Joa Weber

Álgebra Linear

MA327 – Turma O

Lista 3a – A Adjunta

Exercícios.

a) Determine uma inversa à direita para

$$A: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x, y, z) \mapsto (x + 2y + 3z, 2x - y - z)$,

e uma inversa à esquerda para

$$B: \mathbb{R}^2 \to \mathbb{R}^4$$
, $(x,y) \mapsto (x+2y, 2x-y, x+3y, 4x+y)$.

b) Dado

$$\mathbf{a} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix},$$

calcule $\mathbf{a}\mathbf{a}^T$ e, a partir daí, encontre uma matriz $\mathbf{b} \in M(3 \times 2)$ tal que $\mathbf{a}\mathbf{b} = \mathbb{1}_2$.

- c) Seja $(E, \langle \cdot, \cdot \rangle)$ um espaço vetorial de dimensão finita com produto interno. Seja P uma projeção em $E: P \in \mathcal{L}(E)$ e $P^2 = P$. Prove que a adjunta P^* também é uma projeção em E. Dê um exemplo em que $P^* \neq P$.
- d) Considere o produto interno no espaço vetorial $M(n \times n)$ definido por

$$\langle \mathbf{a}, \mathbf{b} \rangle := \operatorname{tr} \left(\mathbf{a}^T \mathbf{b} \right) = \sum_{i,j} a_{ij} b_{ij}.$$

Mostre que o subespaço \mathcal{A} das matrizes anti-simétricas é o complemento ortogonal em $M(n \times n)$ do subespaço \mathcal{S} das matrizes simétricas:

$$\mathcal{A} = \mathcal{S}^{\perp}$$
 e $\mathcal{S} \oplus \mathcal{A} = M(n \times n)$.

- e) Uma matriz quadrada **a** chama-se diagonalizável quando é semelhante a uma matriz $\mathbf{d} = (d_{ij})$ do tipo diagonal $(d_{ij} = 0 \text{ se } i \neq j)$, ou seja, quando existe **p** invertível tal que $\mathbf{p}^{-1}\mathbf{ap} = \mathbf{d}$. Prove que:
 - i) \mathbf{a} diagonalizável $\Rightarrow \mathbf{a}^T$ diagonalizável.
 - ii) Se a matriz do operador $A \in \mathcal{L}(E)$ relativamente a uma base de E é diagonalizável, então o é em relação a qualquer outra base.
- f) Seja $A \in \mathcal{L}(E)$. Se E possui uma base formada por autovetores de A, prove que existe também uma base de E formada por autovetores de $A^* : E \to E$. (Veja Lista 2c Exercício g)).