let ψ ∈ C∞(Σn−1) and set ϕ = ψu−
1
2 to find

0 ≤
∫
Σn−1

(
−u

1
2ψ∆Σ(ψu

− 1
2 )− ψ2u−1∆Σu− u−

1
2ψ⟨∇Σu,∇Σ(ψu

− 1
2 )⟩
)
dA

+

∫
Σn−1

(
|∇f | − n+ 1

2n
f2 − Λ +

1

2
RΣ

)
ψ2dA.

(4.17)

Finally if n ≥ 3, integrating by parts, using Young’s inequality again, and applying (4.9) produces

0 ≤
∫
Σn−1

(
|∇Σψ|2 −

3

4
ψ2|∇Σ log u|2 + ψ⟨∇Σψ,∇Σ log u⟩

)
dA

+

∫
Σn−1

(
|∇f | − n+ 1

2n
f2 − Λ +

1

2
RΣ

)
ψ2dA

≤
∫
Σn−1

(
4

3
|∇Σψ|2 +

1

2
RΣψ

2

)
dA+

∫
Σn−1

(
|∇f | − n+ 1

2n
f2 − Λ

)
ψ2dA

≤2(n− 1)

n− 2

∫
Σn−1

(
|∇Σψ|2 +

n− 2

4(n− 1)
RΣψ

2

)
dA+

∫
Σn−1

(
|∇f | − n+ 1

2n
f2 − Λ

)
ψ2dA

<
2(n− 1)

n− 2

∫
Σn−1

(
|∇Σψ|2 +

n− 2

4(n− 1)
RΣψ

2

)
dA,

(4.18)
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if ψ is not identically zero. Since ψ was arbitrary, it follows that the principle eigenvalue of the
conformal Laplacian of (Σn−1, g) is positive. In particular, Σn−1 admits a metric of positive scalar
curvature. When n = 2, the third line of (4.18) is still valid, so that choosing ψ = 1 yields the same
conclusion. On the other hand, since Σn−1 separates ∂−M̌n and ∂+M̌

n and hence also ∂−Mn and
∂+M

n, the fact that (Mn, ∂±M
n) is overtorical implies that Σn−1 admits a nonzero degree map to

Tn−1, see [31, Lemma 6.2]. Since n ≤ 7, classical work of Schoen-Yau [33] shows that Σn−1 cannot
support positive scalar curvature metrics. From this contradiction we conclude that the desired
inequality (1.6) is valid.

Remark 4.2. Note that this last argument shows that overtorical bands are nonPSC-bands for n ≤ 8.
Indeed, [33] continues to apply for this slightly extended range of dimensions.

5. The Spectral Cube Inequality

In this section we will establish Theorem 1.4. Let u be the positive principal Dirichlet eigenfunction
for the Riemannian cube, so that

(5.1)
(
−∆+

1

2
R

)
u = Λ 1

2
u in [−1, 1]n, u = 0 on ∂[−1, 1]n.

Let l, ε > 0 be parameters, and consider the higher dimensional cube M̃n+1
l,ε = [−l, l]× [−1+ε, 1−ε]n

with warped product metric g̃ = u2dt2 + g. Note that u does not vanish on M̃n+1
l,ε . Furthermore,

observe that the scalar curvature [30, (13a) page 214] of g̃ satisfies

(5.2) R̃ = −2u−1

(
∆u− 1

2
Ru

)
= 2Λ 1

2
> 0.

By applying the pointwise version of Gromov’s cube inequality [39, Theorem 1.1], [16, Section 3.8]
we then have

(5.3)
n∑

i=0

1

ℓ2i,l,ε
≥

Λ 1
2
(n+ 1)

2π2n
,

where ℓi,l,ε is the distance within M̃n+1
l,ε between the ith opposing faces of the cube, with i = 0

corresponding to the t-direction. Moreover, since ℓi,l,ε is independent of l for i = 1, . . . , n, and
ℓ0,l,ε → ∞ as l → ∞, it follows that by passing to the limit

(5.4)
n∑

i=1

1

ℓ2i,ε
≥

Λ 1
2
(n+ 1)

2π2n
,

where ℓi,ε is the distance within ([−1 + ε, 1 − ε]n, g) between the ith opposing faces of the cube.
Finally, since ℓi,ε → ℓi as ε→ 0, the desired inequality is achieved.

