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Abstract. We obtain the gradient ow of the classical actionfunctional on the free loop space �M of a closed Riemannian man-ifold (M; g) (where the Lagrangian is given by kinetic minus poten-tial energy) as an adiabatic limit of the Floer gradient ow of thesymplectic action on the free loop space of T �M (where the Hamil-tonian is given by kinetic plus potential energy). The limit is onewhere the metric on the momentum coordinate converges to zero.There is a natural correspondence between the critical points inboth theories (perturbed geodesics) and we prove that their Morseindices equal minus their Conley-Zehnder indices. Nondegeneracycan be achieved by generic choice of an appropriate parameter -the potential energy.The main result is an existence and uniqueness theorem forperturbed J -holomorphic curves nearby any trajectory of the heatow between nondegenerate critical points of index di�erence 1.The proof is by a version of Newton's iteration method. Note thata crucial estimate has been left as a conjecture for p > 2. A prooffor p = 2 is included.Our result is a major step in establishing the existence of anatural isomorphism between Floer cohomology of the cotangentbundle ofM and Morse homology of the classical action functionalon �M , which in turn represents the singular homology of �M .
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Zusammenfassung. Wir erhalten den (negativen) Gradienten-u� des klassischen Wirkungsfunktionals auf dem freien Schleifen-raum �M einer geschlossenen Riemannschen Mannigfaltigkeit(M; g) { betrachtet als parabolisches Randwertproblem { alseinen adiabatischen Limes des Floerschen Gradientenusses aufdem Schleifenraum von T �M { ein elliptisches Randwertproblem.In diesem Limes wird die vertikale Komponente der induziertenMetrik auf T �M zu Null skaliert. Die kritischen Punkte in bei-den Theorien k�onnen mit (gest�orten) geschlossenen Geod�atischenvon (M; g) identi�ziert werden und wir beweisen, da� derenMorse Indizes gleich den negativen Conley-Zehnder Indizes derentsprechenden 1-periodischen Orbits des geod�atischen Flusses aufT �M sind. Es stellt sich heraus, dass die Nichtdegeneriertheit derkritischen Punkte durch generische Wahl eines geeigneten Para-meters erreicht werden kann.Das Hauptresultat ist ein Existenz- und Eindeutigkeitstheo-rem f�ur (gest�orte) J -holomorphe Zylinder in T �M nahe bei jederL�osung des parabolischen Randwertproblems. Zum Beweis kon-struieren wir eine Version der Newtonmethode f�ur einen stetigdi�erenzierbaren Schnitt in einem Banachraumb�undel. Eine zen-trale Absch�atzung im hier relevanten Fall p > 2 ist als Vermutungformuliert. Wir geben einen Beweis f�ur p = 2.Unsere Resultate stellen einen wesentlichen Schritt im Beweisder Existenz eines kanonischen Isomorphismus zwischen der Floer-kohomologie des Kotangentialb�undels T �M und der Morse Ho-mologie f�ur das klassische Wirkungsfunktional auf �M dar. Let-ztere wiederum repr�asentiert die singul�are Homologie von �M .
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CHAPTER 1Introduction and main resultsLet us �rst describe the background and context of this thesis, which origi-nates in a joint research project with Dietmar Salamon. Our aim is to give aproof of theorem 1.0.3 by studying J -holomorphic curves in cotangent bun-dles and relating them to the heat ow of the underlying closed Riemannianmanifold via an adiabatic limit argument. The main point is to establish abijection between certain moduli spaces. In this thesis we prove injectivity.Further results are the index theorem and transversality for loops.Let (M; g) be a compact smooth Riemannian manifold of dimension nand without boundary. �M denotes the free loop space of M consisting ofabsolutely continuous maps from S1 to M . For V 2 C1(S1 �M;R) andx 2 �M consider the classical action functionalIV (x) = Z 10 �12 j _x(t)j2 � V (t; x(t))�dtwhose integrand is the Lagrangian LV : S1 � TM ! R. The set Crit IV ofcritical points of IV are the smooth loops x satisfying�rt _x�rV (t; x) = 0(1)where r is the Levi-Civita connection and rV the gradient with respect tothe x-variable. For constant V these loops are the closed geodesics. Via theLegendre transformation the solutions of (1) can be interpreted as criticalpoints of the symplectic action functional AV on �T �MAV (z) = Z 10 �hz(t); _x(t)i �HV (t; z(t))�dtwhere x(t) is the basepoint in M of z(t) and the Hamiltonian HV : S1 �T �M ! R is given by HV (t; z) = 12 jzj2 + V (t; x)(2)for z 2 T �xM . A loop z in T �M is a critical point of AV i� the loop x of itsbasepoints inM solves (1) and z(t) = g(x(t)) _x(t) where in abuse of notationg : TM ! T �M also denotes the isomorphism provided by the Riemannianmetric. For such loops both functionals agree.Let f : X ! R be a Morse function on a compact Riemannian manifoldX, i.e. its Hessian at any critical point is required to be nondegenerate. If thenegative gradient ow of f is Morse-Smale (stable and unstable manifoldsintersect transversally) then it gives rise to a Morse-Witten complex [Wi82]1



2 1. INTRODUCTION AND MAIN RESULTSwhich is generated by the critical points and graded by the Morse index. Theboundary operator is de�ned by counting the connecting orbits with indexdi�erence 1 (modulo 2 in the case of Z2 coe�cients and otherwise withsuitable signs which take account of the orientations). Full details may befound in the book by Matthias Schwarz [Sch93].This principle applies equally well to the classical action IV : �M ! Rand the symplectic action AV : �T �M ! R. In both cases the chaingroups C� are generated by the 1-periodic solutions x : S1 ! M of (1).Such a solution is nondegenerate as a critical point of IV if and only if thecorresponding loop z : S1 ! T �M with z = g(x) _x and z(t) 2 T �x(t)M isnondegenerate as a critical point of AV . Here g(x) : TxM ! T �xM denotesthe isomorphism induced by the Riemannian metric. Each periodic solutionx 2 Crit IV has �nite Morse index Ind(x) as a critical point of IV (thenumber of negative eigenvalues of the Hessian, counted with multiplicity)and for a �xed level a we consider the chain groupsCak = Mx2Crit IV ; IV (x)�a;Ind(x)=k Z2x:In theorem 6.2.1 we prove that IV and AV are Morse functions for genericpotential V . We also assume that the L2-gradient ows of IV and AV areMorse-Smale. In both cases this should again be achievable by a generic per-turbation of the potential V . Under this assumption there are two boundaryoperators. There is @M : Cak ! Cak�1, determined by the set M0(x�; x+) ofnegative L2-gradient ow lines of IV , i.e. smooth maps u : R � S1 ! Mwhich satisfy @su�rt@tu�rV (t; u) = 0;(3)and lims!�1u(s; t) = x�(t):(4)The second boundary operator �F : Cak ! Cak�1 is determined by the setM�(x�; x+) of negative L2-gradient ow lines of AV . These are smoothmaps w : R � S1 ! T �M which satisfy w(s; t) 2 T �u(s;t)M ,@su� g(u)�1rtw �rV (t; u) = 0; rsw + ��2�g(u)@tu� w� = 0:(5)and lims!�1w(s; t) = g(x�)@tx�:(6) As a result there are two homology theories, namely the Floer cohomol-ogy of T �M [F89b], and the Morse-Witten homology of the classical actionIV . They are denoted byHF��a (T �M;HV ) = ker �Fim �F ; HMa� (�M; IV ) = ker @Mim @M :



1. INTRODUCTION AND MAIN RESULTS 3As in the �nite dimensional case we expect HMa� (�M; IV ) to be naturallyisomorpic to the singular homology of the sublevel set�aM = fx 2 �M jIV (x) � ag:Conjecture 1.0.1. There is a natural isomorphismHMa� (�M; IV ) �= H�(�aM;Z2):On the other hand the negative L2-gradient ow of the symplectic actionAV gives rise to Floer cohomology groups HF��a (T �M;HV ). The mainresult in this thesis is a major step towards a proof ofConjecture 1.0.2. There is a natural isomorphismHF��a (T �M;HV ) �= HMa� (�M; IV )where HV : S1 � T �M ! R is given by (2).Its proof relies on a bijection between certain moduli spaces. Injectivity{ the implicit function theorem part { is the content of this thesis, whilesurjectivity { the compactness part { has not been worked out yet.While working on this project we received a preprint by Claude Viterboin which he proves by di�erent methods that Floer cohomology of the cotan-gent bundle and the singular cohomology of the loop space are isomorphic.His proof relates both homology theories to Lisa Traynor's generating func-tion homology [T94].Theorem 1.0.3 (Viterbo, [V96]). There is an isomorphismHF��a (T �M) ' Hsing� (�aM):The above conjectures together give rise to an alternative proof ofViterbo's theorem where, in addition, the isomorphism is natural. If Mis not simply connected there is a separate isomorphism for each componentof the loop space.The proof of conjecture 1.0.1 will be analogous to the �nite dimensionaltheorem which asserts that the homology of the Morse-Witten complex ona compact manifold agrees with the singular homology (cf.[F89a, SZ92]).The proof of conjecture 1.0.2 will be discussed below. Both results shouldbe extendable to arbitrary coe�cient rings if one takes account of the orien-tations of the moduli spaces of connecting orbits as is done in [FH93]. Thedetails of the proof of conjecture 1.0.1 as well as of the orientation problemwill be carried out elsewhere.Our strategy to prove conjecture 1.0.2 is as follows: Both Morse-Wittenhomology HMa� (�M; IV ) and Floer cohomology HF��a (T �M;HV ) arisefrom the same chain complex Ca� generated by the solutions of (1) andgraded by the Morse index. The index theorem 3.0.1 states that this equalsminus the Conley-Zehnder index when viewed as a critical point of AV andthis explains the minus sign in the grading of Floer cohomology. It remainsto compare the boundary operators and this will be done using a family



4 1. INTRODUCTION AND MAIN RESULTSof metrics on T �M which scale the vertical component down to zero. Thisreduces the problem to the study of an adiabatic limit of a family of ellipticboundary value problems in T �M approaching a parabolic one { the heatow equation in M with perturbed closed geodesics as boundary data.In this thesis the implicit function theorem part of this singular per-turbation problem is studied: Given a parabolic solution we will identify aunique elliptic solution nearby. A compactness argument then is needed toestablish the existence of a limit element of the elliptic families with su�-ciently fast rate of convergence. This will be carried out in future research.Statement of main results The proofs of the following results arebased on conjecture 1.0.6 and work for any p > 2 such that �(p) 2 (0; 1).The conjecture is proven below for p = 2, in which case �(2) = 1=2. Let expdenote the exponential map of (M; g) andT �(X) : T �u0M ! T �expu0XMparallel transport of covector �elds along the curve � 7! expu0�X. Themoduli spaces M0(x�; x+) and M�(x�; x+) can be interpreted as zero setsof sections F0 and F� of certain Banach space bundles. If its linearizationD0u0 at a zero u0 is onto we call u0 regular. De�ne w0 = g(u0)@tu0 anddenote by D�w0 the linearization of F�.Theorem 1.0.4. (Existence) Assume Conjecture 1.0.6 below. Let p >2 and choose nondegenerate x�; x+ 2 CritIV as well as a parabolic cylinderu0 2M0(x�; x+) such that D0u0 is onto. Then there exist constants �0; c > 0such that for any � 2 (0; �0) the following is true: There exists an elementZ� = (X�; Y�) 2 imD� �w0 such thatT�(u0) := T �(X�)�g(u0)@tu0 + Y�� 2M�(x�; x+)and kZ�k1;p;� � c�2 ; kZ�k1;� � c�2� 32p :More precisely, Z� = (X�; Y�) satis�eskX�kp + kg(u0)rtX� � Y�kp � c �2kY�kp + krtX�kp � c �3=2krtY�kp + krsX�kp � c �krsY�kp � c �minf3=2��p;1gkX�k1 + kg(u0)rtX� � Y�k1 � c �2� 32pkY�k1 + krtX�k1 � c � 32� 32pkrtY�k1 + krsX�k1 � c �1� 32pkrsY�k1 � c �minf 32��p; 94�2�p;1g� 32p :



1. INTRODUCTION AND MAIN RESULTS 5Theorem 1.0.5. (Uniqueness) Assume Conjecture 1.0.6 below. Letp > 2 and �x nondegenerate x�; x+ 2 CritIV as well as a parabolic cylinderu0 2 M0(x�; x+) such that D0u0 is onto. Then for any constant c > 0there exists �0 > 0 such that the following is true for any � 2 (0; �0): IfZ = (X;Y ) 2 imD� �w0 withT �(X)�g(u0)@tu0 + Y � 2M�(x�; x+)and kXk1 � c � 54� 32pkY k1 + krtXk1 � c � 34� 32pkrtY k1 + krsXk1 � c � 14� 32pthen Z = Z�, where Z� is the element provided by the existence theorem1.0.4.Hence we obtain for �xed nondegenerate x�, x+ 2 Crit IV of Morseindex di�erence 1 a mapT� : M0(x�; x+) ! M�(x�; x+) ; � > 0 su�ciently smallwhich associates to every regular solution u0 of the parabolic boundaryvalue problem a solution w� := T�(u0) of the elliptic one. The existencetheorem establishes the map T� and speci�es the distance between u0 andw� (strictly speaking between g(u0)@tu0 and w� in a certain trivialization)to be quadratic in �. The uniqueness theorem asserts that T� is well-de�ned.Together they show that T� is injective.Conjecture 1.0.6. Let A : R � S1 ! Rn�n be a di�erentiable familyof skew-symmetric matrices such that for s! �1A(s; t)! A�(t) ; @sA(s; t)! 0uniformly in t for skew-symmetric loops A�. Then there exists a continuousfunction � : [2;1) ! R with �(2) = 1=2 and such that the following holds:For any p � 2 there exist �0 = �0(p;A) > 0 and c = c(p;A) > 0 such thatk@s~�kp + �k@s~�kp� c�k@s~� � @t~� �A~�kp + �k@s~� + ��2(@t~� +A~� � ~�)kp+ ���(p) �k~�kp + �k~�kp��for � 2 (0; �0) and ~�, ~� 2 C10 (R � S1;Rn). The same holds for @s replacedby �@s. We set k � kp = k � kLp(R�S1;Rn).



6 1. INTRODUCTION AND MAIN RESULTSLet us discuss its proof for p = 2 to see that the skew-symmetry of A isan essential assumption:k@s~� � @t~� �A~�k22 + �2k@s~� + ��2(@t~� +A~� � ~�)k22= k@s~�k22 + k@t~� +A~�k22 � 2h@s~�; @t~� +A~�i+ �2k@s~�k22 + ��2k@t~� +A~� � ~�k22 + 2h@s~�; @t~� +A~� � ~�i= k@s~�k22 + k@t~� +A~�k22 � 2h@s~�;A~�i+ �2k@s~�k22 + ��2k@t~� +A~� � ~�k22 + 2h@s~�;A~�i� ��2k@t~� +A~� � ~�k22 + k@t~� +A~�k22 + k@s~�k22 + �2k@s~�k22� k@sAk1 1� �k~�k22 + �2k~�k22�where we used (partial integration)h@s~�; ~�i = �h~�; @s~�i = �h@s~�; ~�iand (partial integration and [@s; @t] = 0)h@s~�; @t~�i = �h~�; @s@t~�i = �h~�; @t@s~�i= h@t~�; @s~�ias well as (partial integration, AT = �A, its asymptotic behavior andYoung's inequality lemma 4.1.7)�2h@s~�;A~�i+ 2h@s~�;A~�i= 2h~�; (@sA)~� +A@s~�i � 2hA@s~�; ~�i� � 2p�k~�k2 k@sAk1 p�k~�k2� �2k@sAk1� 12�k~�k22 + �2k~�k22� :Remark 1.0.7. 1) Letf = @s~� � @t~� �A~�g = @s~� + ��2(@t~� +A~� � ~�)then conjecture 1.0.6 implies (add 0)��1k@t~� +A~� � ~�kp + k@t~� +A~�kp� �(c+ 1)�k@s~� � @t~� �A~�kp + �k@s~� + ��2(@t~� +A~� � ~�)kp�+ c���(p)�k~�kp + �k~�kp�:2) The conjecture leads to a proof of the fundamental estimate, lemma 4.2.5.3) If we can prove a modi�ed Calderon-Zygmund estimate of the following
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8 1. INTRODUCTION AND MAIN RESULTS1.1. Morse theory on the loop spaceWe shall discuss in more detail the Hessians of the two variational prob-lems, the gradient ow lines, and the linearized operators.The Hessian. The Hessian of IV at a critical point x 2 CritIV is theperturbed Jacobi operatorA0x :W 2;2(S1; x�TM)! L2(S1; x�TM)given by A0x� = �rtrt� �R(�; _x) _x�r�rV (t; x):Here R 2 
2(M;EndTM) denotes the Riemann curvature tensor. For everyx 2 Crit IV the operator A0x has �nitely many negative eigenvalues. Thenumber of these, counted with multiplicity, is the Morse index Ind(x).To compare this with the Hessian of AV it is convenient to identify thetangent space TzT �M with the direct sum TxM�T �xM , where z 2 T �xM , viathe isomorphism which takes the derivative _z of a path z(t) 2 T �M to thepair ( _x;rtz). With this identi�cation, which is studied in B.1.2, the Hessianof AV at a critical point z : S1 ! T �M with z = g(x) _x is the operatorA1x : W 1;2(S1; x�TM � x�T �M)! L2(S1; x�TM � x�T �M)given byA1x� �� � = � 0 �g�1g 0 �� rt�rt� ��� R(�; _x) _x+r�rV� � :This operator is injective i� A0x is injective and thus IV is a Morse functioni� AV is a Morse function. However, while the critical points of IV have�nite Morse index, in the case of AV both the Morse index and the coindexare in�nite. But there is a relative Morse index, given by the spectral ow,and it is shown in [SZ92] that this agrees with the Conley-Zehnder index.This index can be canonically de�ned as follows. Choose an orthonormaltrivialization of the bundle x�TM ! S1 and consider the dual trivializationof x�T �M (in the nonorientable case choose a trivialization over [0; 1] withsuitable boundary conditions). Via the above isomorphism these give riseto a unitary trivialization of the bundle z�TT �M where z = g(x) _x. Nowthe linearized Hamiltonian ow gives rise to a path of symplectic matrices	x : [0; 1]! Sp(2n) with 	x(0) = 1l and det(1l�	x(1)) 6= 0 by@t	x = �J0S(t)	x(t) ; 	x(0) = 0 ; S(t) = �Q(t) 00 1l�(7)where S = St representsrH(t; z) in the unitary frame. The Conley-Zehnderindex of x is de�ned to be the Conley-Zehnder index of 	x (cf.[CZ84,SZ92]). In appendix D we provide an elementary discussion of the Conley-Zehnder index and visualize the concept in the case n = 1.To get an idea of what relation between the Morse index and the Conley-Zehnder index of x to expect consider the simple case where Q(t) = Q isa constant path of matrices with kQk < 2�. The solution 	x of (7) is



1.1. MORSE THEORY ON THE LOOP SPACE 9then given by 	x(t) = e�tJ0S and hence �CZ(	x) = 12 sign S ([SZ92]Theorem 3.3 iv), where the signature of S is de�ned to be the number of itsnegative eigenvalues minus the number of its positive ones. As we derive inappendix A.4 the perturbed Jacobi operator A0x may be represented in anorthonormal frame by the operatorI :W 2;2(S1;Rn)! L2(S1;Rn) ; ~� 7! �@t@t~� �Q~�:Now observe that the number of negative eigenvalues of I coincides withn+(Q), the number of positive eigenvalues of Q. This leads to�CZ(	x) = 12sign S = n�(S)� n = n�(Q)� n= �n+(Q) = �n�(I) = �Ind(x):In the general case this still holds true and is the content of Theorem 3.0.1.Related questions have been studied previously by Duistermaat [D76] andViterbo [V90] (cf. Chapter 3).The gradient ow lines. Recall that the set M0(x�; x+) of negativeL2-gradient ow lines of the energy functional IV : �M ! R are the smoothsolutions of 3 and 4. The Morse-Smale condition implies that this is amanifold of dimensiondim M0(x�; x+) = Ind(x�)� Ind(x+):There is a free R-action on M0(x�; x+) and in the 1-dimensional case thequotientM0(x�; x+)=R is a �nite set. Counting the connecting orbits givesrise to a boundary operator @M : Cak ! Cak�1whose homology is denoted by HMa� (�M; IV ).If we identify TzT �M �= TxM � T �xM as above then the negative L2-gradient ow equation of the symplectic action AV can be written in theform @su� g(u)�1rtw �rV (t; u) = 0; rsw + g(u)@tu� w = 0;where w : R � S1 ! T �M is smooth and w(s; t) 2 T �u(s;t)M . These are theJ -holomorphic curves of the title. The limit conditions take the formlims!�1w(s; t) = g(x�)@tx�where x� 2 Crit IV . The set of such w is denoted by M1(x�; x+). For ageneric g and V this is a manifold of dimensiondim M1(x�; x+) = �CZ(x+)� �CZ(x�)where �CZ(x) denotes the Conley-Zehnder index of x 2 Crit IV . Thegenericity statement will be subject of future research. Counting the con-necting orbits in the case of index di�erence 1 gives rise to a boundaryoperator �F : Cak ! Cak�1



10 1. INTRODUCTION AND MAIN RESULTSwhose cohomology is denoted by HF��a (T �M;HV ); cf. remark 1.2.1 Notethat Cak is identi�ed with the Floer cochain group CF�ka so that �F :CF�ka ! CF�k+1a increases the grading given by the Conley-Zehnder in-dex by 1.The linearized operators. Linearizing the gradient ow equation (3)of the classical action gives rise to the operator D0u : C1(R � S1; u�TM)!C1(R � S1; u�TM) given byD0u� = rs� �rtrt� �R(�; @tu)@tu�r�rV (t; u)(8)for � 2 C1(R � S1; u�TM). This is a Fredholm operator between ap-propriate Sobolev completions. For example, if we de�ne Hp = W0;pu andW1;p =W1;pu as the completions of C10 (R � S1; u�TM) with respect to thenorms k�k0;p = �Z 1�1 Z 10 j�jp dtds�1=p ;k�k1;p = �Z 1�1 Z 10 j�jp + jrs�jp + jrtrt�jp dtds�1=p ;then D0u :W1;p !Hp is a Fredholm operator with indexInd D0u = Ind(x�)� Ind(x+):If this operator is surjective for all u 2M0(x�; x+) then the implicit functiontheorem asserts that the space M0(x�; x+) is a smooth manifold whosetangent space at u is the kernel of D0u and whose dimension therefore equalsthe Fredholm index of D0u. A reference is Theorem A in [RS93] wherethe Fredholm index is expressed via the spectral ow which is the indexdi�erence in the case at hand.Linearizing the gradient ow equation (5) of the symplectic action givesrise to the �rst order di�erential operatorD1w : W 1;p(R � S1; u�TM � u�T �M)! Lp(R � S1; u�TM � u�T �M)given by D1w � �� � = � rs�rs� �+� 0 �g�1g 0 �� rt�rt� �+ � �R(�; @tu)g�1w �r�rVgR(�; @su)g�1w � � �for � 2 C10 (R � S1; u�TM) and � 2 C10 (R � S1; u�T �M). This formulais calculated in section A.2. The operator D1w is Fredholm for every w 2M1(x�; x+) and its index is given byIndD1w = �CZ(x+)� �CZ(x�):We expect that D1w can be made surjective for all solutions of (5) and (6) bya generic perturbation of V . If this is the case then, by the implicit functiontheorem, the space M1(x�; x+) is a smooth manifold whose tangent spaceat w 2M1(x�; x+) is the kernel of the operator D1w. The two moduli spaces



1.2. THE ADIABATIC LIMIT 11of connecting orbits are genuinely di�erent but in the next section we showhow to deform the equations (5) into (3) by a change of the metric on T �Mor equivalently by a change of the almost complex structure J compatiblewith the metric. 1.2. The adiabatic limitExploiting the independence of Floer cohomology of the compatible al-most complex structure 
 = �d� on T �M [F89b], [SZ92] we may, in theidenti�cation TzT �M = TxM � TxM , choose a familyJ� = � 0 ��g�1��1g 0 �which is compatible with 
, i.e. 
(�; J��) = G� is a Riemannian metric onT �M , which rescales the horizontal component by the factor ��1 and thevertical component by the factor �. The space M1(x�; x+; J�) of solutionsw with w(s; t) 2 T �u(s;t)M of@s~u� �g(~u)�1rt ~w � �rV (t; ~u) = 0; rs ~w + ��1�g(~u)@t~u� ~w� = 0:with boundary condition (6) corresponds, via rescaling w(s; t) = ~w(��1s; t),naturally to M�(x�; x+) the space of solutions of (6) and@su� g(u)�1rtw �rV (t; u) = 0; rsw + ��2�g(u)@tu� w� = 0:(9)Although the spaces M1(x�; x+) = M1(x�; x+; J1) and M1(x�; x+; J�)might be di�erent, the resulting Floer cohomology groups HF��a (T �M;HV )and HF��a (T �M;HV ; J�) are naturally isomorphic and so it su�ces to studyM�(x�; x+) in order to compare the boundary operators.Remark 1.2.1. The construction of Floer homology for a compact sym-plectic manifold subject to certain topological constraints in order to dealwith the possible presence of J -holomorphic spheres is standard (see [Sa97]for a beautyful exposition). Although (T �M;
 = �d�) is not compact,it exhibits two nice features. Firstly, the existence of a global Lagrangiansplitting of TT �M allows for a natural normalization of the Conley-Zehnderindex of critical points of the symplectic action. Secondly, the exactnessof 
 excludes the existence of nontrivial J -holomorphic spheres and so onemay use the integers as coe�cient ring and, more importantly, standardbubbling-o� analysis leads to uniform C1-bounds for the solutions of Floer'selliptic boundary value problem. However, �rst one needs a C0-bound whichin the compact case is trivial and in the present case of T �M and a Hamil-tonian quadratic at in�nity has been established by Kai Cieliebak [Ci94],theorem 5.4. The same bound holds uniformly for all solutions on which thesymplectic action takes values in a �xed interval. An essential tool in hisproof is lemma 5.3 which says thatfz 2W 1;2(S1; T �M) j AV (z) � a; kL2 � gradAV (z)k2L2 � bg



12 1. INTRODUCTION AND MAIN RESULTSis bounded in the W 1;2-norm by a constant c = c(a; b; V ). In particular, thelemma gives a uniform C0-bound for all critical points of action at most a,and so implies { in view of their nondegeneracy { that there is only a �nitenumber of them. Therefore the chain groups Cak are well-de�ned.We shall study the limit behaviour of the solutions of (9) as �! 0. Thisis a singular perturbation problem. Heuristically, one expects the solutionsto converge to elements w which satisfy the �rst equation in (9) and wherethe second equation is replaced by w = g(u)@tu. But these are exactly thesolutions of (3). In other words the solutions of the elliptic equation (9)degenerate in the small � limit to the solutions of the parabolic equation(3). Strong evidence for this limit behaviour comes from the energy identityE�(w) = 12 Z 1�1 Z 10 �j@suj2 + jg�1rtw +rV (t; u)j2� dtds+ 12 Z 1�1 Z 10 ��2jrswj2 + ��2jg@tu� wj2� dtds= IV (x�)� IV (x+)(10)for the solutions of (9) and (6).Proof. Use in the second step that w solves (9), condition (6) in thethird one and set z� = g(x�)@tx� to obtainE�(w) = Z 1�1 Z 10 G��1�J�@tw � 1� G�rH(t; w)| {z }=�@sw ; J�@tw � G�rH(t; w)� dtds= Z 10 Z 1�1
(@sw; @tw) + ddsH(t; w) dsdt= �ZR�S1 w�d�+ Z 10 H(t; z+)�H(t; z�) dt= ZS1(z�)��� ZS1(z+)��+ Z 10 H(t; z+)�H(t; z�) dt= AV (z�)�AV (z+) = IV (x�)� IV (x+):Note that in the last but one step we used Stokes theorem and the fact@(R � S1) = �(�1 � S1) t (+1� S1), where the minus sign in front ofthe �rst term indicates a change of orientation.The proof of conjecture 1.0.2 is based on establishing a bijection betweenthe spaceM�(x�; x+) of solutions of (9) and (6) and the space M0(x�; x+)for small � > 0. The main idea is to think of the solutions of (3) as approxi-mate solutions of (9) for � small and to use the implicit function theorem toprove the existence of a nearby true solution. This is the content of chapter



1.2. THE ADIABATIC LIMIT 132. Here the crucial ingredient is to establish the invertibility of the linearizedoperator (on the range of its formal adjoint operator)D�w : W 1;p� (R � S1; u�TM � u�T �M)! Lp�(R � S1; u�TM � u�T �M)for the �-equation. The formula for this operator is derived in appendix A.2D�w � �� � = � rs� � g�1rt� �R(�; @tu)g�1w �r�rVrs� + ��2grt� + gR(�; @su)g�1w � ��2� �for � 2 C10 (R � S1; u�TM) and � 2 C10 (R � S1; u�T �M).Let us �x a solution u0 of (3) and de�new0 = g(u0)@tu0:For w0 we must prove that the operator D�w0 is onto for � > 0 su�cientlysmall and prove an estimate for the right inverse which is independent of�. We will establish this in Theorem 4.4.4 under the assumption that theoperator D0u0 is onto. To obtain uniform estimates for the inverse withconstants independent of � we must work with suitable �-dependent norms.These are suggested by comparing powers of � appearing in the energy iden-tity (10). For compactly supported sections � 2 C1(R � S1; u�TM) and� 2 C1(R � S1; u�T �M) de�nek(�; �)k0;p;� = �Z 1�1 Z 10 j�jp + �pj�jp dtds�1=p(11)and k(�; �)kp1;p;� = k(�; �)kp0;p;� + k(rt�;rt�)kp0;p;� + k(rs�;rs�)kp0;p;� :(12)To indicate the presence of these new norms on the standard Sobolev spacesW 1;p and Lp we denote them by W 1;pe ps and Lp� , respectively.Geometrically, the di�erence between the operators D0u and D�w is thedi�erence between con�guration space and phase space, or between loops inM and loops in T �M . Consider the embedding�M ! �T �M : x 7! (x; g(x) _x):The di�erential of this embedding is given byC1(S1; x�TM)! C1(S1; x�TM � x�T �M) : � 7! (�; g(x)rt�):To compare the operators D0u and D�w we must choose a projection ontothe image of this embedding (along u). A natural candidate would be theorthogonal projection �?� with respect to the Hilbert space structure (11).This would be given by (�; �) 7! (1l� �2rtrt)�1(� � �2g�1rt�): Instead weintroduce the projection operator �� : W 1;p� (R � S1; u�TM � u�T �M) !W1;p(R � S1; u�TM) given by (cf. section 4.1)��(�; �) = (1l� �rtrt)�1(� � �2g�1rt�):We denote by � : W1;p(R � S1; u�TM) ! W 1;p� (R � S1; u�TM � u�T �M)the inclusion ��0 = (�0; grt�0):



14 1. INTRODUCTION AND MAIN RESULTSWe refer to chapter 4 for precise statements about the relevant estimatesand their proofs. 1.3. OverviewAs a matter of fact the order of presentation is essentially reverse to theorder in which the project has been worked through.In Chapter 2 we present the proof of the main results { existence anduniqueness of elliptic cylinders nearby parabolic ones { by carrying out aNewton-type iteration method for the Banach space bundle section F� rep-resented in a suitable trivialization. Key ingredients are the uniform boundon the right inverse of its linearization derived in chapter 4 as well as thequadratic estimates of chapter 5.Appendix A provides analytical results on the exponential map and par-allel transport required to optimize the quadratic estimates. Moreover, thelinearized operators and the representation of the section with respect to alocal trivialization are calculated.Chapters 3 on the index theorem and 6 on transversality theory standon their on and can be read independently.Appendices B, C and D recollect basic facts about the two variationaltheories at hand, Newton's iteration method and the topology of the sym-plectic linear group Sl(2;R), respectively. They may be a starting point forthe novice. Certainly they were for me.



CHAPTER 2The approximation TheoremThis section is at the heart of the thesis as we combine the elliptic estimatesobtained in chapter 4 and the quadratic estimates of chapter 5 to carry outthe iteration leading to the main theorems 1.0.4 on existence and 1.0.5 onuniqueness of elliptic cylinders nearby parabolic ones.The strategy is to consider w0 := g(u0)@tu0 as an approximate zero ofthe section F� of a Banach space bundle Ep over a Banach manifold P1;px�;x+and then carry out Newton's iteration method in order to �nd a true zeronearby.
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Figure 2.1. Local trivialization of E1;p ! P1;px�;x+ at w0To de�ne the Banach manifold we follow [FHS95] and �x a numberp > 2, two loops x�; x+ 2 �M and choose trivializations��(t) : Rn ! Tx�(t)Mwith ��(t+ 1) = ��(t). Denote byP = P1;px�;x+the space of continuous maps w : R � S1 ! T �M which satisfy (6), arelocally of class W 1;p, and satisfy ��, �� 2 W 1;p([T;1) � S1;Rn) and �+,�+ 2W 1;p((�1; T ]� S1;Rn), where ��, �� are de�ned byexpx�(t)���(t)��(s; t)� = u(s; t)and T �(��(s; t))�g(x�(t))@tx�(t) + ��(t)� = w(s; t)15



16 2. THE APPROXIMATION THEOREMfor �s � T with T su�ciently large. Of course, the �rst condition is simplythe base part of the second one. Here exp denotes the exponential map of(M; g) and T �(�) : T �u0M ! T �expu0�Mdenotes parallel transport of covector �elds along the geodesic � 7! expu��.The space P is an in�nite-dimensional Banach manifold with tangent spaceTwP =W 1;p(R � S1; u�TM � u�T �M):The �bre of the Banach space bundle Ep ! P over w 2 P is the spaceEpw = Lp(R � S1; u�TM � u�T �M):A standard reference for Banach bundles and manifolds is Eliasson [E67].As we need to work in a Banach space setting, we have to trivializethe Banach bundle Ep ! P1;px�;x+ locally at w0 and then study the inducedoperator F triv�;u0 (�gure 2.1). To de�ne the local trivialization of Ep aroundw0 we use again the exponential map on (M; g) and the parallel transportT (X) : Tu0M ! Texpu0XMalong the geodesic � 7! expu�X. Note that in local coordinates T (X)T�1 =T �(X). F� is then represented by the following nonlinear map betweenBanach spacesF triv�;u0 : W 1;p� (R � S1; u�0TM � u�0T �M)! Lp� (R � S1; u�0TM � u�0T �M)Z = (X;Y ) 7! �T (X)�1 00 T (X)��F��T (X)��1(w0 + Y )�:The basepoint of T (X)��1(w0 + Y ) is given by expu0X.As is discussed in great detail in appendix C, the Newton method is aninductive process and there are essentially three ingredients that have to becontrolled: A small initial value F triv�;u0 (0), a uniformly (in �) bounded rightinverse Q�w0 of dF triv�;u0 (0) = D�w0 and the variation of derivatives dF triv�;u0 (Z)�D�w0 . The bound on the right inverse is expressed by the key estimate forD�w0 on the range of D�w0� and control on the variation of derivatives is gainedby the quadratic estimates in chapter 5.In appendix A, Theorem A.3.1, it is shown thatdF triv�;u0 (0; 0) = D�w0 :A right inverse of D�w0 will be de�ned in section 4.4 byQ�w0 : Lp�(R � S1; u�0TM � u�0T �M)!W 1;p� (R � S1; u�0TM � u�0T �M)Z 7! D�w0�(D�w0D�w0�)�1ZwhereD�w0� is the formal adjoint of D�w0 with respect to the L2� -inner product.As mentioned above, the main tools to estimate the right inverse are the



2. THE APPROXIMATION THEOREM 17key estimates, Theorem 4.4.4, for D�w0 on the range of D�w0� { here thesurjectivity of Du0 is used {kD� �w0�k1;p;� � c3��kD�w0D� �w0�k0;p;� + k��D�w0D� �w0�kp�k��kp + krt��kp � c3��1=2kD�w0D� �w0�k0;p;� + ��1=2k��D�w0D� �w0�kp�(13)where (��; ��) = D� �w0(�), together with the fundamental estimate (Lemma4.2.5) ��1k��g(u)rt�kp + krs�kp + krt�kp + �krs�kp� c4 �kD� (�)w0 (�; �)k0;p;� + ���pk(�; �k0;p;�� :(14)which holds for D�w0 as well as for D�w0� uniformly for � 2 (0; �0). Here� : [2;1) ! R is a continuous function with �(2) = 1=2. Note that dueto the nonlinearities we need to choose some p > 2. As it turns out inchapter 4, (13) is a consequence of (14) for all p � 2 with �p 2 (0; 1).Let us �x throughout such a p > 2 and note that its existence is based onconjecture 1.0.6.This chapter is devoted to the proof of the following approximationresult: Any parabolic cylinder can be approximated by a unique family ofelliptic ones.In section 2.1 we prove the existence part, theorem 1.0.4, by constructing aversion of Newton's iteration method for the map F triv�;u0 . It turns out thatthe primary step of the induction process will determine the quality of the�nal estimate. Extensive use of the fundamental estimate at this stage willprove extremely valuable in order to get optimal results.In section 2.2 we prove uniqueness by combining the estimates obtained fromthe iteration, the key estimates Theorem 4.4.4 and the quadratic estimatesI and II from chapter 5.



18 2. THE APPROXIMATION THEOREM2.1. ExistenceProof. (of Theorem 1.0.4 { existence) Note that the nondegen-eracy of the boundary conditions implies exponential decay of the cylinderu0 and its derivatives. We may therefore assume that there is a constantc0 > 0 such that krs@tu0kp + krtrs@tu0kp < c0 for all u0 2 M0(x�; x+).By choosing c0 su�ciently big, this clearly continues to hold uniformly forderivatives up to order 4, let's say. It follows that the cylinder w0 is indeedan approximate zero of F� in the sense that we can arrange its value beingas small as we like by choosing �0 > 0 su�ciently smallkF�(w0)k0;p;� = kF triv�;u0 (0)k0;p;� = � 0rsw0�0;p;� � c0�:(15)Now we are in position to start the Newton iteration.Step � = 0 : Let Z0 = 0 be the initial point and de�ne the correction term�0 by (�0; �0) = �0 = �Q��F triv�;u0 (Z0) = �Q�� 0rsw0� :This implies D�w0�0 = �F triv�;u0 (Z0) = �� 0rsw0�(16)and we de�ne the next starting point to be Z1 = Z0+ �0. The estimates for�0 = (�0; �0) and its derivatives, which we are going to prove in this step,are as follows: there exist constants �0, c1 such that for all � 2 (0; �0)k�0kp + kg(u0)rt�0 � �0kp � c1 �2kg(u0)rtrt�0 �rt�0kp � c1 �minf5=2��p;2gk�0kp + krt�0kp � c1 �3=2kg(u0)rsrt�0 �rs�0kp � c1 �2��pkrt�0kp + krs�0kp + krtrt�0kp � c1 �krs�0kp + krtrs�0kp + krtrt�0kp � c1 �minf3=2��p;1gkrsrs�0kp + krtrs�0kp � c1 �1��pkrsrs�0kp � c1 �minf3=2�2�p;1��pgk�0k1 + kg(u0)rt�0 � �0k1 � c1 �2� 32pk�0k1 + krt�0k1 � c1 � 32� 32pkrt�0k1 + krs�0k1 � c1 �1� 32pkrs�0k1 � c1 �minf3=2��p;1g� 32p :
(17)



2.1. EXISTENCE 19Before entering their proof we show how they lead to an estimate for thetwo components of F triv�;u0 (Z1). Using (16) and the fundamental quadraticestimate theorem 5.1.1 we getk(F triv�;u0 (Z1))1kp = k(F triv�;u0 (�0)�F triv�;u0 (0)�D�w0�0)1kp� c2c21�2� 32p ��2 + �3=2 + �+ �3=2 + ��� 3c21c2�3� 32pand k(F triv�;u0 (Z1))2kp = k(F triv�;u0 (�0)�F triv�;u0 (0)�D�w0�0)2kp� c2��2c21�2� 32p ��2 + �2�+ c2c21�2� 32p ��+ �3=2 + ��+ c21c2� 52� 32p� 3c21c2�2� 32pfor 1=c1 + �0 > 0 su�ciently small. It turns out that we even need partialderivatives of the section evaluated at Z1. We apply the correspondingfundamental quadratic estimates in theorem 5.1.1 and simply state the �nalresults. Observe that the partial derivatives of the �rst component of thesection are �1=2 better as expectedkrt(F triv�;u0 (Z1))1kp � 3c21c2�3� 32pkrt(F triv�;u0 (Z1))2kp � 3c21c2� 32� 32pkrs(F triv�;u0 (Z1))1kp � 3c21c2� 52� 32pkrs(F triv�;u0 (Z1))2kp � 3c21c2�1� 32p :Let us now derive the estimates in (17). The key estimates (13) give threeof themk�0kp � k�0k1;p;�� c3 �� 0rsw0�0;p;� + k(1l� ��prtrt)�1(0 + �2rtrsw0)kp!� 2c0c3�2where we applied Lemma 4.2.4; moreoverk�0kp + krt�0kp� c3 �1=2 � 0rsw0�0;p;� + ��1=2k(1l� ��prtrt)�1(0 + �2rtrsw0)kp!� 2c0c3�3=2:



20 2. THE APPROXIMATION THEOREMUsing these in the fundamental estimate (14) for D�w0 gives another twoestimates in (17)��1kg(u0)rt�0 � �0kp + krt�0kp + krs�0kp + �krs�0kp� c4 � 0rsw0�0;p;� + ���pk�0kp + �1��pk�0kp!� c4 ��c0 + 2c0c3�2��p + 2c0c3�5=2��p�� 2c0c4�for �0 > 0 su�ciently small. It remains to improve the estimate for rs�0 inthe Lp-norm as well as to obtain the L1-estimates. Note that the standardlocal Sobolev estimate (of the L1- by theW 1;p-norm for p > 2) pulls throughto the case of cylinders, just as in the proof of Lemma 4.2.6, and so we getthe existence of a constant c5 > 0 such that for all � 2 C10 (R � S1; u�0TM)k�k1 � c5 (k�kp + krt�kp + krs�kp) :(18)On the other hand Lemma 4.2.6 with �1 = 1=2 , �2 = 1 tells us that thereexists a constant c5 > 0 such thatk�k1 � c5�� 32p �k�kp + �1=2krt�kp + �krs�kp� :(19)for all �. The unbalanced version only gives k�0k1 � c�, but the balancedone leads tok�0k1 � c5�� 32p �k�0kp + �1=2krt�0kp + �krs�0kp� � 3c0c4c5�2� 32pfor �0 > 0 su�ciently small.To prove the remaining estimates in (17) it is convenient to work inan orthonormal frame which is parallel with respect to s. We indicate thissituation by putting an arrow on top of all objects which would generate acollision with the global notation otherwise. For instance ~rt denotes @t+A,where A(s; t) 2 so(n;R), i.e. AT = �A pointwise. As we will apply severaltimes the fundamental estimate (14), it is usefull to introduce some notation:Let � = (i; j) 2 N0 � N0 and de�ne@� = ~rt � � � ~rt| {z }i times @s � � � @s| {z }j times = (~rt)i(@s)j :Setting (~� 0; ~� 0) = D�(~�; ~�) we �nd (cf. appendix A section A.4)D��@�~�@�~�� =  @s@�~� � ~rt@�~� � S@�~�@s@�~� + ��2 �~rt@�~� � @�~��+B@�~�!=  @�~� 0 + [@s; @�]~� � [~rt; @�]~� � [S; @�]~�@�~� 0 + [@s; @�]~� + ��2[~rt; @�]~� + [B; @�]~�!