Remark 5.1. In a similar fashion, this method also allows one to derive the spectral toric band
inequality directly from the pointwise toric band inequality. Note however, that this warped product
approach cannot deal with c-spectral constants for c ̸= 1

2 , and it does not address the case of equality.

6. Black Hole Existence

In this section Theorem 1.5 will be established, comparison with the Schoen-Yau black hole
existence result [35] will be discussed, and examples will be presented. The main steps in the proof
of the existence of apparent horizons will follow the prescription of [35], and thus here only an outline
will be given with remarks provided to accommodate the higher dimensions and different radii.
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6.1. Proof of Theorem 1.5. Consider an initial data set (Mn, g, k) as in the statement of the
theorem, and assume by way of contradiction that it does not contain any closed properly embedded
smooth apparent horizons. Then there exists a regular solution to the Dirichlet problem for the
Jang equation

(6.1)
(
gij − f if j

1 + |∇f |2

)(
∇ijf√

1 + |∇f |2
− kij

)
= 0 on Mn, f = 0 on ∂Mn,

where f i = gij∂jf and ∇ijf denotes the covariant Hessian. The existence is obtained from a
limit of solutions to the capillarity regularized equation, utilized by Schoen-Yau in the proof of the
positive mass theorem [34] in dimension 3. This was extended to dimensions n ≤ 7 by Eichmair [13,
Proposition 7] in the asymptotically flat setting, using the theory of C-almost minimizing boundaries
[12, Appendix A]. The necessary tool needed to apply Eichmair’s strategy to the Dirichlet problem
(6.1) is a 2-sided barrier construction at the boundary ∂Mn. This is explained for dimension 3 in
[42, page 11], and the same construction holds essentially without change in higher dimensions as
long as the boundary is untrapped. Because the solution of Jang’s equation represents a MOTS in
n + 1 dimensions, one might expect its singular set to be at best codimension 7. However, better
regularity properties prevail as it is a graph [12, Remark 4.1, pages 568-569], leaving its singular set
to be at least codimension 8.

Consider now the Jang metric ḡ = g + df2 on Mn. Its scalar curvature [13, (10)] satisfies the
identity

(6.2) R̄ = 2(µ− J(v)) + |A− k|2ḡ + 2|X|2ḡ − 2divḡ(X),

where A is the second fundamental form of the graph t = f(x) in the product manifold (Mn×R, g+
dt2), divḡ is the divergence operator with respect to ḡ, and v and X are 1-forms given by

(6.3) vi =
fi√

1 + |∇f |2
, Xi =

f j√
1 + |∇f |2

(Aij − kij).

Let u > 0 be the principal Dirichlet eigenfunction of −∆ḡ +
1
2R̄ on Ω. Then multiplying (6.2) by u2

and integrating by parts produces

(6.4)
∫
Ω

(
(µ− |J |) + 1

2
|A− k|2ḡ + |X +∇ log u|2ḡ

)
u2dVḡ ≤

∫
Ω

(
|∇u|2ḡ +

1

2
R̄u2

)
dVḡ.

Notice that it is not possible for both |A−k|ḡ and |X+∇ log u|ḡ to vanish on Ω, otherwise this would
imply that u is constant. Therefore the integral involving these two terms gives a strictly positive
contribution to the left-hand side. Using that µ−|J | ≥ Λ on Ω, we conclude that the corresponding
principal eigenvalue satisfies Λ̄ ≥ (1 + ε)Λ for some ε > 0 sufficiently small.

If Nn ↪→ (Ω, ḡ) is an isometrically immersed nonPSC-band or cube, then by utilizing the pullback
of u on Nn in the proofs of Theorems 1.3 and 1.4, we find that the band or cubical-width satisfies

(6.5) ḡ-width ≤ π

√
2n

(n+ 1)Λ̄
≤ π

√
2n

(n+ 1)(ε+ 1)Λ
.

It then follows from the definition of torical and cubical-radius, that

(6.6) Rad(Ω) ≤ π

√
2n

(n+ 1)(ε+ 1)Λ
< π

√
2n

(n+ 1)Λ
,

where Rad denotes the radius with respect to the Jang metric. Furthermore, since ḡ is larger than
g we have Rad(Ω) ≤ Rad(Ω). However, this combined with (6.6) leads to a contradiction with
the assumption (1.11). We conclude that Mn must contain a closed properly embedded smooth
apparent horizon Sn−1.
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Lastly, to verify the last claims of Theorem 1.5, note that the apparent horizon may be identified
via blow-up of the Jang equation. Moreover, the same manipulations that give rise to (6.4), provide
an analogous stability type inequality on the Jang surface where u is replaced by smooth functions
with compact support. With standard arguments, as in [13, Proposition 9], this stability property is
inherited by the apparent horizon. Thus, if µ− |J | ≥ λ > 0 on Sn−1, then the principal eigenvalue
of −∆Sn−1 + 1

2RSn−1 is not less than λ. By Theorems 1.3 and 1.4, it follows that

(6.7) Rad(Sn−1) ≤ π

√
2(n− 1)

nλ
.

Moreover, if cn = n−2
4(n−1) is the dimensional constant from the conformal Laplacian, then since

2 ≤ c−1
n the same arguments show that the principal eigenvalue of −∆Sn−1 + cnRSn−1 is positive.

Hence Sn−1 is of positive Yamabe type.

6.2. Comparison to Schoen-Yau result. As discussed in the introduction, the 3-dimensional
Schoen-Yau black hole existence result in [35] relies on a different notion of radius than those used
in this article. In order to compare Theorem 1.5 with their result, we will in this subsection compare
the torical-radius Radt and the Schoen-Yau radius Radsy. A preliminary observation reveals that
the neighborhoods used to build the Schoen-Yau radius are related to nonPSC-bands.

Proposition 6.1. Let (Ω3, g) be a compact Riemannian 3-manifold with (possibly empty) boundary
∂Ω3, and assume that Γ ⊂ Ω̊3 is a smooth simple closed curve which bounds a disc D ⊂ Ω3. If Γ does
not bound a disc within the distance neighborhood Nr = {x ∈ Ω3 | d(x,Γ) < r} and Nr ∩ ∂Ω3 = ∅,
then any embedded hypersurface in Nr separating Γ from ∂Nr must have a component of nonzero
genus.

Proof. Suppose that Nr ⊂ Ω3 is a distance neighborhood of the curve Γ, such that there is no disc in
Nr bounded by Γ and Nr ∩∂Ω3 = ∅. Note that ∂Nr ̸= ∅, otherwise Nr = Ω3 and D would lie within
Nr. Proceeding by contradiction, let us suppose that there is an embedded hypersurface Σ2 ↪→ Nr

which separates Γ from ∂Nr, and has the property that each of its components is a 2-sphere. Let N ′
r

denote the component of Nr \ Σ2 that contains Γ, and note that its boundary consists of spheres.
We may assume without loss of generality that D intersects Σ2 transversely, and will denote by D′

the component of D∩N ′
r which contains Γ. Then ∂D′ \Γ consists of a finite number of circles within

Σ2. Since each component of Σ2 is a sphere, these circles bound discs within Σ2 which may be used
to cap off D′. Thus, the union of D′ with these caps produces a disc that lies within Nr and is
bounded by Γ, yielding a contradiction. We conclude that Σ2 must contain at least one component
of nonzero genus. □

The main observation gives the desired relation between the two notions of radii. In particular,
this comparison implies that Theorem 1.5 recovers [35, Theorem 2] in dimension 3.

Lemma 6.2. Let (Ω3, g) be a compact Riemannian 3-manifold. Then Radt(Ω
3) ≥ Radsy(Ω

3).