2.1. EXISTENCE 21so that the fundamental estimate yields��1k~rt@�~� � @�~�kp + k~rt@�~�kp + k@s@�~�kp + �k@s@�~�kp� c4�k@�~� 0 + [@s; @�]~� � [~rt; @�]~� � [S; @�]~�kp+ �k@�~� 0 + [@s; @�]~� + ��2[~rt; @�]~� + [B; @�]~�kp+ ���pk@�~�kp + �1��pk@�~�kp�:(20)
In what follows we apply this estimate to�~� 0~� 0� = D��~�0~�0� = � 0�@s ~w0�where the last equality is equation (16).The case � = (1; 0) : @� = ~rt and hence [~rt; @�] = 0 and [~@s; @�] = @sA, aswas shown in appendix A equation (142). Moreover,�[S; ~rt] = �S~rt + (~rtS) + S~rt = (~rtS) = (@tS) +ASand similarly for [B; ~rt]. Equation (20) together with the estimates obtainedso far implies��1k~rt~rt~�0 � ~rt~�0kp + k~rt~rt~�0kp + k@s~rt~�0kp + �k@s~rt~�0kp� c4 �0 + c@sAk~�0kp + c~rtSk~�0kp + �c0 + �c@sAk~�0kp+ �c~rtBk~�0kp +���pk~rt~�0kp + �1��pk~rt~�0kp�� c34�minf3=2��p;1gfor �0 > 0 su�ciently small. This yields appropriate estimates for k~rt~rt~�0�~rt~�0kp, k~rt@s~�0kp and { using the Lp-estimate for ~rt~�0 obtained above {we get k~rt~rt~�0kp � 3c0c4�.The case � = (0; 1) : @� = @s and so [@s; @�] = 0, [~rt; @�] = �@sA and�[S; @s] = (@sS):Equation (20) leads to three more estimates in (17)��1k~rt@s~�0 � @s~�0kp + k~rt@s~�0kp + k@s@s~�0kp + �k@s@s~�0kp� c4 �0 + c@sAk~�0kp + c@sSk~�0kp + �c0 + ��1c@sAk~�0kp+ �c@sBk~�0kp +���pk@s~�0kp + �1��pk@s~�0kp�� 3c0c4�1��p



22 2. THE APPROXIMATION THEOREMfor �0 > 0 su�ciently small. Here we used the estimate k@s~�0kp � 2c0c4obtained before. Observe that we get from this and formerly obtained esti-mates k@s~�0kp � 3c0c4�2��p + k@s~rt~�0kp + k[~rt; @s]�0kp� 2c34�minf3=2��p;1gfor �0 > 0 su�ciently small.We are now in position to derive some of the L1-estimates. The bal-anced versions are as followsk~rt~�0 � ~�0k1� c5�� 32p �k~rt~�0 � ~�0kp + �1=2k~rt~rt~�0 � ~rt~�0kp + �k@s~rt~�0 � @s~�0kp�� c5�� 32p �2c0c4�2 + c34�minf3��p;5=2g + 3c44�3��p + c@sA2c0c3�3�� 4c44c5�2� 32pand k~�0k1 � c5�� 32p �k~�0kp + �1=2k~rt~�0kp + �k@s~�0kp� � 3c44c5� 32� 32pThe same estimate holds for ~rt~�0 in view of the result for k~rt~�0 � ~�0k1.Moreover, k~rt~�0k1 + k@s~�0k1 � c�1� 32p :We could do better for p close to 2 using the unbalanced estimate (18):k~rt~�0 � ~�0k1 � 4c44c5�2��pk~�0k1 + k~rt~�0k1 � 3c44c5�minf3=2��p;1gk~rt~�0k1 + k@s~�0k1 � c�1��p :Observe that so far we only getk@s~�0k1 � c�1��p�3=2p;which is not su�cient. To get a better estimate considerThe case � = (1; 1) : @� = ~rt@s and so[~rt; @�] = �(~rt@sA)� (@sA)~rt ; [@s; @�] = (@sA)@s[S; @�] = �(~rt@sS)� (@sS)~rt � (~rtS)@sand the quality of the next estimate is due to the one of ���pkrtrs�0kp��1k~rt~rt@s~�0 � ~rt@s~�0kp + k~rt~rt@s~�0kp+ k@s~rt@s~�0kp + �k@s~rt@s~�0kp � c�minf3=2�2�p;1��pg:



2.1. EXISTENCE 23The case � = (0; 2) : @� = @s@s and so [@s; @�] = 0,[~rt; @�] = �2(@sA)@s � (@s@sA) ; [S; @�] = �2(@sS)@s � (@s@sS);therefore ��1k~rt@s@s~�0 � @s@s~�0kp + k~rt@s@s~�0kp+ k@s@s@s~�0kp + �k@s@s@s~�0kp � c�minf1�2�p;0g:The latter implies, using a result from case � = (1; 1),k@s@s~�0kp � 4c54�minf2�2�p;1g + k@s~rt@s~�0kp + k[~rt; @s]@s~�0kp� 4c54�minf2�2�p;1g + c44�minf3=2�2�p;1��pg + 2c@sAc0c3�� 2c44�minf3=2�2�p;1��pgwhich �nally gives, using the balanced estimate,k@s~�0k1 � c�� 32p ��minf3=2��p;1g + �3=2��p + �minf5=2�2�p;2��pg�� c�minf3=2��p;1g� 32p :The unbalanced version leads tok@s~�0k1 � c�minf3=2�2�p ;1��pg:Choose c1 > 0 su�ciently large to get the desired constant in the estimates.Induction step � � 1 ) � : Let � 2 N and suppose we had alreadyconstructed �0; : : : ; ���1 and Z1; : : : ; Z� , then de�ne(�� ; ��) = �� = �Q�w0�F triv�;u0 (Z�)and Z�+1 = Z� + �� :This implies D�w0�� = �F triv�;u0 (Z�):(21)The claim is to prove the induction hypothesis (H�) under the assumptionthat (H��1) holds.



24 2. THE APPROXIMATION THEOREM

(H�)

k��kp + kg(u0)rt�� � ��kp � c12� �2k��kp + krt��kp � c12� �3=2krt��kp + krs��kp + krtrt��kp � c12� �krs��kp + krtrs��kp + krtrt��kp � c12� �minf 32��p;1gkrsrs��kp + krtrs��kp � c12� �1��pkrsrs��kp � c12� �minf 54�2�p; 14 gk��k1 + kg(u0)rt�� � ��k1 � c12� �2� 32pk��k1 + krt��k1 � c12� � 32� 32pkrt��k1 + krs��k1 � c12� �1� 32pkrs��k1 � c12� �minf 32��p; 94�2�p;1g� 32pkF triv�;u0 (Z�+1)k0;p;� � 3c21c22� �3� 32pkrtF triv�;u0 (Z�+1)k0;p;� � 3c21c22� � 52� 32pkrsF triv�;u0 (Z�+1)k0;p;� � 3c21c22� �2� 32p :Here c1 and c2 are the constants introduced in step � = 0. (H�) holdsuniformly for all � 2 (0; �0), where �0 > 0 has been chosen su�ciently small.As is to be expected we will get signi�cantly better estimates here thanin step � = 0 and as actually was our claim in (H�). However, there willappear additional constants and we use the extra powers of � to neutralizethem and therefore get (H�). It will also be important to use the betterresults in estimating F triv�;u0 via the quadratic estimates derived in chapter 5.Remark 2.1.1. Observe that the estimates for two terms, namelykrs��k1 and krsrs��kp are worse than the ones obtained in step � = 0.This is not to be expected, but as the former estimate is not used anywherein this text and the latter one is su�cient for the Newton method we don'tmake any e�ort to improve them. However, just in case improvement isneeded at a later stage here are two proposals how it should work.One way is two consider higher derivatives as in step � = 0, namelythe cases � = (1; 1) and � = (0; 2), but this leads to the problem of calcu-lating quadratic estimates for the second partial derivatives rtrsF triv�;u0 andrsrsF triv�;u0 .



2.1. EXISTENCE 25A more realistic way is to establish a modi�ed version of conjecture 1.0.6where ���p(k�kp + �k�kp) is replaced by k�kp + k�kp. This holds is true forp = 2, cf. lemma 4.1.6. Then iterating case � = (0; 1) should result in theimproved estimates.Let us now assume (H��1) holds. In what follows we will need againand again the estimateskF triv�;u0 (Z� )k0;p;� � k(F triv�;u0 (Z� ))1kp + �k(F triv�;u0 (Z�))2kp� 3c21c22��1 �3� 32p + 3c21c22��1 �3� 32p � 6c21c22��1 �3� 32pand k��F triv�;u0 (Z� )kp � k(1l� �rtrt)�1 (F triv�;u0 (Z�)1 � �2g�1rtF triv�;u0 (Z�)2)kp� kF triv�;u0 (Z�)1kp + 2p�3=2kF triv�;u0 (Z�)2kp� 3c21c22��1 �3� 32p + 6pc21c22��1 � 72� 32p � 4c21c22��1 �3� 32pfor �0 > 0 su�ciently small. We used the induction hypothesis (H��1) andLemma 4.2.4 to estimate the inverse operator. The key estimates (13) thengive k��kp � k��k1;p;� � c3��kF triv�;u0 (Z�)k0;p;� + k��F triv�;u0 (Z�)kp�� c3�6c21c22��1 �4� 32p + 4c21c22��1 �3� 32p�� 5c21c2c32��1 �3� 32pand k��kp + krt��kp � c3��1=2kF triv�;u0 (Z�)k0;p;� + ��1=2k��F triv�;u0 (Z�)kp�� 5c21c2c32��1 � 52� 32pfor �0 > 0 su�ciently small. Using these results the fundamental estimate(14) leads to��1kg(u0)rt�� � ��kp + krt��kp + krs��kp + �krs��kp� c4�kF triv�;u0 (Z�)k0;p;� + ���pk��kp + �1��pk��kp�� 6c21c2c3c42��1 �3��p� 32pfor �0 > 0 su�ciently small. Choosing �0 > 0 again smaller, if necessary,gives the desired estimates in (H�) for all terms involving Lp-norms otherthan rs�� .Let us now repeat the procedure from step � = 0, namely applicationof the fundamental estimate (14) not simply to (�� ; ��), but to (rt�� ;rt��)and (rs��;rs��). To do so we are working again in an orthonormal frame



26 2. THE APPROXIMATION THEOREMwhich is parallel with respect to the variable s and indicate this by our usualvector notation. In what follows we apply estimate (20) to� ~� 0�~� 0�)� = D�� ~��~��)� = � ~F triv�;u0 ( ~Z�):The case � = (1; 0) : @� = ~rt and, using the identities [~rt; @�] = 0,[~@s; @�] = @sA and �[S; ~rt] = (@tS) + AS derived in step � = 0, as wellas equation (20) we get��1k~rt~rt~�� � ~rt~��kp + k~rt~rt~��kp + k@s~rt~��kp + �k@s~rt~��kp� c4 �k(~rt ~F triv�;u0 (~Z�))1kp + c@sAk~��kp + c~rtSk~��kp + �k(~rt ~F triv�;u0 (~Z� ))2kp+ �c@sAk~��kp + �c~rtBk~��kp +���pk~rt~��kp + �1��pk~rt~��kp�� 7c21c2c3c42��1 � 52��p� 32pwhere we used (H��1), the estimates derived above and �0; 1=c4 > 0 havebeen chosen su�ciently small. Use the estimate for k~rt~��kp and chooseagain �0 > 0 su�ciently small, thenk~rt~rt~��kp � 7c21c2c3c42��1 �3��p� 32pand k~rt~rt~��kp + k@s~rt~��kp � 7c21c2c3c42��1 � 52��p� 32pwhich imply the corresponding estimates in (H�) for �0 > 0 su�cientlysmall. Moreover, it follows from the balanced estimate thatk~rt~��k1 � c5 �� 32p �k~rt~��kp + � 12 k~rt~rt~��kp + �k@s~rt~��kp�� 6c21c2c3c52��1 �1� 32p � � 32� 32p � c12� � 32� 32p :The case � = (0; 1) : @� = @s and so [@s; @�] = 0, [~rt; @�] = �@sA and�[S; @s] = (@sS). Equation (20) gives��1k~rt@s~�� � @s~��kp + k~rt@s~��kp + k@s@s~��kp + �k@s@s~��kp� c4 �k(@s ~F triv�;u0 (~Z�))1kp + c@sAk~��kp + c@sSk~��kp + �k(@s ~F triv�;u0 (~Z�))2kp+ ��1c@sAk~��kp + �c@sBk~��kp +���pk@s~��kp + �1��pk@s~��kp�� 7c21c2c3c242��1 �minf3�2�p;2g� 32p



2.1. EXISTENCE 27for �0 > 0 su�ciently small. This impliesk~rt@s~��kp + k@s@s~��kp � 7c21c2c3c242��1 �minf3�2�p;2g� 32pand k@s@s~��kp � 7c21c2c3c242��1 �minf2�2�p;1g� 32pas well ask@s~��kp � 7c21c2c3c242��1 �minf4�2�p;3g� 32p + c[rt;@s]k��kp + k@srt��kp� 8c21c2c3c242��1 � 52��p� 32pwhich for �0 > 0 su�ciently small implies the last missing Lp-estimates in(H�).Using these results we can estimate the L1-norms for �0; 1=c4 > 0 su�-ciently small. The balanced version of the L1-estimate leads tok��k1 + kg(u0)rt�� � ��k1 � 6c21c2c3c52��1 �2� 32p �1� 32p � c12� �2� 32pk��k1 � 6c21c2c3c52��1 � 32� 32p �1� 32p � c12� � 32� 32pkrt��k1 + krs��k1 � 7c21c2c3c4c52��1 �1� 32p �2��p� 32p � c12� �1� 32pand krs��k1 � ~c2��1 � 34� 32p �� 32p �� 74��p + �minf 94�2�p; 54g�� c12� �minf 94�2�p; 54 g� 32p � c12� �minf 32��p; 94�2�p;1g� 32p :Note that the minimum is taken on by the �rst, second, third number if �pis in the interval [1=2; 3=4], [3=4; 1), (0; 1=2], respectively.Next we derive estimates for X� and Y� . Recall that X� = P��1l=0 �land Y� = P��1l=0 �l; so it follows from the previous induction steps(H0); : : : ; (H��1)kX�kp � ��1Xl=0 k�lkp � c1 �2 ��1Xl=0 2�l � 2c1 �2:



28 2. THE APPROXIMATION THEOREMSimilarly we get kg(u0)rtX� � Y�kp � 2c1 �2kY�kp + krtX�kp � 2c1 �3=2krtY�kp + krsX�kp + krtrtX�kp � 2c1 �krsY�kp + krtrsX�kp + krtrtY�kp � 2c1 �minf 32��p;1gkrsrsX�kp + krtrsY�kp � 2c1 �1��pkrsrsY�kp � 2c1 �minf 54�2�p; 14gkX�k1 + kg(u0)rtX� � Y�k1 � 2c1 �2� 32pkY�k1 + krtX�k1 � 2c1 � 32� 32pkrtY�k1 + krsX�k1 � 2c1 �1� 32pkrsY�k1 � 2c1 �minf 32��p; 94�2�p;1g� 32p :
(22)

So far we have established all estimates in (H�) except for those of thesection F triv�;u0 and its �rst partial derivatives. To obtain them we apply thequadratic estimates theorem 5.2.1 and theorem 5.3.1, the estimates derivedabove { not the ones from (H�) ! , equation (21) and the old trick of addingzero to get for �0 > 0 su�ciently small (appearance of both exponents 3=pand 3=2p is not a typo)k(F triv�;u0 (Z�+1))1kp� k(F triv�;u0 (Z� + ��)�F triv�;u0 (Z�)� dF triv�;u0 (Z�) ��)1kp+ k(dF triv�;u0 (Z�) �� �D�w0 ��)1kp� c8��3� 3p2��1 �2��3=2 + �+ ��+ c8��3� 3p2��1 �� 52� 32p�� 12 + 1 + � 72��p� 3p + 1 + � 72��p� 3p�+ c8��2� 32p2��1 ���2� 32p (�3� 32p + �3��p� 32p + � 52� 32p + �3��p� 32p ) + �10� 92p�+ c8��3� 3p2��1 ���3=2 + � � �2� 32p + �3=2 + � � �2� 32p�+ c8��2� 32p2��1 ���3� 32p + � 52� 32p + �5��p� 3p + � 52� 32p�� c � 32� 32p 12��1 �3� 32p � 12� �3� 32p



2.1. EXISTENCE 29and k(F triv�;u0 (Z�+1))2kp� k(F triv�;u0 (Z� + ��)�F triv�;u0 (Z�)� dF triv�;u0 (Z�) ��)2kp+ k(dF triv�;u0 (Z�) �� �D�w0 ��)2kp� c8��3� 3p2��1 �2���2(�2 + �3=2) + �+ �3=2 + �minf3=2��p;1g�+ c8��3� 3p2��1 ��� 32p�(�3 + � 52 )�1� 3p + �3��p + � 52�+ c8��2� 32p2��1 ����2(�3� 32p + � 52� 32p )�2� 32p + �3��p� 32p � 52� 3p�+ c8��3� 3p2��1 ��� 32� 32p + �+ � 32 + � 52� 32p�+ c8��2� 32p2��1 ����2�3� 32p + ��2� 52� 32p �2� 32p + �3��p� 32p + � 52� 32p�� c �1� 32p 12��1 �2� 32p � 12� �2� 32p :The underlined terms expose the worst behavior in terms of powers of �.We used the spare positive powers of � to take care of all constants appearingby choosing �0 > 0 su�ciently small. Similarly the partial derivatives of thesection are estimated by using the corresponding quadratic estimates. Asa matter of fact we obtain for �xed p > 2, �xed �p 2 (0; 1) and choosing�0 > 0 su�ciently smallkrt(F triv�;u0 (Z�+1))1kp � c � 32� 32p2��1 � 52� 32p + : : : � 12� � 52� 32pkrt(F triv�;u0 (Z�+1))2kp � c � 32� 3p2��1 � 32� 32p + : : : � 12� � 32� 32pkrs(F triv�;u0 (Z�+1))1kp � c � 52��p� 32p2��1 �2� 32p + : : : � 12� �2� 32pkrs(F triv�;u0 (Z�+1))2kp � c � 52��p 3p2��1 �1� 32p + : : : � 12� �1� 32pThis concludes the induction step.It remains to show that (Z�)�2N0 is a Cauchy sequence in the Banachspace W 1;p� (R�S1 ; u�0TM �u�0T �M) and that F triv�;u0 (Z�) = 0. The estimatesfor Z� = (X�; Y�) in the statement of the Theorem are then an immediateconsequence of the estimates (22) for the elements (X� ; Y�) of the Cauchysequence. To see that (Z�)�2N0 is a Cauchy sequence observe that its normis dominated by a standard Cauchy sequence in R, i.e. using the induction



30 2. THE APPROXIMATION THEOREMhypothesis (H�) and assuming without loss of generality that � > �, we getkZ� � Z�k1;p;� � ��1Xl=� k�lk1;p;� � c1�2 ��1Xl=� 2�l ! 0 for �; �!1:(H�) also implieslim�!1 kF triv�;u0 (Z�)k0;p;� � lim�!1 6c21c22��1 �3� 32p = 0uniformly in � 2 (0; �0).



2.2. UNIQUENESS 312.2. UniquenessProof. (of Theorem 1.0.5) Set ~Z = Z � Z�. As Z;Z� 2 im D� �w0 wemay apply the key estimate Theorem 4.4.4 to obtainkZ � Z�k1;p;� � c��kD�w0 ~Zk0;p;� + k��D�w0 ~Zkp�� c0 �k(dF triv�;u0 (0) ~Z)1kp + �3=2k(dF triv�;u0 (0) ~Z)2kp�(23)where we used Lemma 4.2.4 for the ��-term. To estimate the last two termsadd 0 and use F triv�;u0 (Z�) = 0 = F triv�;u0 (Z)to get two di�erences based at Z� (better estimates than at ~Z)D�w0 ~Z = dF triv�;u0 (0) ~Z = �F triv�;u0 (Z� + ~Z) + F triv�;u0 (Z�) + dF triv�;u0 (Z�) ~Z+ �dF triv�;u0 (0)� dF triv�;u0 (Z�)� ~Z:Now we are in position to apply the quadratic estimates I and II the-orem 5.2.1 and 5.3.1. It turns out to be necessary to place some L1- andLp-norms di�erently as in the quadratic estimates and therefore we restatethem in the form needed here. Moreover, we use the estimates for (X�; Y�)obtained in the existence Theorem 1.0.4. For ( ~X; ~Y ) the same L1-estimatesas for (X;Y ) hold. We use k ~Xkp � 2k ~Zk1;p;� and apply Lemma 4.2.6 to es-timate k ~Xk1 � k ~Zk1;� � cp ��3=p k ~Zk1;p;�.k(dF triv�;u0 (0) ~Z)1kp� k(F triv�;u0 (Z� + ~Z)�F triv�;u0 (Z�)� dF triv�;u0 (Z�) ~Z)1kp+ k(dF triv�;u0 (0) ~Z � dF triv�;u0 (Z�) ~Z)1kp� c1k ~Xk1k ~Xk1�krtX�kp + krsX�kp + krtY�kp�+ c1k ~Xkp�k ~Xk1 + krt ~Xk1 + krs ~Xk1k ~Xk1 + k ~Y k1 + krt ~Y k1k ~Xk1�+ c1kX�k1�kX�k1�k ~Xkp + krs ~Xkp + k ~Y kp + krt ~Y kp�+ k ~Y k1krt ~Xkp�+ c1k ~Xk1�krtX�kp + krsX�kpkX�k1 + kY�kp + krtY�kpkX�k1�+ c1kX�k1�k ~Xkp + krt ~Xkp + krs ~XkpkX�k1 + k ~Y kp�� c2k ~Zk1;p;� �� 94� 92p + � 34� 32p + � 74� 3p + � 32� 3p + � 54� 32p�� 2c2� 34� 32p k ~Zk1;p;� � 14c0 k ~Zk1;p;�



32 2. THE APPROXIMATION THEOREMand� 32 k(dF triv�;u0 (0) ~Z)2kp� � 32 k(F triv�;u0 (Z� + ~Z)�F triv�;u0 (Z�)� dF triv�;u0 (Z�) ~Z)2kp+ � 32 k(dF triv�;u0 (0) ~Z � dF triv�;u0 (Z�) ~Z)2kp� c1� 32 k ~Xk21���2 �kX�kp + krtX�kp�+ krsX�kp + kY�kp + krsY�kp�+ c1� 32 k ~Xkp���2k ~Xk1�k ~Xk1 + krt ~Xk1�+ krs ~Xk1+ k ~Y k1�1 + krsX�k1��+ c1� 32 kX�k1���2�k ~Xkp + krt ~Xkp�kX�k1 + krs ~Xkpk ~Y k1�+ c1� 32 k ~Xk1���2krtX�kpkX�k1 + krsX�kp + kY�kp�+ c1� 32 kX�k1���2k ~Xkp + ��2krt ~XkpkX�k1 + krs ~Xkp + k ~Y kp�� c2k ~Zk1;p;� �� 94� 92p + � 32� 3p + � 52� 3p + � 94� 32p + � 32� 32p�� 2c2(� 94� 92p + � 32� 3p )k ~Zk1;p;� � 14c0 k ~Zk1;p;�for �0 > 0 su�ciently small. We underlined the terms which enforce theassumptions on the L1-norms of (X;Y ). Insert these estimates in (23) toobtain kZ � Z�k1;p;� � 12kZ � Z�k1;p;�and so Z = Z�:



CHAPTER 3The index theoremFor a nondegenerate perturbed closed geodesic x 2 Crit IV we would liketo compare its Morse index Ind(x) with the Conley-Zehnder index �CZ(zx),where zx = g(x)@tx is the corresponding 1-periodic Hamiltonian orbit.Theorem 3.0.1. (Index) For any nondegenerate, closed perturbed ge-odesic x 2 Crit IV Ind(x) = ��CZ(zx):The relation between the Maslov index and the Morse index of a closedgeodesic has been studied �rst, as far as we know, by Duistermaat [D76].In the case of a closed geodesic on a at torus, i.e. the corresponding Hamil-tonian system evolves in R2n , theorem 3.0.1 had been obtained by ClaudeViterbo [V90] with a slightly di�erent de�nition of the Conley-Zehnder in-dex (apart from the di�erent normalization which causes a sign di�erence inthe formula): due to the degeneracy of the action functional he consideredthe Conley-Zehnder index of the linearized Hamiltonian ow on the energysurface restricted to directions normal to the trajectory.In what follows we will prove the theorem. The main idea is to constructa 2-parameter family of Lagrangian planes where the parameter domain isa square. In view of its contractibility the Maslov index of the loop aroundthe boundary is zero. On the other hand it is additive under catenationof paths, so it remains to identify the Maslov indices of the four obvioussubpaths with the quantities in the statement of the theorem. As there aredi�erent choices in the literature, let us �rst state the normalizations whichwe are going to use.Remark 3.0.2. (Normalizations) The signature of a symmetric ma-trix S is de�ned by sign S = n�(S)� n+(S)where n�(S) is the number of negative respectively positive eigenvalues ofS. The Maslov index for Lagrangian planes, the Conley-Zehnder index andthe spectral ow are normalized as follows�Lag(Gr e�tJ0S ;�) = �CZ(e�tJ0S) = 12 sign S�Spec(farctan tgt2(�1;1)) = 1where the constant symmetric matrix S satis�es kSk < 2�.33



34 3. THE INDEX THEOREMLet � : S1�Rn ! x�TM be an orthonormal trivialization (cf. appendixA.4) and fE1; : : : ; Eng the associated orthonormal frame of the vector bun-dle x�TM ! S1. The (perturbed) Jacobi operator A0x { which representsthe Hessian of IV at x { is given with respect to this frame by the self adjointoperator I : L2(S1;Rn)! L2(S1;Rn)� 7! � ..� �Q�with dense domain W 2;2(S1;Rn), where _� denotes @t� and Q : S1 ! L(Rn)is a smooth family of symmetric matrices. We know that I has a real anddiscrete spectrum (appendix B.2.2) with �nitely many negative eigenvalues {counted with multiplicities { and x nondegenerate is by de�nition equivalentto 0 =2 spec I.Now the linearized ow along the corresponding 1-periodic Hamiltonianorbit zx = g(x)@tx is represented in the unitary frame� = �� 00 ���1� : S1 � R2n ! x�TM � x�T �Mby the smooth path of symplectic matrices determined by_	(t) = �J0S(t)	(t) ; 	(0) = 1l(24)where J0 = �0 �1l1l 0 � ; S(t) = �Q(t) 00 1l� :Observe that 0 =2 spec I is equivalent to det (1l � 	(1)) 6= 0, which in turnmeans that z is nondegenerate as a critical point of the symplectic actionAV . Therefore the Conley-Zehnder index of the path 	 is well-de�ned.Moreover, in between the lines we used the fact shown in remark A.2.2 thatthe linearized ow along zx satis�es the linearized equations which, withrespect to the unitary frame, take on the form (24).Let N = Ind(x) 2 N0 and denote the eigenvalues of I by�1 � �2 � : : : � �N < 0 < �N+1 � : : : :Pick �̂ < minf0; �1g and choose a monotonically decreasing cut-o� function� 2 C1([0; 1]; [�̂; 0]) which is identically 0 in a small neighborhood of 0 andidentically �̂ near 1, cf. �gure 3.1. Let �i be determined by �(�i) = �ifor i = 1; : : : ; N . It will be a crucial point later on (regularity of paths) tochoose � in such a way that �0(�i), i = 1; : : : ; N , is not an eigenvalue of thesymmetric linear operator Q(1) : Rn ! Rn.Consider the family of self adjoint operators I�, � 2 [0; 1], given byI� : L2(S1;Rn) �W 2;2(S1;Rn)! L2(S1;Rn)� 7! � ..� �(1� �)Q� � �(�)�:(25)
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2 3Figure 3.1. Cut-o� function � and negative spectrum of IClearly I1 = �@t@t � �̂1l is a positive operator and so Ind I1 = 0. Notethat I0 = I. Studying the kernel of I�, we observe that �� 2 ker I� i��� : [0; 1] ! Rn solves� ..�� �(1� �)Q�� � �(�)�� = 0��(0) = ��(1) ; _��(0) = _��(1)(26)where the last two conditions reect the periodicity of the domain S1. Wemay rephrase this in terms of fundamental solutions as follows. For k = 1; 2consider the solutions  �;k : [0; 1]!Mat(n;R) of�@t@t �;k � (1� �)Q �;k � �(�) �;k = 0 �;1(0) = 1l  �;2(0) = 0;_ �;1(0) = 0 _ �;2(0) = 1l:De�ne �0� = ��(0) and �0� = ��(0), then�� 2 ker I� , ��(t) =  �;1(t)�0� +  �;2(t)�0��0� 2 ker (1l�  �;1(1)) \ ker _ �;1(1);�0� 2 ker  �;2(1) \ ker (1l� _ �;2(1)):Setting �� = _�� equation (26) transforms into the �rst order system of ODE's( _�� = ��_�� =..��= �(1� �)Q�� � �(�)��(27)whose fundamental solution 	� : [0; 1]! Sp(2n;R) is determined by( @t	� = �J0S�	�	�(0) = 1l(28) ; S�(t) = �(1� �)Q(t) + �(�)1l 00 1l�Note that 	0 : [0; 1] ! Sp(2n;R) is precisely the symplectic path obtainedby linearizing the Hamiltonian ow on T �M along the 1-periodic orbit zx =g(x)@tx and so �CZ(zx) = �CZ(	0) by de�nition. Moreover, simple matrix



36 3. THE INDEX THEOREMmultiplication and uniqueness of solutions of ODE's shows that	�(t) = � �;1(t)  �;2(t)_ �;1(t) _ �;2(t)�indeed satis�es (28) and so��i 2 ker I�i , ���i(0)_��i(0)� 2 ker (1l�	�i(1))(29)where ��i(t) =  �i;1(t) ��i(0) +  �i;2(t) _��i(0).The 2-parameter family 	�(t) of solutions to (28) gives rise to a 2-parameter family ��(t) of Lagrangian subspaces by pointwise taking itsgraph ��(t) := Graph	�(t) � (R2n � R2n ;�!0 � !0):Here !0 = dxi ^ dyi is the standard symplectic form on R2n equipped withcoordinates (x1; : : : ; xn; y1; : : : ; yn). As the parameter domain [0; 1]�[0; 1] iscontractible, the Maslov index �Lag of the loop � of Lagrangian subspaces(relative to the diagonal � � R2n � R2n) obtained by going around theboundary of the domain clockwise is zero. Let the paths of Lagrangian sub-spaces i be as indicated in �gure 3.2 and ~� = 4321 be their compositionin the sense of paths (i.e. �rst follow 1, then 2 : : : ).
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Figure 3.2. Contractible loop of Lagrangian subspacesThe Maslov index for paths is additive under composition of paths (cf.[RS93] thm. 2.3 Catenation) and so0 = �Lag(~�;�) = 4Xi=1 �Lag(i;�):Lemma 3.0.3. i) �Lag(1;�) = 0ii) �Lag(2;�) = 0iii) �Lag(3;�) = �Ind(I)iv) �Lag(4;�) = ��CZ(	0).



3. THE INDEX THEOREM 37The lemma implies theorem 3.0.1. Before proving it we shall brieyrecall ([RS93]) the de�nition of the Maslov index �Lag(�; V ) of a path ofLagrangian subspaces � of a symplectic vector space with respect to a �xedLagrangian V . ti is called a crossing if �(ti) \ V 6= f0g. At ti there is aquadratic form on �(ti): Pick any Lagrangian complement W of �(ti) andfor v 2 �(ti) and su�ciently small � > 0 de�ne w(�) 2 W by v + w(�) 2�(ti + �). Then Q̂(@t�(ti)) v := dd� ���=0
(v; w(�))is a quadratic form on �(ti) and independent of the choice of W ([RS93],thm. 1.1). The crossing form at ti is the quadratic form on �(ti)\V de�nedby �(�; V; ti) = Q̂(@t�(ti))j�(ti)\Vand ti is called a regular crossing if the crossing form is nonsingular.For the special case �(t) = Graph	(t) � (R2n � R2n ;�!0 � !0), where	 : [0; 1] ! Sp(2n;R) is a smooth path and V = � = f(�; �) j � 2 R2ng isthe diagonal, we derive an explicit formula for the crossing form at a crossingti. Observe �rst that 	 determines a smooth path of symmetric matrices Sby @t	(t) = �J0 S(t) 	(t)or, equivalently, S(t) = J0 @t	(t) 	(t)�1:For v 2 Graph	(ti) \�, i.e. v = (�; �) = (�;	(ti)�), and W := 0� R2n wehave w(�) = (0; w2(�)) and the condition v + w(�) 2 Graph	(ti + �) leadsto (�; �) + (0; w2(�)) = (�;	(ti + �)�)and so w2(�) = 	(ti + �)� � �:This impliesQ̂(@t�(ti)) v = dd� ���=0(�!0 � !0)�(�; �); (0; w2(�))�= dd� ���=0��!0(�; 0) + !0(�;	(ti + �)� � �)�= !0(�; @t	(ti)�)= �h�; S(ti)	(ti)�i= �h�; S(ti)�i;where we used !0(�; J0�) = h�; �i. Identifying (Graph	(ti))\� with ker (1l�	(ti)) via (�; �) 7! � we may write�(Graph	;�; ti) � = �h�; S(ti)�i jker 1l�	(ti) :



38 3. THE INDEX THEOREMThe Maslov index of the path Graph 	 with respect to the diagonal � isthen given by�Lag(Graph	;�)def= �12 sign �(Graph	;�; 0)� 12 sign �(Graph	;�; 1)� X0<ti<1 sign �(Graph	;�; ti)= 12 sign h�; S(0)�i jker 1l�	(0) +12 sign h�; S(1)�i jker 1l�	(1)+ X0<ti<1 sign h�; S(ti)�i jker 1l�	(ti)(30)
where the sums are over all ti with det(1l�	(ti)) = 0.Proof. (of lemma 3.0.3) ad i) As 	�(0) = 1l for � 2 [0; 1] we get1(�) = ��(0) = �, but the Maslov index for a constant path is zero([RS93], thm. 2.3 Zero).ad ii) 2 is the graph of the path 	1 = 	1(�) and so by formula (30) andthe fact that there are no crossings for t > 0�Lag(2;�) = �Lag(Graph	1;�) = 12 sign h�; S1(0)�i jR2n= 0where R2n = ker (1l�	1(0)). The last step follows because the signature ofS1(0) = ��̂1l 00 1l� ; �̂ < 0is zero.It remains to show that there are no crossings ti > 0. S1(t) = S1(0) forall t 2 [0; 1] and so we can solve (28) explicitely	1(t) = e�tJ0S1(0) = exp� 0 t 1l�t 1l�̂ 0 �= � coshp��̂t 1l (��̂)�1=2 sinhp��̂t 1l(��̂)1=2 sinhp��̂t 1l coshp��̂t 1l � :Studying its characteristic polynomial, the eigenvalues of 	1(t) (of multi-plicity n each) turn out to be��(t) = coshp��̂t� sinhp��̂t ; t � 0so that (cf. �gure D.1 in appendix D)�+(t) = 1 = ��(t) , t = 0:Let us remark that as 	1(t) is symplectic, it follows �+(t) = ��(t)�1 and thisfact is reected in the key identity for hyperbolic functions cosh2� sinh2 � 1.ad iv) Note that the Maslov index changes its sign if a path of Lagrangiansubspaces is traversed in the opposite direction. Let ~4(t) = 4(1� t), then�Lag(4;�) = ��Lag(~4;�) = ��Lag(Graph	0;�) = ��CZ(	0)where the last statement is shown in [RS93] remark 5:4 .



3. THE INDEX THEOREM 39ad iii) The idea is to study the spectral ow of the family of selfadjointoperators fI�g�2[0;1], which is de�ned to be the number of eigenvalues chang-ing sign from � to + minus the number changing from + to � during thedeformation from I0 = �@t@t � Q(t) = I to I1 = �@t@t � �̂. I1 is positivede�nite as �̂ < 0 and so�Spec(fI�g�2[0;1]) = #(�y +)�#(+y �) = Ind(I):On the other hand it is a main result in [RS95], lemma 4.27, that thespectral ow may also be calculated as the sum of the signatures of certaincrossing operators at regular crossings (these terms will be de�ned later on)and this gives the �rst equality in�Spec(fI�g�2[0;1]) = X0��j�1 sign �(fI�g�2[0;1]; �j) jker I�j= X0��j�1 sign h�; @�I�j �iL2 jker I�j= X0��i�1�sign h�; Ŝ1(�i)�i jker (1l�	�i(1))= X0��i�1 sign �(Gr 	.(1);�; �i) j�\Gr	�i(1)= �Lag(Gr 	.(1);�)= �Lag(~3;�)= ��Lag(3;�)where ~3(�) = 3(1 � �). The �fth equality is by de�nition and the fourthone is given by formula (30) where the path of symmetric matrices Ŝt(�) isdetermined for �xed t by the symplectic path � 7! 	�(t) byŜt(�) = J0 @�	�(t) 	�(t)�1:Note that Ŝ0(�) = 0 for all �. We will now de�ne the crossing operatorfor the operator family, thereby establishing equality two, and then �nallyprove the third equality by showing that the crossings are the same and thecorresponding quadratic forms are isomorphic.Following [RS95] we de�ne the crossing operator�(fI�g�2[0;1]; �i) = P�i (@�I�i) P�i jker I�ifor the family I� : W 2;2(S1;Rn) ! L2(S1;Rn), where P�i : L2(S1;Rn) !L2(S1;Rn) denotes the orthogonal projection onto the kernel of I�i . �i iscalled a crossing if I�i is not injective and it is regular if in addition thecrossing operator is nonsingular. Now the second equality follows, becausethe orthogonal projections are selfadjoint and act as the identity on ker I�i .



40 3. THE INDEX THEOREMWe had already shown that the crossings in the third equality are thesame, namely recall (29)��i 2 ker I�i , �0 := ��0�0� := ���i(0)_��i(0)� 2 ker (1l�	�i (1))where ��i(t) =  �i;1(t)��i(0)+ �i ;2(t) _��i(0). Hence it remains to show thatfor all ��i 2 ker I�i h��i ; (@�I�i) ��iiL2 = �h�0; Ŝ1(�i) �0i:Integrate the identity (obtained by using several times the de�ning equationsfor S�(t) and Ŝt(�))@t(	�i (t)T Ŝt(�i)	�i(t))= (@t	�i(t)T ) Ŝt(�i)	�i (t)+	�i (t)T @t(J0@�	�i (t))= 	�i(t)T S�i(t) J0 Ŝt(�i)	�i(t)+	�i (t)T J0 @�(�J0 S�i (t)	�i(t))= �	�i(t)T S�i(t) @�	�i(t)+	�i(t)T (@�S�i(t)) 	�i(t)+	�i (t)T S�i(t) @�	�i(t)= 	�i(t)T (@�S�i(t)) 	�i(t)(31)
over t from 0 to 1 and use Ŝ0(�) � 0 to get	�i(t)T Ŝ1(�i)	�i (1) = Z 10 	�i(t)T (@�S�i(t)) 	�i(t) dt:Now use @�I�i = Q� �0(�i) and ��i 2 kerI�i to obtainh��i ; (@�I�i) ��iiL2= h��i ; (Q� �0(�i)) ��iiL2= Z 10 h �i;1(t)�0�i +  �i;2(t)�0�i ; (Q(t)� �0(�i))( �i ;1(t)�0�i +  �i;2(t)�0�i)idt= Z 10 �	�i(t)��0�i�0�i� ;�Q(t)� �0(�i) 00 0� 	�i (t) ��0�i�0�i�� dt= ���0�i�0�i� ;�Z 10 	�i(t)T (�@�S�i(t)) 	�i(t) dt���0�i�0�i��= ��	�i (1)��0�i�0�i� ; Ŝ1(�i)	�i(1)��0�i�0�i��= �h�0�i ; Ŝ1(�i)�0�iiwhere we used formula (3) for 	�i(t), the identity (31) and Ŝ0(�i) = 0 in thelast but one, as well as (29) in the last step. Our choice of cut-o� function(recall �0(�i) =2 specQ(1)) guarantees that fI�g�2[0;1] indeed is a family withregular crossings only and { in view of the isomorphism just shown { this



3. THE INDEX THEOREM 41implies that � 7! 	�(1) is a regular path, too. More precisely, assume� 2 ker @�I�i \ ker I�i , thenQ(t)�(t) = �0(�i)�(t) 8t 2 [0; 1]�(0) = �(1) ; _�(0) = _�(1):(32)Now �0(�i) =2 spec Q(1) implies �(1) = 0. Di�erentiating (32) with respectto t leads at t = 1 to(�0(�i)�Q(1)) _�(1) = _Q(1)�(1) = 0and in view of the nonsingularity of �0(�i) � Q(1) we get _�(1) = 0. As �is also in the kernel of the second order di�erential operator I�i and all itsboundary conditions are zero, it follows � = 0. This proves nondegeneracyof the crossing operator �(fI�g�2[0;1]; �i).
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CHAPTER 4Elliptic estimatesThe main result in this chapter is Theorem 4.4.4 which provides the keyestimates for the right inverse of D�w uniformly in � > 0 su�ciently small.Due to the nonlinearities we are forced to choose p > 2. However,it will be convenient to deal with the case p = 2 �rst in section 4.1 as thecombination of the Hilbert space structure with Young's inequality simpli�esthe estimates enormously. Section 4.2 then generalizes the results of section4.1 to the case p > 2. In section 4.3 we introduce the important techniqueof rescaling in the proof of the linear estimate Theorem 4.3.2. That waywe reduce the proof to the Calderon-Zygmund inequality, the basic ellipticLp-estimate which holds uniformly for all compactly supported functions onR2 . The formal adjoint operator is introduced in section 4.4 in order tode�ne the right inverse Q�w of D�w. Finally the main estimate of D�w on therange of D�w� is derived.4.1. Nonstandard estimates for p = 2Pick two smooth loops x; y inM and a smooth cylinder u between them,i.e. u 2 Px;y(R � S1;M), and de�ne w = g(u)@tu. Note that the choice ofboundary conditions guarantees the boundedness of the linear operators.Our goal in this section will be to show that surjectivity of D0u impliessurjectivity of D�w for all � > 0 su�ciently small. We formulate and provethis in terms of injectivity of the formally adjoint operators D0u� and D�w�.In this section we mainly work in the orthonormal frames introduced inappendix A section A.3, so that for ~�; ~� 2 C10 (R � S1;Rn)D�0~� = �@s~� � ~rt~rt~� � S~�(33)and D�� �~�~�� =  �@s~� � ~rt~� � S~� + �2B�~��@s~� + ��2(~rt~� � ~�) !(34)where we have taken the latter adjoint with respect to the �-dependentHilbert space structure h�; �i� suggested by (11) with p = 2.Recall the inclusion� : C10 (R � S1; u�TM)! C10 (R � S1; u�TM � u�T �M) ;�0 7! (�0; g(u)rt�0):43