Proof. Let Γ ⊂ Ω̊3 be a smooth simple closed curve. According to a version of Sard’s theorem
[32], the set of critical values for the distance function from Γ is of measure zero, and thus when
computing the Schoen-Yau radius it suffices to restrict attention to regular values. Consider such a
regular value r, then ∂Nr is a Lispchitz hypersurface [32], and may therefore be approximated with
a smooth hypersurface that is homologous and arbitrarily close to ∂Nr by, for instance, running
mean curvature flow for a short time [11]. In particular, we may assume without loss of generality
that Nr possesses a smooth boundary. Let ε > 0 and consider the annular distance neighborhood
Nr \Nε. By Proposition 6.1, for all sufficiently small ε this annular distance neighborhood defines a
nonPSC-band of width r− ε. If r is the supremum of values r with the property that the r-distance
neighborhood from Γ does not intersect ∂Ω3, and Γ does not bound a disc in this neighborhood,
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then since ε may be taken arbitrarily small we have r ≤ Radt(Ω
3). Furthermore, since Radsy(Ω

3) is
the supremum of r among all Γ, it follows that Radsy(Ω

3) ≤ Radt(Ω
3). □

6.3. Examples. As explained in the introduction, for the class of maximal initial data sets Theorem
1.5 is vacuous. However, here we show by explicit construction that it is straightforward to find
examples that satisfy the hypotheses of this result, and in fact that they are ubiquitous. Let (Mn, g)
be an arbitrary complete asymptotically flat Riemannian manifold, and consider an embedded cube
[−1, 1]n ↪→Mn. Now define a symmetric 2-tensor k = Fg, where F is a smooth compactly supported
function on Mn, with F ≡ C >> 1 inside the cube. Then (Mn, g, k) is an asymptotically flat initial
data set whose energy and momentum densities are given by µ = 1

2(R + (n2 − n)C2) and J = 0,
inside the cube. Therefore if 3 ≤ n ≤ 7, then by choosing the constant C to be sufficiently large
we find that the assumptions of Theorem 1.5 and Corollary 1.6 are satisfied, which yields a closed
properly embedded smooth apparent horizon within (Mn, g, k). The above construction can also be
adapted for the torical-radius version of the theorem.

Appendix A. Existence and Regularity of Warped µ-Bubbles

In this section we discuss the existence and regularity of warped µ-bubbles with Lipschitz potential
function f , which does not appear to be in the literature. Previous results on this topic have assumed
a smooth potential function, however the most natural choices for f in applications are often merely
Lipschitz since they involve distance functions. The notation here will be consistent with that of
Section 4, with M̌n replaced with Mn.

Proposition A.1. Let (Mn, ∂±M
n, g) be an n-dimensional Riemannian band with n ≤ 7. Suppose

that u ∈ C∞(Mn) is strictly positive, and f ∈ Liploc(M
n) satisfies f → ±∞ on ∂±M

n. Then
for any ς ∈ (0, 1) there exists a C2,ς warped µ-bubble Σn−1 = ∂Ω \ ∂+Mn, where Ω minimizes the
functional Au,f of (4.10) among Caccioppoli sets whose symmetric difference with Ω0 is compactly
contained within the interior of Mn.

Proof. The existence theory for µ-bubbles relies on the compactness theorem for Caccioppoli sets,
and extends without any adjustment to the non-smooth setting. More precisely, it follows from [8,
Section 3] that a minimizing Caccioppoli set Ω exists, whose reduced boundary ∂∗Ω\∂+Mn = Σn−1

does not intersect ∂Mn. Moreover, it is straightforward to show that Σn−1 satisfies the C-almost
minimizing property, and therefore according to [12, Theorem A.1] this surface is C1,ς smooth.
Alternatively, as in [45, Theorem 2.2], we may follow the arguments contained in [27, Section 3] to
obtain the same conclusion. Writing Σn−1 locally as graph, we find that the graph function weakly
satisfies the second order elliptic equation

(A.1) H = f − ⟨∇ log u, ν⟩.

Since the potential function f is Lipschitz, the normal ν is C0,ς , and the weight function u > 0 is
smooth, standard Schauder theory yields C2,ς regularity for the µ-bubble. □
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