44 4. ELLIPTIC ESTIMATESTo compare the operators D0u� and D�w� we must choose a projection ontothe image of this embedding. A natural candidate would be the orthogonalprojection �?� with respect to the Hilbert space structure h�; �i�.Lemma 4.1.1. The orthogonal projection �?� from L2�(R � S1; u�TM �u�T �M) to ��L2(R � S1; u�TM) with respect to h�; �i� is given by�?� (�; �) = (1l� �2rtrt)�1(� � �2g�1(u)rt�):Proof. The condition for �?� to be an orthogonal projection ish��?� (�; �) � (�; �); ��0i� = 0 ;8�0 2 L2(R � S1; u�TM):Setting �1 = �?� (�; �) this leads to0 = h(�1; grt�1)� (�; �); (�0; grt�0)i�= h�1 � �; �0i+ �2hrt�1 � g�1�;rt�0i= h�0; (1l� �2rtrt)�1 � � + �2g�1rt�ifor all �0 2 L2(R � S1; u�TM), hence nondegeneracy implies�1 = (1l� �2rtrt)�1(� � �2g�1rt�):Instead we de�ne more generally��(�; �) = (1l� ��rtrt)�1(� � ��g�1rt�)(35)where �; � 2 R. As we will see during the proof of lemma 4.1.3 and proposi-tion 4.1.2 the right choices are � = 2 respectively � = 1. The signi�cance ofthese de�nitions lies in the next proposition and subsequent four lemmata.All the norms in this section are L2-norms unless otherwise indicated.Proposition 4.1.2. Let u 2 Px;y(R � S1;M), where x; y are smoothloops in M , and de�ne w = g(u)@tu. Then for every constant c0 > 0 thereexist constants c > 0, �0 > 0 such that the following holds. If the injectivityassumption k�k + krtrt�k � c0kD0u��kholds for all � 2 C10 (R � S1; u�TM), thenk�k � c��kD�w�(�; �)k0;2;� + k��D�w�(�; �)k�k�k � c��1=2kD�w�(�; �)k0;2;� + k��D�w�(�; �)k�and therefore k�k0;2;� � c��kD�w��k0;2;� + k��D�w��k�k�k0;2;� � ckD�w��k0;2;�



4.1. NONSTANDARD ESTIMATES FOR p = 2 45for � 2 (0; �0) and � = (�; �) 2 C10 (R � S1; u�TM � u�T �M), where we set� = 1 and � = 2.Note that in combining the estimates for � and � the extra factor �1=2 inthe �-estimate is wasted. For the convergence of the Newton method lateron it will be a crucial point to remember this fact and use the estimates for� and � separately.Lemma 4.1.3. Let u 2 Px;y(R � S1;M), x; y smooth loops in M , � = 2and de�ne w = g(u)@tu. Then there exists a constant c > 0 such thatkD0u���� � ��D�w��k � c��=2k�k0;2;� + c�2��krt�k� c�2��kD�w(�)�k0;2;� + c(��=2 + �3=2��)k�k0;2;�for 0 < � � 1, 0 � � � 2 and � = (�; �) 2 C10 (R � S1; u�TM � u�T �M).The same estimate holds for D0u�� � ��D�w .In the proof of lemma 4.1.3 it will be a crucial point to set � = 2 in order toeliminate certain terms. Moreover, mixed estimates like kD0u���� � ��D�w�kand kD0u������D�w��k will contain a term of the form ckrs�k. The absenceof any � in this term obstructs getting an injectivity estimate for D�w {assuming one for D0u� { along the lines of the proof of proposition 4.1.2. Asin our case of interest D�w is not injective anyway, the best we can hope for isan injectivity estimate for D�w on the image of D�w�. This will be the crucialestimate for the Newton method and it will be carried out in section 4.4.From now on we set � = 2 unless mentioned otherwise.Lemma 4.1.4. Let u 2 C1(R � S1;M), thenk� � ���k � ��=2k� � g(u)rt�k+ 2��krt�kk� � g(u)rt���k � k� � g(u)rt�k+ 2��=2krt�kk� � ����k0;2;� � 2��=2k� � g(u)rt�k+ 4��krt�kk���k � k����k0;2;� � 2k�k0;2;�for 0 < � � 1, 0 � � � 2 and � = (�; �) 2 C10 (R � S1; u�TM � u�T �M).Lemma 4.1.5. Let u 2 C1(R � S1;M), thenk(1l� ��rtrt)�1�k � k�kk(1l� ��rtrt)�1��=2rt�k � k�kk(1l� ��rtrt)�1��rtrt�k � k�kfor � > 0, � 2 R and � 2 C10 (R � S1; u�TM).Motivation for the next lemma comes from the energy identity (10). Itturns out to be the fundamental estimate to carry out the Newton iterationin the proof of the main theorem. It also points the way towards the rightde�nition of the norm k � k1;p;� by comparing powers of � appearing.



46 4. ELLIPTIC ESTIMATESLemma 4.1.6. Let u 2 Px;y(R � S1;M), x; y smooth loops in M , andde�ne w = g(u)@tu. Then there exists a constant c > 0 such that��1k��g(u)rt�k+ krs�k+ krt�k + �krs�k� c�kD�w�(�; �)k0;2;� + 1p�k(�; �)k0;2;��and likewise ��1k��g(u)rt�k+ krs�k+ krt�k+ �krs�k� c (kD�w�(�; �)k0;2;� + k�k+ k�k)for 0 < � � 1 and (�; �) 2 C10 (R � S1; u�TM � u�T �M). The estimatecontinues to hold for D�w.Proof. (of Lemma 4.1.6) We work in the orthonormal frame � =diag (�; ���1) de�ned in (144). For simplicity we drop the vector notationhere, e.g. we will write � instead of ~�. Let � = (�; �) and D�� � = ~� = (~�; ~�)so that~� = �@s� �rt� � S� + �2B�� ; ~� = �@s� + ��2(rt� � �):We compute with L2-normskD�� �k20;2;� = k~�k2 + �2k~�k2= k � @s� �rt� � S� + �2B��k2 + �2k � @s� + ��2(rt� � �)k2= k@s�k2 + krt� � �2B�� + S�k2 + 2h@s�;rt� � �2B�� + S�i+ �2k@s�k2 + ��2krt� � �k2 � 2h@s�;rt� � �i:Now use the identities h@s�; �i = 0,2h@s�; S�i = �h�; @s(S�)i+ hS@s�; �i = �h�; (@sS)�i � �c@sSk�k2;�2h@s�; �2B��i = 2h�; �2(@sB�)�i+ 2h�; �2B�@s�i� �1� k�k2 � �5c@sB�2k�k2 � 1� k�k2 � �5cB�k@s�k2and krt� + S� � �2B��k2 � 12krt�k2 � 7 �cSk�k+ �2cB�k�k�2� 12krt�k2 � 14cS2k�k2 � 14�4cB�2k�k2as well as the crucial estimate2h@s�;rt�i � 2hrt�; @s�i = 2h�; (rt@s � @srt)�i = �2h�; (@sA)�i� �1� k�k2 � 4�c@sA2k�k2



4.1. NONSTANDARD ESTIMATES FOR p = 2 47with @sA = ��1R(@su; @tu)�. Note that for the �niteness of the constantscB = kBk1 = sup(s;t)2R�S1 kB(s; t)k we essentially used the boundary con-ditions for the cylinder u.kD�� �k20;2;� = k@s�k2 + krt� � �2B�� + S�k2 + �2k@s�k2 + ��2krt� � �k2� h�; (@sS)�i � 2h@s�; �2B��i � 2h�; (@sA)�i� ��2krt� � �k2 + k@s�k2 + 12krt�k2+ (1� �5cB�)�2k@s�k2 � (14cS2�+ c@sS�+ 3)1� k�k2� (14cB�2�3 + c@sB�2�4 + 4c@sA2)�k�k2so for �0 > 0 su�ciently small the result follows.Using Young's inequality in a slightly di�erent manner, we get�2h@s�; �2B��i � ��2 �k�k2 + c2@sB�k�k2�� �2 �k�k2 + c2B�k@s�k2�and �2h�; (@sA)�i � �k�k2 � c2@sAk�k2which lead to the alternative form of the estimate we are claiming for. Theestimates for D�w work similarly, they may be found in [SW98].Proof. (of Lemma 4.1.5) Let �0 = (1l � ��rtrt)�1� so that �0 ���rtrt�0 = �. Take the L2-inner product with �0 and use the Cauchy-Schwarz as well as the Young-inequality to obtaink�0k2 + ��krt�0k2 = h�0; �i � 12k�0k2 + 12k�k2:Hence k�0k2+2k��=2rt�0k2 � k�k2 and this implies the �rst two inequalities.To prove the third inequality write �00 = (1l � ��rtrt)�1rt� so that �00 ���rtrt�00 = rt�. As above take the L2-inner product with �00 to obtaink�00k2 + ��krt�00k2 = h�00;rt�i = �hrt�00; �i � ��2 krt�00k2 + 12�� k�k2:Hence k��rt�00k2 � k�k2 and this implies the third inequality.Proof. (of Lemma 4.1.4) Still working in an orthonormal frame wedenote �0 = ��� = (1l� ��rtrt)�1(� � �2rt�)Then� � �0 = ��(1l� ��rtrt)�1rt(� �rt�) + (�2 � ��)(1l� ��rtrt)�1rt�and hence, by lemma 4.1.5k� � �0k � ��=2k� �rt�k+ 2��krt�k



48 4. ELLIPTIC ESTIMATESSimilarly,� �rt�0 = (1l� ��rtrt)�1(� �rt�)� (�� � �2)(1l� ��rtrt)�1rtrt�and hence, again by lemma 4.1.5,�k� �rt�0k � �k� �rt�k+ 2�1+�=2krt�k:Take the sum of these two inequalities to obtaink� � ����k0;2;� � k� � �0k+ �k� �rt�0k � 2��=2k� �rt�k+ 4��krt�kfor 0 < � � 1 and � � 2. To prove the �nal inequality denote�0 = ��� = (1l� ��rtrt)�1(� � �2rt�)and use lemma 4.1.5 to getk�0k � k�k + �2��=2k�k ; �krt�0k � �1��=2k�k+ �3��k�k:Square these two inequalities, use (41) with p = 2 and take the sum toobtain k����k20;2;� = k�0k2 + �2krt�0k2� (2 + 2�2��)k�k2 + (2�2�� + 2�4�2�)�2k�k2� 4k�k20;2;�for 0 < � � 1 and � � 2.Proof. (of Lemma 4.1.3) It is convenient to work in an orthonormalframe as speci�ed in the proof of lemma 4.1.6 so that the operators D0u� andD�w� are given by (33) and (34), respectively. We also adapt the notationused there. As above denote�0 = ��� = (1l� ��rtrt)�1(� � ��rt�)where rt = @t+A denotes the covariant derivative in the local frame. ThenD�0��� = �@s�0 �rtrt�0 � S�0= [�@s � S; (1l� ��rtrt)�1](� � ��rt�)+ (1l� ��rtrt)�1(�@s� + ��@srt� �rtrt�+ ��rtrtrt� � S� + ��Srt�):As in the proof of lemma 4.1.6, denote D�� � = ~� = (~�; ~�) so that~� = �@s� �rt� � S� + �2B�� ; ~� = �@s� + ��2(rt� � �):Then ��D�� � = (1l� ��rtrt)�1(~� � ��rt~�)= (1l� ��rtrt)�1(�@s� �rt� � S� + �2B��+ ��rt@s� � ���2rt(rt� � �)):



4.1. NONSTANDARD ESTIMATES FOR p = 2 49Taking the di�erence we �ndD�0��� � ��D�� �= [�@s � S; (1l� ��rtrt)�1](� � ��rt�)+ ��(1l� ��rtrt)�1([@s;rt]� +rtrtrt� + Srt� � �2��B��)+ (���2 � 1)(1l� ��rtrt)�1rt(rt� � �):From now on we set � = 2 in order to eliminate the last term. Using[a; b] = b[b�1; a]b in the �rst step, the commutator is given by[�@s � S; (1l� ��rtrt)�1]= (1l� ��rtrt)�1[1l� ��rtrt;�@s � S](1l� ��rtrt)�1= ��(1l� ��rtrt)�1(�@sA+rtS)rt(1l� ��rtrt)�1+ ��(1l� ��rtrt)�1rt(�@sA+rtS)(1l� ��rtrt)�1where @sA = [@s;rt]. HenceD�0��� � ��D�� �= ��(1l� ��rtrt)�1(�@sA+rtS)rt(1l� ��rtrt)�1(� � �2rt�)+ ��(1l� ��rtrt)�1rt(�@sA+rtS)(1l� ��rtrt)�1(� � �2rt�)+ �2(1l� ��rtrt)�1((@sA)� +rtrtrt� + Srt� �B��):(36)Inspecting these expressions term by term and using lemma 4.1.5 as well as� � 2 we �ndkD�0��� � ��D�� �k � c�2��krt�k+ c��=2k�k0;2;�:The last claim now follows from lemma 4.1.6. The estimate for D0u�����D�wworks similarly and may be found in [SW98]. It is carried out in the casep > 2 in the proof of lemma 4.2.2 below.Note that the compacti�cation of the cylinder u via the imposed boundaryconditions x; y is a crucial point in our proof as it implied the �niteness ofcertain supremum norms we have used in between the lines, e.g. kB�k1 <1. Proof. (of Proposition 4.1.2) First note that the injectivity estimatek�0k+ krtrt�0k � c0kD0u��0kfor �0 2 C10 (R � S1; u�TM) implieskrt�0k � krtrt�0k+ k�0k � c0kD0u��0k:(37)



50 4. ELLIPTIC ESTIMATESThis follows from partial integration and Young's inequalitykrt�0k2 = Z 1�1 Z 10 �hrtrt�0; �0i dtds� Z 1�1 Z 10 � jrtrt�0j22 + j�0j22 �dtds:Let us restrict � to [0; 2] in order to apply lemmata 4.1.3-4.1.6, thenk�k � k� � ���k+ k���k� ��=2k� � g(u)rt�k+ 2��krt�k+ c0kD0u����k� c1��kD�w��k0;2;� + c1���1=2k�k0;2;�+ c0kD0u���� � ��D�w��k+ c0k��D�w��k� c2(�� + �2��)kD�w��k0;2;� + c0k��D�w��k+ c2(���1=2 + �3=2�� + ��=2)k�k0;2;�;where we used lemma 4.1.4 and the injectivity assumption in the second andlemma 4.1.6 for D�w� in the third inequality. The last one follows from lemma4.1.5. We observe that the best estimate is obtained by setting � = 1. Nowfor �0 > 0 su�ciently small incorporate the �-part of � into the LHS andobtain k�k � c��kD�w��k0;2;� + k��D�w��k+ �3=2k�k� :(38)Repeating the steps of the �-estimate above leads tok�k � k� � g(u)rt���k+ krt���k� k� � g(u)rt�k+ 2��=2krt�k+ c0kD0u����k� c1��=2kD�w��k0;2;� + c1��=2�1=2k�k0;2;�+ c0kD0u���� � ��D�w��k+ c0k��D�w��k� c2(��=2 + �2��)kD�w��k0;2;� + c0k��D�w��k+ c2(��=2�1=2 + �3=2�� + ��=2)k�k0;2;�:For �0 > 0 su�ciently small incorporate the �-part of � into the LHS andobtain with � = 1k�k � c��1=2kD�w��k0;2;� + k��D�w��k+ k�k� :(39)Inserting (39) into (38) establishes our �rst claim for �0 > 0 su�ciently smalland, similarly, inserting (38) into (39) the second one. Together they implythe third claim and lemma 4.1.4 then gives the fourth one.We would like to state two inequalities which we have used occasionallyduring the above proofs.



4.1. NONSTANDARD ESTIMATES FOR p = 2 51Lemma 4.1.7. (Young-inequality) Let a; b � 0 and 1 < p; q <1 suchthat 1p + 1q = 1, then ab � app + bqq :Proof. For one of a; b equal to zero the inequality holds trivially. Soassume a; b > 0. Taking the logarithm of both sides and using its concavitywe get log(ab) = log a+ log b = 1p log ap + 1q log bq � log�app + bqq � :The result follows as the logarithm is strictly increasing.Another useful inequality is(a+ b)2 � 2a2 + 2b2 ;8a; b 2 R(40)which follows from the binomial identities (a + b)2 = a2 + 2ab + b2 and0 � (a� b)2 = a2 � 2ab+ b2. More generally, for a; b 2 R and 1 � p <1ja+ bjp � (jaj+ jbj)p � 2p�1 (jajp + jbjp)(41)which follows from convexity of tp in (0;1) (cf. [Ru87] proof of thm. 3.5).Note that for p � 1 this impliesk(�; �)k0;p;� = �k�kpLp + �pk�kpLp| {z }�(k�kLp+�k�kLp )p �1=p � k�kLp + �k�kLpk�kLp + �k�kLp � 2(p�1)=p �k�kpLp + �pk�kpLp�1=p � 2k(�; �)k0;p;�:(42)



52 4. ELLIPTIC ESTIMATES4.2. Nonstandard estimates for p > 2New ideas are required to prove lemma 4.2.4 and lemma 4.2.5. Oncethese are established the other results follow quite similar as in the casep = 2 in the last section.Throughout k�kp denotes the Lp(R�S1 ; u�TM)-norm unless mentionedotherwise. As it turns out in the proof of the main result of this section,proposition 4.2.1, the critical exponent �p has to be in the range (0; 1).Moreover, the projection �� is given by (35) with constants � = 1 and� = 2. This choice of � is forced by lemma 4.2.2 below, whereas the choiceof � optimizes the �-estimate in proposition 4.2.1. At this point also thecrucial condition �p < 1 arises in order to incorporate certain terms intothe left hand side. The following result says that surjectivity of D0u impliessurjectivity of D�w and leads to a uniform bound for its right inverse in section4.4.Proposition 4.2.1. Let u 2 Px;y(R � S1;M), where x; y are smoothloops inM , de�ne w = g(u)@tu, � = 1, � = 2 in �� and assume �(p) 2 (0; 1).Then for every p > 2 and c0 > 0 there exist constants cp > 0, �0 = �0(p) > 0such that the following holds. If the injectivity assumptionk�kp + krtrt�kp � c0kD0u��kpholds for all � 2 C10 (R � S1; u�TM), thenk�kp � cp��kD�w�(�; �)k0;p;� + k��D�w�(�; �)kp�k�kp � cp��1=2kD�w�(�; �)k0;p;� + �minf1=2��p;0gk��D�w�(�; �)kp�and therefore k�k0;p;� � cp��kD�w��k0;p;� + k��D�w��kp�k�k0;p;� � cpkD�w��k0;p;�for � 2 (0; �0) and � = (�; �) 2 C10 (R � S1; u�TM � u�T �M).Lemma 4.2.2. Let u 2 Px;y(R � S1;M), x; y smooth loops in M , � = 2and de�ne w = g(u)@tu. Then for any p > 2 there exists a constant cp > 0such thatkD0u���� � ��D�w��kp � cp��p=2k�k0;p;� + cp�2��pkrt�kp� cp�2��pkD�w(�)�k0;p;� + cp�minf2��p��p;�p=2gk�k0;p;�for 0 < � � 1, 0 � �p � 2 and � = (�; �) 2 C10 (R � S1; u�TM � u�T �M).The same estimate holds for D0u�� � ��D�w .



4.2. NONSTANDARD ESTIMATES FOR p > 2 53In the proof of lemma 4.2.2 it turns out that � = 2 is a natural choice.Moreover, setting �p=2 = 2 � �p � �p, or equivalently �p = 4=3 � 2�p=3optimizes the last estimate.Lemma 4.2.3. Let u 2 C1(R � S1;M), � = 2 and p > 2, thenk� � ���kp � 2p��p=2k� � g(u)rt�kp + 2��pkrt�kpk� � g(u)rt���kp � k� � g(u)rt�kp + 4p��p=2krt�kpk� � ����k0;p;� � 4p��p=2k� � g(u)rt�kp + 8p��pkrt�kpk���kp � k����k0;p;� � 6pk�k0;p;�for 0 < � � 1, 0 � �p � 2 and � = (�; �) 2 C10 (R � S1; u�TM � u�T �M).Lemma 4.2.4. Let u 2 C1(R � S1;M) and p > 2, thenk(1l� ��rtrt)�1�kp � k�kpk(1l� ��rtrt)�1��=2rt�kp � 2pk�kpk(1l� ��rtrt)�1��rtrt�kp � 2k�kpfor � > 0, � 2 R and � 2 C10 (R � S1; u�TM).Lemma 4.2.5. Let u 2 Px;y(R � S1;M), x; y 2 C1(S1;M), and de�new = g(u)@tu. There exists a continuous function � : [2;1) ! R such that�(2) = 1=2 and the following holds. For any p > 2 there exists a constantcp > 0 such that��1k��g(u)rt�kp + krs�kp + krt�kp + �krs�kp� cp �kD�w�(�; �)k0;p;� + ���pk(�; �)k0;p;��for � 2 (0; 1] and (�; �) 2 C10 (R � S1; u�TM � u�T �M). The estimate alsoholds for D�w.Proof. (of Lemma 4.2.5 assuming Conjecture 1.0.6) We work inthe orthonormal frame � = diag (�; ���1) de�ned in (144). For simplicitywe drop the vector notation here, e.g. we will write � instead of ~�. Let� = (�; �) and D�� � = ~� = (~�; ~�) so that~� = �@s� �rt� � S� + �2B�� ; ~� = �@s� + ��2(rt� � �):Use conjecture 1.0.6, remark 1.0.7 1) as well as addition of 0 to obtain��1k@t� +A� � �kp + k@t� +A�kp + k@s�kp + �k@s�kp� cp�k � @s� � @t� �A� � S� + �2B��kp + kS�kp + �2kB��kp+ �k � @s� + ��2(@t� +A� � �)kp + ���(p)k�kp + �1��(p)k�kp�� 2cpcScB��kD�� (�; �)k0;p;� + ���(p)k(�; �)k0;p;��



54 4. ELLIPTIC ESTIMATESwhere cS = kSk1, CB� = kB�k1 and k � kp = k � kLp(R�S1;Rn). The estimatefor D�w works similarly.The next lemma is independent of the others. It is extremely useful incarrying out the Newton iteration to prove the existence theorem 1.0.4 aswell as in the proof of the uniqueness theorem 1.0.5. We will prove it �rst.Note that for the (1; �)-norm of (�; �) a choice of �1 = 1 and �2 = 1=2 isnatural (cf. proof), whereas to estimate � only, other choices can be useful.For instance �1 = 1=2; �2 = 1 is the right choice to prove the uniquenesstheorem 1.0.5.Lemma 4.2.6. Let u 2 Px;y(R � S1;M), where x; y are smooth loops inM , then for any p > 2 there exists a constant cp > 0 such thatk(�; �)k1;� � cp ��3=pk(�; �)k1;p;�k�k1 � cp ���1+�2p �k�kp + ��1krt�kp + ��2krs�kp�for � 2 (0; 1]; �1; �2 > 0 and (�; �) 2 C10 (R � S1; u�TM � u�T �M).Proof. Let Z� = R � S1� = R � ([0; ��1]=f0; ��1g). Rescaling (�; �) inthe usual way (cf. proof of theorem 4.3.2) leads tok(~�; ~�)kW 1;p(Z�) = ��3=p k(�; �)k1;p;�andk(�; �)k1;� := sup(s;t)2R�S1 j�(s; t)j+ � sup(s;t)2R�S1 j�(s; t)j= sup(~s;~t)2R�S1� j~�(~s; ~t)j+ � sup(~s;~t)2R�S1� j��1~�(~s; ~t)j = k(~�; ~�)kL1(Z�):These two identities will imply the result once we have shown that thereexists a constant cp > 0 such thatk(~�; ~�)kL1(Z�) � cp k(~�; ~�)kW 1;p(Z�)(43)for � 2 (0; 1] and (~�; ~�) 2 C10 (R �S1� ; ~u�TM � ~u�T �M). Note that ~u(~s; ~t) =u(�2~s; �~t). This inequality is a consequence of the standard Sobolev estimatefor p > 2 (cf. [MS94] Theorem B.1.4)kukL1(
) � cp(
) kukW 1;p(
)which holds for all u 2 C1(�
;R), where 
 � R2 is a bounded domainwith smooth boundary. This is shown as follows: Cover Z� by translatinga bounded subset 
 � R2 with smooth boundary. Denote the (countable)cover by fUigi2Z, thenk(~�;~�)kL1(Z�) � supi2Z k(~�; ~�)kL1(Ui)� cp(
) supi2Z k(~�; ~�)kW 1;p(Ui) � cp(
)k(~�; ~�)kW 1;p(Z�):



4.2. NONSTANDARD ESTIMATES FOR p > 2 55To prove the second assertion pick �1; �2 > 0, setZ�1 = R � ([0; ���1 ]=f0; ���1g)and ~�(~s; ~t) = �(��2~s; ��1~t). As above we getk�k1 = k~�kL1(Z�1 ) � cpk~�kW 1;p(Z�1 )� cp���1+�2p �k�kp + ��1krt�kp + ��2krs�kp� :Proof. (of Lemma 4.2.4) The Lemma is proved in three steps. Asthe s-variable is irrelevant for the estimates to be shown, we restrict in steps1 and 2 to the 1-dimensional case of the t-variable. Step 2 is a rescalingargument and integrating its result over s 2 R then proves the Lemma.Step 1 Let S� = [0; ��1]=f0; ��1g and  2 C1(S�;M), thenk(1l�r~tr~t)�1 ~�kLp(S�;�TM) � k~�kLp(S�;�TM)k(1l�r~tr~t)�1r~t ~�kLp(S�;�TM) � 2pk~�kLp(S�;�TM)k(1l�r~tr~t)�1r~tr~t ~�kLp(S�;�TM) � 2k~�kLp(S�;�TM)for any � > 0 and any ~� 2 C1(S�; �TM).Proof of Step 1 Pick ~� 2 C1(S�; �TM) and set ~� = (1l�r~tr~t)�1 ~�, i.e.~� = ~� �r~tr~t~�. This is well-de�ned as the bounded linear operator1l�r~tr~t : W 2;p(S�; �TM)! Lp(S�; �TM)is bijective by elliptic regularity and hence admits a bounded inverse by theopen mapping theorem. To be shown are inequalities of the form k~�kp �k~�kp, etc. We use the short notation k � kp for the Lp(S�; �TM)-norm,whereas j~�j denotes the function h~�(t); ~�(t)i1=2. To start with considerd2d~t2 j~�jp = dd~t �ph~�; ~�i p2�1hr~t~�; ~�i�= p(p� 2)j~�jp�4hr~t~�; ~�i2| {z }�0 + pj~�jp�2| {z }�0 �hr~tr~t~�| {z }=~��~� ; ~�i+ jr~t~�j2| {z }�0 �� pj~�jp � pj~�jp�2h~�; ~�i � pj~�jp � p j~�jp�1| {z }=a;p=(p�1) j~�j|{z}=b;p� pj~�jp � p j~�jpp=(p� 1) + j~�jpp !� pj~�jp � (p� 1)j~�jp � j~�jp = j~�jp � j~�jpwhere in the second inequality we applied Young's inequality. Integrate theresult over ~t 2 [0; ��1] and use the periodicity of the LHS to get k~�kp � k~�kp.



56 4. ELLIPTIC ESTIMATESThe essential tool in the following calculation is again Young's inequalitylemma 4.1.7 ; a and b are indicated before each estimate (their exponentsfollow the semicolons).dd~t�h~�;r~t~�i jr~t~�jp�2�= jr~t~�jp + h~�;r~tr~t~�| {z }=~��~� ijr~t~�jp�2 + (p� 2)h~�;r~t~�ijr~t~�jp�4hr~t~�;r~tr~t~�| {z }=~��~� i� jr~t~�jp + j~�j22 jr~t~�jp�2 � j~�j2|{z}=a;p=2 2�1jr~t~�jp�2| {z }=b;p=(p�2)+ (p� 2)h~�;r~t~�i2jr~t~�jp�4| {z }�0 �jr~t~�jp�4 j~�j � jr~t~�j| {z }=a;2 (p� 2)j~�j � jr~t~�j| {z }=b;2� jr~t~�jp + j~�j22 jr~t~�jp�2 � 2p j~�jp � p�2p 2 �pp�2 jr~t~�jp� jr~t~�jp�4 j~�j22 jr~t~�jp�2 � (p� 2)2 j~�j2|{z}=a;p=2 2�1jr~t~�jp�2| {z }=b;p=(p�2)� �1� p�2p 2 �pp�2|{z}<1=2 �p�2p 2 �pp�2|{z}<1=2�jr~t~�jp � �2p + 2p(p� 2)2� j~�jp� 2p jr~t~�jp � 2p �1 + (p� 2)2� j~�jp:Integrate the result over ~t 2 [0; ��1] and use the periodicity of the LHS toobtain kr~t~�kpp � �1 + (p� 2)2� k~�kpp � 2p2k~�kpp � 2pppk~�kpp:The last one is easy as we may use the �rst inequalitykr~tr~t~�kp = k~� � ~�kp � k~�kp + k~�kp � 2k~�kp:Step 2 Let  2 C1(S1; �TM), thenk(1l� ��rtrt)�1�kLp(S1;�TM) � k�kLp(S1;�TM)k(1l� ��rtrt)�1��=2rt�kLp(S1;�TM) � 2pk�kLp(S1;�TM)k(1l� ��rtrt)�1��rtrt�kLp(S1;�TM) � 2k�kLp(S1;�TM)for all � > 0, � > 0 and � 2 C1(S1; �TM).Proof of Step 2 Rescale � 2 C1(S1; �TM) by~�(~t) = �(��=2~t)where ~t 2 [0; ���=2]=f0; ���=2g = S�, thenr~t ~�(~t) = ��=2rt�(��=2~t) ; r~tr~t ~�(~t) = ��rtrt�(��=2~t):



4.2. NONSTANDARD ESTIMATES FOR p > 2 57Use this and Step 1 to get���=2k�kpLp(S1;�TM) = Z 10 j�(t)jp dt��=2 = Z ���=20 j~�(~t)jpd~t= k~�kpLp(S�;~�TM) � k(1l�r~tr~t)�1 ~�kpLp(S�;~�TM)= Z ���=20 j(1l�r~tr~t)�1 ~�(~t)jpd~t= Z 10 j(1l� ��rtrt)�1�(t)jp dt��=2= ���=2k(1l� ��rtrt)�1�kpLp(S1;�TM):The other two estimates work similarly.Step 3 The Lemma follows by applying Step 2 pointwise to �(s; �) 2C1(S1; u(s; �)�TM) and integrating over s 2 R.Proof. (of Lemma 4.2.3) Using Lemma 4.2.4 (p > 2) instead ofLemma 4.1.5 (p = 2), the proof of Lemma 4.1.4 goes through almost literally.Adopting the notation used there we only indicate the minor di�erences.� � �0 = (1l� ��prtrt)�1�� � ��prtrt� � � + ��prt� � ��prt�| {z }add 0 +�2rt��= ���p(1l� ��prtrt)�1�rt(rt� � �) + (1� �2��p)rt��and therefore lemma 4.2.4 impliesk� � �0kp � 2p��p=2krt� � �kp + 2��pkrt�kpwhere we used � 2 (0; 1]. Similarly we getk� �rt�0kp � krt� � �kp + 4p��p=2krt�kp:These estimates establish the �rst three claims. To prove the fourth one weobserve that k�0kp � k�kp + 2p�2��p=2k�kp�krt�0kp � 2p�1��p=2k�kp + 2�3��pk�kp:Use these expressions, �p 2 [0; 2] and (42) to getk����k0;p;� = k�0kp + �krt�0kp� (1 + 2p�1��p=2)k�kp + (2p�2��p=2 + 2�3��p)k�kp� 3p (k�kp + �k�kp)� 6pk(�; �)k0;p;�:



58 4. ELLIPTIC ESTIMATESProof. (of Lemma 4.2.2) The proof is essentially the same as the oneof lemma 4.1.3. The same notation will be used here. We only indicate theminor di�erences. Denote�0 = ��� = (1l� ��prtrt)�1(� � ��=2rt�)where rt = @t + A and � = 2. That this is the right choice follows fromtaking the di�erence below where certain inconvenient terms cancel eachother precisely for � = 2. Observe the opposite sign in front of the @s-termsin D0��� = D0�0 = @s�0 �rtrt�0 � S�0= [@s � S; (1l� ��prtrt)�1](� � �2rt�)+ (1l� ��prtrt)�1(@s� � �2@srt� �rtrt�+ �2rtrtrt� � S� + �2Srt�):and ��D�� = (1l� ��prtrt)�1(@s� �rt� � S�� �2rt@s� �rtrt� +rt� � �2rt(B�))which leads toD0��� � ��D��= ��p(1l� ��prtrt)�1(@sA+rtS)rt(1l� ��prtrt)�1(� � �2rt�)+ ��p(1l� ��prtrt)�1rt(@sA+rtS)(1l� ��prtrt)�1(� � �2rt�)+ (1l� ��prtrt)�1(�2rtrtrt� � �2[@s;rt]� + �2Srt� + �2rt(B�)):Inspecting these expressions term by term and using lemma 4.2.4 as well as@sA = [@s;rt] we �ndkD0��� � ��D��kp� 2pc��p=2k�kp + 2c�2k�kp + 2pc��p=2k�kp + 4p2c�2k�kp+ 2�2��pkrt�kp + c�2k�kp + c�2krt�kp + 2p�2��p=2kB�kp� 20p2c ��p=2k�k0;p;� + 4c �2��pkrt�kp:Note that the compacti�cation of the cylinder u via the imposed boundaryconditions x; y is a crucial point in our proof as it implied the �niteness ofcertain supremum norms we have used in between the lines, e.g. kB�kp �kBk1k�kp with kBk1 < 1. Now use lemma 4.2.5 to obtain the secondassertion20p2c��p=2k�k0;p;� + 4c�2��pkrt�kp� ~c�2��pkD�w(�)�k0;p;� + ~c���p=2 + �2��p��p� k�k0;p;�which is optimal for �p=2 = 2��p � �p or �p = 4=3� 2�p=3. The estimatefor D�0��� � ��D�� � is quite similar. It is carried out in the case p = 2 in theproof of lemma 4.1.3.



4.2. NONSTANDARD ESTIMATES FOR p > 2 59Proof. (of Proposition 4.2.1) The proof is the same as the one ofproposition 4.1.2 in the case p = 2 and will be sketched below. Just replacelemmata 4.1.3-4.1.6 for p = 2 by lemmata 4.2.2-4.2.5 and use1ppkrt�kp � k�kp + krtrt�kp � c0kD0u��kpfor any � 2 C10 (R �S1; u�TM). Let us prove the �rst of these two inequal-ities for p > 2. As in the proof of lemma 4.2.4 considerddt �h�;rt�ijrt�jp�2�= jrt�jp + h�;rtrt�ijrt�jp�2+ (p� 2)h�;rt�ijrt�jp�4hrt�;rtrt�i� jrt�jp � (p� 1) j�j|{z}=a;2 jrtrt�j| {z }=b;2 jrt�jp�2� jrt�jp � (p� 1)j�j2| {z }=a;p=2 12 jrt�jp�2| {z }=b; pp�2 � (p� 1)jrtrt�j2| {z }=a;p=2 12 jrt�jp�2| {z }=b; pp�2� �1� p�2p 2p=(2�p)� jrt�jp � 2p(p� 1)p=2j�jp� 2p(p� 1)p=2jrtrt�jp:Integration over t 2 S1 and s 2 R eliminates the LHS and we getkrt�kpp � (p� 1)p=2 (k�kpp + krtrt�kpp) :Carrying out the same steps as in the proof of proposition 4.1.2 and assuming�p 2 (0; 1) leads for �0 > 0 su�ciently small tok�kp � k� � ���kp + c0kD0u����kp� c��=2k� � grt�kp + c��krt�kp+ c��=2k�k0;p;� + c�2��krt�kp + c0k��D�w��kp� c�kD�w��k0;p;� + c�minf2��p;3=2gk�kp + ck��D�w��kpand k�kp � c�1=2kD�w��k0;p;� + c�1=2��pk�kp + ck��D�w��kp:Note that only in the �-estimate we were forced to require � = 1 and �pto be strictly less than 1 and there is no way out in view of the rt�-terms.Inserting these two estimates into one another, again using �p 2 (0; 1) andchoosing �0 > 0 su�ciently small impliesk�kp � c�kD�w��k0;p;� + ck��D�w��kpand k�kp � c�1=2kD�w��k0;p;� + c�minf1=2��p;0gk��D�w��kp:Hence our �rst two claims are established and they imply the third one. Thefourth one follows from the third using lemma 4.2.3.



60 4. ELLIPTIC ESTIMATES4.3. The standard linear estimateThroughout this section we simply denote Rn -valued functions for in-stance by � { instead of ~� as in other parts of this text. For � > 0 letS1� = R=��1Z and Z� = R � S1� with coordinates (s; t).Theorem 4.3.1. (standard linear estimate) Let �@+T = @s+J0@t+T , where T 2 C1(Z�;R2n�2n) and lims!�1 T (s; t) = T�(t) exists uniformlyin t. Then for any 1 < p <1 there exists a constant cp > 0 such thatk�kW 1;p(Z�;R2n) � cp�k(�@ + T )�kLp(Z�;R2n) + k�kLp(Z�;R2n)�for any � > 0 and � 2W 1;p(Z�;R2n). This continues to hold for a uniformlybounded family fTaga2A, i.e.supa2A sup(s;t)2Z� kTa(s; t)kL(R2n) = supa2A kTak1 <1:Using the technique of rescaling the standard linear estimate immedi-ately implies linear estimates for the operators D�w and D�w� uniformly in� 2 (0; 1]. The former one will be used in the proof of the key estimate ofD�w on the range of D�w� (theorem 4.4.4).Theorem 4.3.2. (linear estimate) Let w 2 C1(R � S1; T �M) suchthat w ! g(y�)@ty� uniformly in t for s! �1 and y� 2 C1(S1;M). Setu = ��Mw. Then for any 1 < p < 1 there exists a constant c = c(p) > 0such that k(�; �)k1;p;� � c ��2kD�w(�; �)k0;p;� + k(�; �)k0;p;��for 0 < � � 1 and (�; �) 2 W 1;p� (R � S1; u�TM � u�T �M). The same holdsfor D�w�.Proof. We are working in an orthonormal frame, cf. (144), so that theoperators D�w and D�w� are given by D� as in (143) and D�� as in (34) (withS replaced by C� = CT strictly speaking). Pick (�; �) 2 C10 (R � S1;R2n)and � 2 (0; 1], then rescale�~�(~s; ~t)~�(~s; ~t)� = � �(�2~s; �~t)��(�2~s; �~t)� 2 C10 (Z�;R2n);(44)~w(~s; ~t) = �w(�2~s; �~t) and ~y�(~t) = y�(�~t). Note that ~w(~s; ~t)! g(~y�(~t))@~t~y�(~t)for ~s! �1 uniformly in ~t. Now apply the standard linear estimate theorem4.3.1 to the operator(~�@ + ~T�)�~�~�� = (@~s + J0@~t)�~�~��+� � ~C ~A~A+ ~B �1l��~�~��where~A(~s; ~t) = �A(�2~s; �~t) ; ~B(~s; ~t) = �3B(�2~s; �~t) ; ~C(~s; ~t) = �2C(�2~s; �~t):



4.3. THE STANDARD LINEAR ESTIMATE 61The families of matrices A, B and C are de�ned in appendix A section A.4.Indeed ~T�(~s; ~t) = � ��2C �A�A+ �3B �1l� (�2~s; �~t)is a family of operators uniformly bounded for � 2 (0; 1], so that we get aconstant cp > 0 (uniformly in �) such thatk(~�; ~�)kW 1;p(Z�;R2n) � cp�k(~�@ + ~T�)(~�; ~�)kLp(Z�;R2n) + k(~�; ~�)kLp(Z�;R2n)�for all (~�; ~�) 2 W 1;p(Z�;R2n). Recall that as the frame is chosen to beparallel with respect to the variable s, ~r~s = @~s and ~r~t is represented by@~t + ~A, thenk(~�; ~�)kpLp(Z�;R2n) + k~r~t(~�; ~�)kpLp(Z�;R2n) + k~r~s(~�; ~�)kpLp(Z�;R2n)= Z 1�1 Z ��10 �j~�(~s; ~t)jp + j~�(~s; ~t)jp+ j~r~t ~�(~s; ~t)jp + j~r~t~�(~s; ~t)jp+ j@~s ~�(~s; ~t)jp + j@~s~�(~s; ~t)jp� d~td~s= Z 1�1 Z 10 �j�(s; t)jp + �pj�(s; t)jp+ �pj~rt�(s; t)jp + �2pj~rt�(s; t)jp+ �2pj@s�(s; t)jp + �3pj@s�(s; t)jp� dt� ds�2= 1�3 k(�; �)kp1;p;�:In the above calculation we �rst used the de�nition (44) of (~�; ~�) as well asthe identities~r~t ~�(~s; ~t) = �~rt�(�2~s; �~t)~r~t~�(~s; ~t) =�~rt��(�2~s; �~t) @~s ~�(~s; ~t) = �2@s�(�2~s; �~t)@~s~�(~s; ~t) =�2@s��(�2~s; �~t)and then carried out the change of variables s = �2~s, t = �~t. Note that thisalso includes k(~�; ~�)kpLp(Z�;R2n) = 1�3 k(�; �)kp0;p;�:



62 4. ELLIPTIC ESTIMATESThe next step is to computek(~�@ + ~T�)(~�; ~�)kpLp(Z�;R2n)= Z 1�1 Z ��10 j@~s ~� � @~t~� + ~A~� � ~C ~�jp+ j@~s~� + @~t ~� + ~A~� + ~B ~� � ~�jp d~td~s= Z 1�1 Z 10 j�2@s� � �2@t� + �2A� � �2C�jp+ j�3@s� + �@t� + �A� + �3B� � ��jp dt� ds�2= �2p�3 kD�(�; �)kp0;p;�:Using the results obtained above one gets1�3=p k(�; �)k1;p;�= �k(~�; ~�)kpLp(Z�;R2n) + k~r~t(~�; ~�)kpLp(Z�;R2n) + k~r~s(~�; ~�)kpLp(Z�;R2n)�1=p� 2cAk(~�; ~�)kW 1;p(Z�;R2n)� 2cAcp �k(~�@ + ~T�)(~�; ~�)kLp(Z�;R2n) + k(~�; ~�)kLp(Z�;R2n)�= 2cAcp�3=p ��2kD�(�; �)k0;p;� + k(�; �)k0;p;��which proves the �rst claim. The estimate for D�w� is obtained the sameway.The proof of the standard linear estimate, theorem 4.3.1, will involve apartition of unity argument and the following consequence of the Calderon-Zygmund inequalityProposition 4.3.3. For 1 < p <1 there exists a constant cp > 0 suchthat kr�kLp(R2;R2n) � cp k�@�kLp(R2;R2n)for � 2 C10 (R2 ;R2n) and �@ = @s + J0@t.Following the exposition in [MS95], appendix B.2, we briey recall thefundamental solution of Laplace's equationK(x) = 12� log jxj ; x 2 R2 n f0g:Denote x = (s; t) and Kj = @jK for j = s; t. Every u 2 C10 (R2 ;R) satis�esu = K � 4u ; @ju = Kj � 4u(45)



4.3. THE STANDARD LINEAR ESTIMATE 63with 4 = @s@s + @t@t. For every f 2 C10 (R2 ;R) one has4(K � f) = f ; 4(Kj � f) = @jf:(46)Hence u := K � f for f 2 C10 (R2 ;R) solves the inhomogeneous Laplaceequation 4u = f . Let 
 � R2 be open and f 2 L1loc(
) (i.e. f 2 L1(Q)for any compact set Q � 
), then a function u 2 L1loc(
) is called a weaksolution of 4u = f ifZ
 u(x)4�(x) dx = Z
 f(x) �(x) dx ; 8� 2 C10 (
):Note that the last identity determines u up to a set of measure zero, cf.Folgerung 2.11 in [Al92].Theorem 4.3.4. (Calderon-Zygmund inequality), [CaZ52] Forany 1 < p <1 there exists a constant c = c(p) > 0 such thatkr(Kj � f)kLp � c kfkLpfor f 2 C10 (R2 ;R) and j = s; t.Now we identify C with R2 by z = x+ iy 7! (x; y). Multiplication withi is then represented by the matrixJ0 = �0 �11 0 � :We de�ne the �rst order di�erential operators@�z = 12(@x + J0@y) ; @z = 12(@x � J0@y):The fundamental solution of the Cauchy Riemann operator @�z is given byN(z) = 1=�z, i.e. if f 2 C10 (R2 ;R2 ) then u = N � f solves @�zu = f([MS95], lemma B.3.1). Moreover, for u; f 2 Lp(R2 ;R2 ) with compactsupport it holds ([MS95], lemma B.3.2): u is a weak solution of @�zu = f ,i� u = N � f .Here u 2 L1loc(
) is called a weak solution of @�zu = f for f 2 L1loc(
) ifZ
h@z�; ui + Z
h�; fi = 0 ; 8� 2 C10 (
;R2):h�; �i denotes the euclidean inner product on R2 . A straightforward calcula-tion shows that 4 = 4@z@�z and N = 4@zK.Proof. (of proposition 4.3.3) It su�ces to consider the case n = 1.For u 2 C10 (R2 ;R2) we de�ne f = @�zu. As mentioned aboveu = N � f = 4@zK � f = 2(@s � J0@t)K � f



64 4. ELLIPTIC ESTIMATESand hencekrukpLp = k@sukpLp + k@tukpLp� 2p(p�1)�k@s(@sK � f)kpLp + kJ0@s(@tK � f)kpLp+ k@t(@sK � f)kpLp + kJ0@t(@tK � f)kpLp�= 2p(p�1)�kr(@sK � f)kpLp + kr(@tK � f)kpLp�� 22pcpkfkpLp = (4c)pk�@ukpLp :The last inequality uses the Calderon-Zygmund inequality. Moreover, weused that J0 is constant and leaves the norm invariant.Proof. (of theorem 4.3.1) Step 1 First we construct an open coverof Z1 = R�S1 by two open sets and a subordinate partition of unity (whichis constant in the s-direction). Identifying S1 = [0; 1]=f0; 1g we de�ne anopen cover of S1 bŷU t1 = (1=8; 7=8) ; Û t2 = [0; 3=8) [ (5=8; 1]:Let �̂1(t) be a smooth compactly supported function on Û1 which takesvalues in [0; 1] and is identically 1 on [3=8; 5=8]. De�ne �̂2(t) = 1 � �̂1(t).We extend the above trivially to the s-directionU1 = R � Û1 ; U2 = R � Û2�1(s; t) = �̂1(t) ; �2(s; t) = �̂2(t):Step 2 For � > 0 we get a covering of Z� and a subordinate partition ofunity by rescaling:~U1 = R � (��1=8; ��17=8) ; ~U2 = R � �[0; ��13=8) [ (��15=8; ��1]�~�1(~s; ~t) = �1(~s; �~t) ; ~�2(~s; ~t) = �2(~s; �~t):Note that for i = 1; 2r~�i(~s; ~t) = �@~s~�i(~s; ~t)@~t~�i(~s; ~t)� = � 0� @t�i(~s; �~t)� = �r�i(~s; �~t)and k�@ ~�i(~s; ~t)k = k�@~s~�i �@~t~�i@~t~�i @~s~�i � (~s; ~t)k= � k� 0 �@t�i@t�i 0 � (~s; �~t)k � �bi � �b;wherebi = maxt2supp �i k� 0 �@t�i(t)@t�i(t) 0 � k <1 ; b = maxf1; b1; b2g:Step 3 We may restrict to � 2 C10 (Z�;R2n) as this space is dense inW 1;p(Z�;R2n). This nicely combines with �1 and �2 having compact supportwith respect to the variable t and so results in �1� and �2� having compact



4.3. THE STANDARD LINEAR ESTIMATE 65support. Therefore we may apply the consequence proposition 4.3.3 of theCalderon-Zygmund inequality.kr�kLp(Z�;R2n) � 2Xi=1 kr(~�i�)kLp( ~Ui;R2n)� cp 2Xi=1 k�@(~�i�)kLp( ~Ui;R2n)� cp 2Xi=1 �k( �@ ~�i)�kLp(supp ~�i�;R2n) + k~�i( �@�)kLp(supp ~�i�;R2n)�� cp 2Xi=1 1q!1=q �b 2Xi=1 k�kpLp(supp ~�i�;R2n)!1=p+ cp 2Xi=1 1q!1=q  2Xi=1 k�@�kpLp(supp ~�i�;R2n)!1=p� 2cp �k�@�kLp(Z�;R2n) + �bk�kLp(Z�;R2n)� :In the fourth estimate we used the discrete H�older inequality with 1=q +1=p = 1 and in the last one the additivity of integrals.Step 4 Note thatkD�kLp(Z�;R2n) � k�@�kLp(Z�;R2n) � kTk1k�kLp(Z�;R2n)hence using Step 3 we getk�kW 1;p(Z�;R2n) = k�kLp(Z�;R2n) + kr�kLp(Z�;R2n)� (1 + �~cp)k�kLp(Z�;R2n) + ~cpk�@�kLp(Z�;R2n)� cp�kD�kLp(Z�;R2n) + k�kLp(Z�;R2n)�:In the last inequality we used kTk1 <1, which follows from the assumptionon the asymptotic uniform convergence of T . The argument also works inthe case of a uniformly bounded family.



66 4. ELLIPTIC ESTIMATES4.4. An estimate for the right inverseIn this section we derive the key estimates for D�w on the range of D�w�.In other words these give rise to bounds, uniformly in � 2 (0; �0), for theright inverse Q�w of D�w.We start with the de�nition of the formal adjoint D�w� of D�w and someconsiderations concerning their kernels and cokernels. Let u 2 Px�;x+(R �S1;M) and x�, x+ 2 Crit IV , then w := g(u)@tu is a cylinder in T �Mand z� := g(x�)@tx� are its hamiltonian boundary conditions. If they arenondegenerate as critical points of the symplectic action, then for 1 < p <1the operator D�w is a Fredholm operator, cf. [RS95] theorem A for a generalexposition or [Sa97] theorem 2.2 for the case � = 1. Recall that with respectto an orthonormal frame which is parallel in the s-direction (cf. appendixA section A.4) this operator is represented byD� :W 1;p� (R � S1;R2n)! Lp� (R � S1;R2n)�~�~�� 7!  @s~� � ~rt~� �Q~�@s~� + ��2(~rt~� � ~�) +B~�! :That D� is bounded follows from the B.L.T. theorem ([RS1] theoremI.7): As D� : (C10 (R � S1;R2n ); k � k1;p;�)! Lp�(R � S1;R2n) is bounded andthe target space is complete, D� extends to the completionW 1;p� (R�S1 ;R2n)of the domain with the same bound. Therefore we may assume without lossof generality that D� acts on C10 (R � S1;R2n).Definition 4.4.1. Let 1=p+1=q = 1 and p > 1, then the formal adjointD�w� : W 1;q� (R � S1; u�TM � u�T �M) ! Lq�(R � S1; u�TM � u�T �M) isde�ned byh� 0;D�w�i� = hD�w�� 0; �i� ; 8�; � 0 2 C10 (R � S1; u�TM � u�T �M);(47)where for � 2 (0; 1]h�; �i� : C10 (R � S1; u�TM � u�T �M)�2 ! R���1�1� ;��2�2�� 7! h�1; �2iL2 + �2h�1; �2iL2 :Existence of D�w� : C10 ! C10 � Lq� follows by explicit calculationvia partial integration and uniqueness by the nondegeneracy of h�; �i�; thenextend D�w� to W 1;q� (by B.L.T.). For (~�; ~�) 2 C10 (R � S1;R2n) we getD�� �~�~�� =  �@s~� � ~rt~� �Q~� + �2B�~��@s~� + ��2(~rt~� � ~�) ! :Note that as 1=p + 1=q = 1 the dual space of Lp� may be identi�ed with Lq�and the duality pairing is given by the bilinear form h�; �i� (cf. [Al92] Satz4.13). The cokernel of D�w is now de�ned as the annihilator of ranD�w.



4.4. AN ESTIMATE FOR THE RIGHT INVERSE 67Definition 4.4.2.Coker D�w = (ranD�w)?= f� 0 2 (Lp� )� ' Lq� j 0 = h� 0;D�w�i�;8� 2W 1;p� gCoker D�w� = (ranD�w�)?= f� 0 2 (Lq�)� ' Lp� j 0 = hD�w�� 0; �i�;8� 0 2W 1;p� g:Elliptic regularity implies that for � 0 2 Coker D�w, i.e. a priori � 0 2 Lq� ,indeed � 0 2 W 1;q� and D�w�� 0 = 0 (cf. [MS94] exercise B.3.5). This showsCokerD�w � KerD�w�. The opposite inclusion follows from the de�nition ofthe formal adjoint; the same for Coker D�w� and Ker D�w. This provesLemma 4.4.3. Coker D�w = Ker D�w�Coker D�w� = Ker D�w:Similar conclusions hold for the operatorD0 :W1;p !Hp~� 7! @s~� � ~rt~rt~� �Q~�:Assume now that D�w is onto, then we can de�ne a right inverseQ�w : Lp� (R � S1; u�TM � u�T �M)!W 1;p� (R � S1; u�TM � u�T �M)� 7! D�w� (D�wD�w�)�1 �:Being the composition of two bounded operators, Q�w is itself a boundedoperator. To see the boundedness of ((D�wD�w�) considerW 1;q� �W 2;p� D�w��!W 1;p� D�w�! Lp� :Note that the inclusion holds because of p > 2. As Ker D�w = Coker D�w�the operator D�wD�w� is a bounded bijection from W 2;p� onto Lp� , hence it hasa bounded inverse by the open mapping theorem (cf. [RS1] theorem III.10and III.11). The crucial point is to get a bound for Q�w, which is independentof � 2 (0; �0). This and more re�ned estimates are the content of the nexttheorem. Note that throughout this subsection the projection �� is given by��(�; �) = (1l� �rtrt)�1(� � �2g�1rt�)and we need the assumption �p 2 (0; 1) on the critical exponent.Theorem 4.4.4. Let u 2 Px;y(R � S1;M), where x; y are smooth loopsin M , and de�ne w = g(u)@tu and (��; ��) = D�w�(�; �). Assume that D0uis onto and �p 2 (0; 1). Then for every p > 2 there exist constants cp > 0,



68 4. ELLIPTIC ESTIMATES�0 = �0(p) > 0 such that D�w is onto,k��kp � cp��kD�wD�w��k0;p;� + k��D�wD�w��kp�k��kp + krt��kp � cp��1=2kD�wD�w��k0;p;� + ��1=2k��D�wD�w��kp�and kD�w��k1;p;� � cp��kD�wD�w��k0;p;� + k��D�wD�w��kp�kD�w��k1;p;� � cpkD�wD�w��k0;p;�for any � 2 (0; �0) and � 2 C10 (R � S1; u�TM � u�T �M).To prove the theorem we needLemma 4.4.5. Let u 2 Px;y(R � S1;M), where x; y are smooth loops inM , and de�ne w = g(u)@tu. Then for every p > 2 there exists a constantcp > 0 such that if D0u is onto, thenk��D�w��kp � cp �k��D�w�� �D0u����kp + kD0u��D�w��kp�for all � > 0 and � 2 C10 (R � S1; u�TM � u�T �M).Proof. (of lemma 4.4.5 ) The proof is standard (cf. [DS94] lemma4.5) and consists of three steps. Choose q > 1 such that 1=q + 1=p = 1.Step 1 Surjectivity of D0u implies that there exists a constant c0 such thatfor � 2 W1;q k�kq � c0kD0u��kq:This fact may be found for instance in [Br83] theorem II.19 for unboundedoperators and in [Ru87] theorem 4.13 for bounded ones.Step 2 There is a constant c1 > 0 such that for ~� 2 W1;pkD0u� ~�kp � c1 sup�2W1;q hD0u� ~�;D0u��kD0u��kq :As dim Ker D0u < 1 we can �nd a basis fe1; : : : ; emg of Ker D0u, whichis orthonormal with respect to the L2-inner product. Choose an element�̂ 2 Lq such that h�̂;D0u� ~�i = kD0u� ~�kp ; k�̂kq = 1:That this choice is possible is a consequence of the Hahn-Banach theoremfor linear functionals (cf. [Al92] Folgerung 4.4). Since D0u is onto thereexists a unique �0 2 W1;q such that�̂ = D0u��0 + mXj=1h�̂; ejiej :



4.4. AN ESTIMATE FOR THE RIGHT INVERSE 69This follows from the decomposition Lq = ran D0u� �Ker D0u and the factthat D0u onto implies D0u� injective and soD0u� :W1;q ! ranD0u�is a bijection. NowkD0u� ~�kp = h�̂;D0u� ~�i = hD0u��0;D0u� ~�i= k�̂ � mXj=1h�̂; ejiejkq hD0u��0;D0u�~�ikD0u��0kq� 0@1 + mXj=1 kejkpkejkq1A hD0u��0;D0u� ~�ikD0u��0kq� c1 sup�2W1;q hD0u��;D0u� ~�ikD0u��kq :Step 3 We prove the claim. For all � 2W 1;p� (R �S1; u�TM � u�T �M) and�0 2 W1;qhD0u��0;D0u����ikD0u��0kq = hD0u��0;D0u���� � ��D�w��ikD0u��0kq + h�0;D0u��D�w��ikD0u��0kq� kD0u���� � ��D�w��kp + c0kD0u��D�w��kpwhere in the last estimate we applied step 1. Use step 2 and the formerestimate to getkD0u����kp � c1 sup�02W1;q hD0u��0;D0u����ikD0u��0kq� c1kD0u���� � ��D�w��kp + c0c1kD0u��D�w��kp:This impliesk��D�w��kp � k��D�w�� �D0u����kp + kD0u����kp� (1 + c1)kD0u���� � ��D�w��kp + c0c1kD0u��D�w��kp:Proof. (of theorem 4.4.4 ) Translating surjectivity of D�w into in-jectivity of D�w�, the linear estimate theorem 4.3.2 for D�w� together withproposition 4.2.1 lead to the injectivity estimatek�k1;p;� � c (kD�w��k0;p;� + k�k0;p;�) � ~ckD�w��k0;p;�:Throughout we will use the assumption �p 2 (0; 1) in between the lines.Apply the linear estimate for D�w theorem 4.3.2 to D�w��kD�w��k1;p;� � c0 ��2kD�wD�w��k0;p;� + kD�w��k0;p;�� ;



70 4. ELLIPTIC ESTIMATESthen it remains to estimate the last term. With �� = (��; ��) = D�w�� weget kD�w��k0;p;� � kD�w�� � ���D�w��k0;p;� + k���D�w��k0;p;�� c1�kD�wD�w��k0;p;� + c1�minf1��p;1=2gkD�w��k0;p;�+ k��D�w��kp + �krt��(��; ��)kp� c1�kD�wD�w��k0;p;� + c1�minf1��p;1=2gkD�w��k0;p;�+ k��D�w��kp + c2�1=2k��kp + c2�2k��kp� c1�kD�w��k0;p;� + (c1 + c2)�minf1��p;1=2gk��k0;p;�+ k����kp:In the 2nd inequality we applied lemma 4.2.2 to D�w. The de�nition of ��and lemma 4.2.4 imply the 3rd inequality. For �0 > 0 su�ciently small thisimplies kD�w��k0;p;� � c�kD�wD�w��k0;p;� + k��D�w��kp:Use lemma 4.4.5 to estimate the remaining termk��D�w��kp � c3k��D�w�� �D0u����kp + c3kD0u��(D�w��)kp� c3c4�kD�w��k0;p;� + c3c4�minf1��p;1=2gk�k0;p;�+ c3kD0u��(D�w��)� ��D�w(D�w��)kp+ c3k��D�w(D�w��)kp� 2c3c4�minf1��p;1=2gkD�w��k0;p;� + c3k��D�w(D�w��)kp+ c3c4�kD�wD�w��k0;p;� + c3c4c5�minf1��p;1=2gk��D�w��kpwhere the 2nd inequality follows from lemma 4.2.2 and the third from propo-sition 4.2.1 and again lemma 4.2.2. Choosing �0 > 0 su�ciently small wemay incorporate the last term into the left hand side and combine the resultwith the former estimate to obtaink��kp � kD�w��k0;p;�� c�kD�wD�w��k0;p;� + ck��D�wD�w��kp(48)and thereforekD�w��k1;p;� � c�kD�wD�w��k0;p;� + ck��D�wD�w��kp:This proves the �rst and third assertions. The fourth one then follows fromthe third one by lemma 4.2.3.



4.4. AN ESTIMATE FOR THE RIGHT INVERSE 71To prove the estimate for k��kp apply lemma 4.2.3 as well as the de�ni-tion of �� and lemma 4.2.4 in the 2nd inequality to obtaink��kp � k�� � g(u)rt����kp + krt����kp� c5k�� � g(u)rt��kp + c5�1=2krt��kp+ (c6=2)��1=2k��kp + (c6=2)�k��kp� c7�1=2kD�w��k0;p;� + c7(�1=2��p + ��1=2)k��kp+ c7(�3=2��p + �)k��kp� c8�1=2kD�w��k0;p;� + c8��1=2k��D�w��kp+ c8(�3=2��p + �)k��kp:Here we used lemma 4.2.5 for D�w in the 3rd inequality and estimate (48) for�� in the 4th inequality. Now incorporate the ��-term into the left hand sidefor �0 > 0 su�ciently small. Moreover, using lemma 4.2.5 for D�w in the 2ndand the above estimates for �� and �� in the 3rd inequality we getkrt��kp � krt�� � g(u)�1��kp + k��kp� c9�kD�w��k0;p;� + c9�1��pk��kp + c9k��kp� c10�1=2kD�w��k0;p;� + c10��1=2k��D�w��kp:



72 4. ELLIPTIC ESTIMATES



CHAPTER 5Quadratic estimatesDeriving the quadratic estimates, although mainly a tedious technical pro-cess, provides an essential ingredient to carry out the Newton type methodin chapter 1. The quality of the quadratic estimates obtained here deter-mines the qualitative results, with respect to powers of �, on the size of theexistence and uniqueness neighborhoods of the zeroes detected by the itera-tion process. In order to get optimal results we use elements of Riemanniangeometry summarized in section A.1.In section 5.1 we calculate the fundamental quadratic estimate neededin the initial step of the Newton method. It turns out to be necessary topreserve the combination grt��� in the term with coe�cient ��2, as well asto do the estimates for both components of F triv�;u0 (�)�F triv�;u0 (0)�dF triv�;u0 (0)��separately.This holds true also in sections 5.2 and 5.3 where we get the estimatesI and II applied in the induction step of the iteration. Note that in thiswhole chapter { due to the nonlinearities { we heavily rely on the resultsof the geometric analysis in section A.1 about the exponential and paralleltransport maps.As a �rst step we will produce pointwise estimates in local coordinatesand integration will then lead to estimates with respect to Lp- and L1-norms, where we shall throw the former ones on terms involving derivatives.So let us construct a new normk � k00;p;� on C10 (R � S1; u�TM � u�T �M),u 2 P1x;y, using a cover of M by local coordinate charts. This new norm,although dependent on the choice of the cover, is equivalent to the normk � k0;p;� introduced previously.Let �M be the injectivity radius of the exponential map of the Riemann-ian manifold (M; g). As M is compact it follows �M > 0. Let fUigNi=1 be acover of M by open sets, which has the following technical properties: Ui iscontained for any i 2 f1; : : : ; Ng in some coordinate chart (Vi; 'i) ofM andexpq� and expq� are contained in the same coordinate chart for all q 2 Uiand � 2 TqM , � 2 T �qM of norm less than a constant�0M 2 (0; �M ):(49)Clearly �0M may be choosen independently of i. (A cover as described abovecan be constructed for instance via a partition of unity subordinate to a�nite coordinate cover of M . The interiors of the supports of the partitionof unity serve as the cover, if we choose �0M su�ciently small.)73
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Figure 5.1. Construction of the norm k � k00;p;�Definition 5.0.6. Using the same notation as above de�ne Wi =u�1(u(R � S1) \ Ui) � R � S1. For � > 0 and (�; �) 2 C10 (R � S1; u�TM �u�T �M) with j�(s; t)j; j�(s; t)j < �0M for all (s; t) 2 R � S1 de�nek(�; �)k00;p;�p = NXi=1 ZWi �j~�(s; t)jp + �pj~�(s; t)jp� dtdswhere ~� resp. ~� denote the representatives of � resp. � in the local coordi-nates on Ui.Lemma 5.0.7. k � k00;p;� and k � k0;p;� are equivalent norms on C10 (R �S1; u�TM � u�T �M), i.e. there exists a constant C > 0 such that1C k(�; �)k00;p;� � k(�; �)k0;p;� � Ck(�; �)k00;p;�for all (�; �) 2 C10 (R � S1; u�TM � u�T �M).Proof. Let � be the maximal number of sets Wi having nonemptyintersection, then C = �1=p will do the job.Hence we may choose to work in local coordinates to get estimates for thederivatives of F triv�;u . Although these derivatives do not have in general aninvariant meaning, the above lemma justi�es this local approach, whichallows us to use simply calculus on Rn .Remark 5.0.8. The quadratic estimates with respect to Lp- and L1-norms are an immediate consequence of the corresponding pointwise esti-mates (by integrating them). By the equivalence of norms it su�ces to provethe quadratic estimates in the norm k � k00;p;� and therefore we may restrictto a coordinate chart (Ui � Vi; 'i) as described above.Let us consider for instance the following term of pointwise estimate II,where j � j denotes j � jTu(s;t)Mj~T1(s; t) + ~T2(s; t)j+ �j~T3(s; t) + ~T4(s; t)j� c( ~X(s; t)) j~�(s; t)j � j@s ~X(s; t)j:



5. QUADRATIC ESTIMATES 75Take this inequality to the power p and integrate (s; t) overWi = u�1(u(R � S1) \ Ui)to obtaink~T1 + ~T2kpLp(Wi;Rn) + �pk~T3 + ~T4kpLp(Wi;Rn)� ZWi c( ~X(s; t))p j~�(s; t)jp � j@s ~X(s; t)jp dtds� cp;i ZWi j~�(s; t)jp�j~rs ~X(s; t)jp + j ~X(s; t)jp�dtds� cp;ik�kpL1(Wi;Rn)�k~rs ~XkpLp(Wi;Rn) + k ~XkpLp(Wi;Rn)�where we used in the 2nd inequality thatj@s ~X(s; t)jp � 2p�1 ����@sXk(s; t)+ �kijju(s;t)@sui(s; t)Xj(s; t)�@k���p+ 2p�1 ����kijju(s;t)@sui(s; t)Xj(s; t)�@k���p� const(i; p)�j~rs ~X(s; t)jp + j ~X(s; t)jp�:We observe that any partial derivative in the pointwise estimates gives rise toa covariant derivative plus a corresponding zero order term in the quadraticestimates. Moreover, the distribution of Lp- and L1-norms to the factors ofproducts is clearly motivated by the intention to optimize the estimates inthe Newton iteration. The strategy will be to throw Lp-norms on the termsinvolving derivatives.The next lemma is the major technical tool in the proof of the pointwiseestimates.Lemma 5.0.9. Let f 2 C2(Rn ;Rn) , n 2 N. Then for any � > 0 thereexists c� 2 C0(Rn ;R+) such thati) jf(X + �)� f(X)j � c�(�) j�jii) jf(X + �)� f(X)� df(X)��j � c�(�) j�j2for all X with jXj � � and all � 2 Rn .Proof. We only prove ii) as i) follows quite similarly. It su�ces toprove the estimate for a component f i of f , i.e.jaijR def= jf i(X + �)� f i(X)� df i(X)��jR � c�;i(�) j�j2Rn :The general result may then be obtained as followsj(a1; : : : ; an)j = � nXi=1 jaij2R�1=2� � nXi=1 c�;i(�)2�1=2j�j2Rn def= c�(�) j�j2Rn :



76 5. QUADRATIC ESTIMATESNow jf i(X + �)� f i(X)� df i(X)��jR= ����Z 10 df i(X + ��)�� � df i(X)�� d� ����R= ����Z 10 Z �0 d2f i(X + ��)�(�; �) d� d� ����R� Z 10 Z �0 kd2f i(X + ��)kL(Rn�Rn;R) d� d� � j�j2Rn� 12 sup0���1 kd2f i(X + ��)kL(Rn�Rn;R) � j�j2Rn� 12 supjXj�� sup0���1 kd2f i(X + ��)kL(Rn�Rn;R) � j�j2Rndef= c�;i(�) j�j2Rn :Remark 5.0.10. Throughout the subsequent proofs we drop the arrows(indicating Rn -valued functions) and the argument (s; t) from our notation,so that for instance � denotes ~�(s; t) = (�1(s; t); : : : ; �n(s; t)). De�nej�j := j�jTu0M = gij ju0(s;t)�i(s; t)�j(s; t):and w0 = g(u0)@tu0a(u0; �) = expu0�b(u0; �; �) = T �1(�)�(w0 + �);(50)then @ta(u0; �) = @1a(u0; �)�@tu0 + @2a(u0; �)�@t�@tb(u0; �; �) = dT �1j��(@t�; w0 + �) + T �1(�)��(@tw0 + @t�)(51)and similarly for @s. The notation dT �1j��(@t�; w0+�) means that dT �1j��(�; �)is bilinear and is given by (dT �1j��@t�)��(w0 + �), strictly speaking. More-over, dd� ��0@sa(u;X + ��) = @s(@2a(u;X)��)= @1@2a(u;X)�(�; @su) + @2@2a(u;X)�(�; @sX)+ @2a(u;X)�@s�:(52)



5.1. THE FUNDAMENTAL QUADRATIC ESTIMATE 775.1. The fundamental quadratic estimateTheorem 5.1.1. (Fundamental quadratic estimate) Let p > 2 andu0 be an element of the moduli space M0(x�; x+), where x�, x+ 2 CritIV ,and denote F triv�;u0 (�)�F triv�;u0 (0)� dF triv�;u0 (0)�� = �F1F2� :Let � = t or � = s.Then there exists a constant cp > 0 such thatkF1kp � cpk�k1�k�kp + krt�kp + krs�kp + k�kp + krt�kp�kF2kp � cp�2 k�k1�kgrt� � �kp + k�kp�+ cp k�k1�krs�kp + k�kp + krs�kp�+ cp k�k1krs�kpandkr�F1kp� cp k�k1�k�kp + krt�kp + krs�kp + k�kp + krt�kp + kr��kp+ kr�rt�kp + kr�rs�kpk�k1�+ cp k�k1�krt�kp + kr��kp�+ cp krt�k1kr��kpkr�F2kp� cp�2 k�k1�kr�rt� � g�1r���kp + k�kp + krt�kp + k�kp+ kr��kp + k�k1�kr��kp + kr�rt�kp��+ cp�2 krt� � g�1�kp�k�k1 + kr��k1�+ cpk�k1�krs�kp + krs�kp + kr��kp + kr�rs�kp + kr�rs�kp�+ cpk�k1�kr��kp + krs�kp + kr�rs�kp�+ cpkr��k1�krs�kp + krs�kp�+ cpkr��kpkrs�k1for � 2 (0; 1] and � = (�; �) 2 C10 (R � S1; u�0TM � u�0T �M) with k�k1 ��0M=2 and k�k1 + krt�k1 + kr��k1 � pcp=2 .The theorem follows from the pointwise estimate 5.1.3 via integration asdescribed in remark 5.0.8. Note that the condition on k�k1 is necessary inorder for the local constructions to be well de�ned. The other L1-conditionsonly serve to simplify the expressions. We underlined the terms which de-termine the rate of convergence in the Newton method.Remark 5.1.2. The constant c appearing in lemma 5.1.3 depends lin-early on @tu0, @su0 and in the estimate for r�Fi even on @�@tu0. In order



78 5. QUADRATIC ESTIMATESto derive theorem 5.1.1 via integration as described in remark 5.0.8 we needcontinuity of all these partial derivatives of u0 and some information on theirbehavior for s ! �1. By de�nition of M0(x�; x+) any element u0 is C1anyway and there are prescribed boundary conditions x�; however, at somepoint one needs to justify this de�nition by working out an appropriate reg-ularity theory for the solutions of the parabolic PDE. This will be carriedout elsewhere.Lemma 5.1.3. (Fundamental pointwise estimate) Let u0 be an ele-ment of the moduli space M0(x�; x+), where x�, x+ 2 Crit IV , and denoteF triv�;u0 (�)�F triv�;u0 (0)� dF triv�;u0 (0)�� = �F1F2�for � = (�; �) 2 C10 (R � S1; u�0TM � u�0T �M) with k�k1 � �0M=2, where�0M is the constant introduced in (49). Then in a local coordinate chart(Ui � Vi; 'i) as in �gure 5.1 the following pointwise estimates hold: Thereexists a continuous function c = c(~�) � 0 { also depending continuously on~u0 and its partial derivatives of �rst and second order { such thatj ~F1j � c j~�j�j~�j+ j@t~�j+ j@s~�j+ j~�j+ j@t~�j�+ c j~�j � j@t~�j � j~�jj ~F2j � c ��2j~�j�j~g ~rt~� � ~�j+ j~�j (j~�j+ kR(�; _u0) � k)�+ c j~�j�j~�j+ j@s~�j+ j~�j+ j@s~�j�+ c j~�j � j@s~�jand for � = t or � = sj~r� ~F1j � c j~�j�j~�j+ j@t~�j+ j@�~�j+ j@s~�j�1 + j@�~�j�+ j~�j+ j@t~�j�1 + j@�~�j�+ j@�~�j�1 + j@t~�j�+ j@�@t~�j�1 + j~�j�+ j@�@s~�j � j~�j�+ c j~�j � j@�~�j�1 + j@t~�j�+ c j@t~�j�j~�j+ j@�~�j�j~r� ~F2j � c��2j�j�j~r�~rt� � g�1~r���j+ j�j+ j@t�j+ j@��j�1 + j�j+ j@t�j��+ c��2j~rt� � g�1�j�j�j+ j@��j�+ c��2j�j2�1 + j@��j+ j@�@t�j�+ cj�j�j@s�j+ j@��j+ j@s�j+ j@�@s�j+ j@�@s�j� + cj@s�j � j@��j+ cj�j�j@��j+ j@s�j+ j@�@s�j�+ cj@��j�j@s�j�1 + j�j�+ j@s�j�for � 2 (0; 1], where j � j = j � jTu0(s;t)M and an arrow on top of an objectindicates that it is represented in local coordinates and evaluated at (s; t).Recall the de�nition of F triv�;u : Pick a smooth cylinder u 2 Px;y, x; ysmooth loops in M , and set w = g(u)@tu;



5.1. THE FUNDAMENTAL QUADRATIC ESTIMATE 79then F triv�;u (X;Y ) = �T �1(X) 00 T (X)�� �F�� a(u;X)b(u;X; Y )�= �T �1(X)�@sa� g�1(a)r�t b�rVt(a)�T (X)��r�sb+ ��2g(a)@ta� ��2b� �where a(u;X) = expuXb(u;X; Y ) = T �1(X)�(w + Y )and T (X) is parallel transport along the geodesic�0; 1�! Ui � Vi �M� 7! expu(s;t)�X(s; t):Note that T (X) was denoted T (1; 0) in appendix A and so in local coordi-nates (T (X)�)kl = (T �(0; 1))kl = (T (1; 0))kl = T (X)kl :Moreover, we de�ne T �1(X) = T (X)�1.In the following proof we will use several times lemma 5.0.9 as well asthe notation introduced in remark 5.0.10 below.Proof. (of lemma 5.1.3 { fundamental pointwise estimate) Letus denote F triv�;u0 (�; �) = �T �1(�) f1(�; �)T (�)� f2(�; �) �where f1(�; �) = @sa(u0; �)� g�1ja(u0;�)r�t b(u0; �; �) �rVtja(u0 ;�)f2(�; �) = r�sb(u0; �; �) + ��2gja(u0;�)@ta(u0; �)� ��2b(u0; �; �):Estimates for F1 and F2The estimate for the �rst component F1 is less subtle than the one for F2as there are no terms containing factors ��2. For F1 we may simply apply thecorresponding estimate of lemma 5.2.2 (pointwise estimate I) with X = 0and Y = 0. A more delicate analysis is required in order to estimatejF2j = jT (�)� f2(�; �) � f2(0; 0) � dd� ��0(T (��)� f2(��; ��))j= jT (�)� f2(�; �) �r�s(gju0@tu0)� dT j�0(�;r�s(gju0@tu0))� @1f2(0; 0)� � @2f2(0; 0)�j= ����T (�)� � 1l� dT j�0 �� f2(�; �)+ �f2(�; �) �r�s(gju0@tu0)� @1f2(0; 0) � � @2f2(0; 0) ��+ dT j�0��; f2(�; �)�r�s(gju0@tu0)����= jIV + V + V Ij:
(53)



80 5. QUADRATIC ESTIMATESNote that the last equality de�nes terms IV , V and V I. Moreover, we haveadded twice zero in the steps above. As the ��2-terms are the worst ones inorder to get estimates with highest possible powers of � and, on the otherhand, we have strong estimates for g(u0)rt� � �, the crucial point in allwhat follows is to keep those di�erences together rather than treating rt�and � separately. Use formula (72) for r�sb(u0; �; �) to obtainV I = dT j�0�� ; dT �1j��(@s�; gju0@tu0 + �) + T �1(�)��@s(gju0@tu0)+ @s��� �ja(u0;�)�@1a(u0; �) @su0 + @2a(u0; �) @s� ; T �1(�)�(gju0@tu0 + �)�+ ��2gja(u0;�)�@1a(u0; �) @tu0 + @2a(u0; �) @t��� ��2T �1(�)�(gju0@tu0 + �)� @s(gju0@tu0) + �ju0(@su0 ; gju0@tu0)�
(54)
andIV = �T (�)� � T (0)� � dT j�0���dT �1j��(@s� ; gju0@tu0 + �)+ T �1(�)��@s(gju0@tu0)+ @s��� ��2T �1(�)�(gju0@tu0 + �)� �ja(u0;�)�@1a(u0; �)@su+ @2a(u0; �)@s� ; T �1(�)�(gju0@tu0 + �)�+ ��2gja(u0 ;�)�@1a(u0; �)@tu0 + @2a(u0; �)@t���
(55)
as well as (using @1f2(0; 0)� = dd� ��0f2(��; 0) and similarly for @2f2(0; 0)� )V = �dT �1j�� � dT �1j�0�(@s� ; gju0@tu0) + dT �1j��(@s� ; �)+ �T �1(�)� � 1l� dT �1j�0��@s(gju0@tu0) + �T �1(�)� � 1l�@s�� ��ja(u0;�)�@1a(u0; �)@su0 ; T �1(�)�gju0@tu0�� �ju0�@su0 ; gju0@tu0�� dd� ��0�ja(u0;��)�@1a(u0; ��)@su0 ; T �1(��)�gju0@tu0��� ��ja(u0;�)�@2a(u0; �) � ; T �1(�)�gju0@tu0�� �ju0�� ; gju0@tu0��@s�� ��ja(u0;�)�@1a(u0; �)@su0 ; T �1(�)� ��� �ju0�@su0 ; ����� �ja(u0;�)�@2a(u0; �)@s� ; T �1(�)���+ ��2�gja(u0;�)�@1a(u0; �)@tu0 + @2a(u0; �)@t��� T �1(�)��gju0@tu0 + ��� dgju0�� ; @tu0�� gju0@t� + dT �1j�0�� ; gju0@tu0�+ ��:

(56)



5.1. THE FUNDAMENTAL QUADRATIC ESTIMATE 81Let us consider for the moment the special case of the standard atmetric g = 1l. Then the ��2-terms in IV and V I reduce to ��2(@t� � �),whereas the one in V vanishes. Distributing the L1-norms on @t� � �, the��2-terms in IV , V and V I contribute as follows (note the extra � comingin from the (0; p; �)-norm)��1k�k2p � k@t� � �k1 + 0 + ��1k�kp � k@t� � �k1:Inserting (�0; �0) from step 1 of the Newton iteration and using the estimatesderived there, the above term is less than a constant times �3 and that isexactly what we are heading for. Unfortunately the subsequent calculationsdo not result in the worst term being cj�j3 (which would give �3 indeed), butcj�j2kR(�; @tu0) � k (which gives �2 only!). On the other hand the occurrenceof curvature terms in the nonat case should not be too surprising and theresult specializes in the at case to the one derived above. Moreover, it willturn out later that this a priori bad term will not lead to worse estimates inthe Newton method below, if we only use the quadratic estimates separatelyfor each component.Back to the general case we now derive a corresponding estimate in therealm of Riemannian geometry. Rewrite the ��2-terms in V I (and IV )�gja(u0 ;�)@2a(u0; �)� gju0��@t� +�u0�@tu0; ��� g�1ju0��+ �gja(u0 ;�)@2a(u0; �)� T �1(�)�gju0�g�1ju0�+ �gju0@t� + gju0�u0�@tu0; ��� ��+�gja(u0;�)�@1a(u0; �) � �@2a(u0; �)�ju0��; ���� T �1(�)�gju0 ��@tu0:(57)
We'd like to estimate the second term in the sum by c j�j2j�j and the lastone by c j�j2. Call the last one h(�), then we have to show h(0) = 0 anddh(0)� = 0. Both will follow from the discussion of the exponential mapand the parallel transport carried out in appendix A section A.1. h(0) = 0is obvious anddh(0)� = dd� ��0h(��)= dgju0�� ; @tu0 � �ju0�@tu0; 0��+ gju0�@2@1a(u0; 0)�@tu0; ��� @2@2a(u0; 0)��;�ju0 (@tu0; 0)�� @2a(u0; 0)�ju0�@tu0; ���� dT �1j�0��; gju0@tu0�= dgju0��; @tu0�� gju0�ju0�@tu0; ��� dT �1j�0��; gju0@tu0�= 0
(58)



82 5. QUADRATIC ESTIMATESwhere we used the results on the derivatives of the exponential map inproposition A.1.2 and the last equality uses lemma A.1.11 { both in appendixA section A.1.Let k(�) be the second term in the sum in equation (57), then we computek(0) = 0 anddk(0)� = dd� ��0k(��)= dgju0��; g�1ju0��+ gju0@2@2a(u0; 0)��; g�1ju0��� dT �1j�0��; ��= 0:(59)The last equality is again due to proposition A.1.2 iv) and lemma A.1.11 {both in appendix A section A.1. Summing up, the absolute value of (57)may be estimated byc�j�j � jrt� � g�1�j+ j�j2 � j�j+ jrt� � g�1�j+ j�j2�:(60)This leads tojIV j � cj�j2��2�jrt� � g�1�j+ j�j2 � j�j+ j�j2�+ cj�j2�c+ j@s�j+ j@s�j � j�j+ j�j+ j@s�j�:(61)In order to estimate V I we have to rewrite the terms without an ��2 infront: dT j�0 � ; dT �1j���@s�; g(u0)@tu0 + ��+ �T �1(�)� � 1l�@s�g(u0)@tu0�+ T �1(�)�@s�� ��a(u0;�)�@1a(u0; �) � ; T �1(�)� ��� �ju0��; ����@su0; g(u0)@tu0�� �a(u0;�)�@1a(u0; �)@su0 ; T �1(�)���� �a(u0;�)�@2a(u0; �)@s� ; T �1(�)��g(u0)@tu0 + ���!� cj�j�j�j+ j@s�j+ j@s�j � j�j + j�j + j@s�j�and thereforejV Ij � cj�j��2�jrt� � g�1�j+ j�j2 � j�j + j�j2�+ cj�j�j�j+ j@s�j+ j@s�j � j�j+ j�j + j@s�j�:(62)



5.1. THE FUNDAMENTAL QUADRATIC ESTIMATE 83Rewrite the ��2-terms in term V and add twice zero to obtain�gja(u0;�)@2a(u0; �)� gju0��@t� + �ju0�@tu0; ��� g�1ju0��+ �gja(u0 ;�)@2a(u0; �)� T �1(�)�gju0� g�1ju0�+ �gja(u0 ;�)@1a(u0; �)@tu0 � T �1(�)�gju0@tu0 + dT �1j�0��; gju0@tu0�� dgju0��; @tu0�+ gju0�ju0�@tu0; ��� gja(u0;�)@2a(u0; �)�ju0�@tu0; ���:
(63)
The �rst term in the sum gives c j�j � jrt� � g�1�j and the second term isidentical to the one in (57), which we had estimated previously by cj�j2j�j, soit remains to estimate the third term in the sum by c j�j3. Call it again h(�)and observe that terms 3, 4 and 5 cancel due to lemma A.1.11 in appendix Asection A.1. So it coincides with the function h(�) considered above and weknow h(0) = 0 and dh(0) � = 0. Let us compute also the second derivativeof h as it was great if it vanished (the term then would contribute cj�j3). Itturns out to be important to keep track of indices from now on. Derivativesof a(u0; �) with respect to the �rst variable will be denoted by @=@ui andwith respect to the second one by @=@xj .d2hj(0)��; �� = d2d�2 ���0hj(��)= d2d�2 ���0�gjlja(u0;��) @a(u0; ��)l@ui @tui0 � T �(�; 0)kj gkiju0@tui0� gjlja(u0;��) @a(u0; ��)l@xi �irsju0 @tur0 ��s�= dd� ��0�@gjl@us ja(u0;��) @a(u0; ��)s@xr �r @a(u0; ��)l@ui @tui0+ gjlja(u0;��) @2a(u0; ��)l@xs@ui @tui0 �s � @�T �(�; 0)kj gkiju0@tui0� @gjl@um ja(u0;��) @a(u0; ��)m@xn �n @a(u0; ��)l@xi �irsju0 @tur0 ��s� gjlja(u0;��) @2a(u0; ��)l@xm@xi �m �irsju0 @tur0 ��s� gjlja(u0;��) @a(u0; ��)l@xi �irsju0 @tur0 �s�= @2gjl@um@us ju0 �m�s@tul0 + @gjl@us ju0 @2a(u0; 0)s@xm@xr �m�r@tul0+ @gjl@us ju0 �s @2a(u0; 0)l@xm@ui �m@tui0 + @gjl@ur ju0 �r @2a(u0; 0)l@xs@ui �s@tui0+ gjlju0 @3a(u0; 0)l@xr@xs@ui �r�s@tui0 � d2d�2 ���0T �(�; 0)kj gkiju0@tui0

(64)



84 5. QUADRATIC ESTIMATES� 0� 0� 0� @gjl@um ju0 �m �lrsju0 �s@tur0� 0� 0 + gjlju0 �lmiju0 �m �irsju0 �s@tur0� @gjl@um ju0 �m �lrsju0 �s@tur0 � gjlju0 @2a(u0; 0)l@xm@xi �m �irsju0 �s@tur0= gjiju0 �s�r@tul0�@�ilr@us � @�isr@ul +�ism �mlr � �iml �msr�ju0= gjiju0 Rirslju0 �r�s@tul0= gjiju0 (R(�; @tu0)�)iju0which is not zero in general! Here the �rst four equalities are a straightfor-ward calculation using the de�nition of hj(��) and the product and chainrules for derivatives. The �fth equality uses results from appendix A sectionA.1, namely proposition A.1.2 on the derivatives of the exponential mapand lemma A.1.11 on the second derivative of the parallel transport. Notethat in the sum preceding the �fth equality sign terms 3 and 4 are zero.Moreover, terms 1; 2; 6; (10+14); 15 are identi�ed with terms 2; 3; 1; 4; 7, re-spectively, in the formula of lemma A.1.11. The remaining terms are 5 and13 here and terms 5 and 6 in the lemma. Now use formula (98) for thecurvature tensor in terms of Christo�el symbols and their derivatives to getthe last but one equality.The above estimates yieldjV j � c��2j�j�jrt� � g�1�j+ j�j � j�j + j�j � kR(�; @tu0) � k�+ cj�j�j�j+ j@s�j+ j�j+ j@s�j�+ cj�j � j@s�j:All together this gives �nally our claim for the second componentjF2j = jIV + V + V Ij� c��2j�j�jrt� � g�1�j+ j�j � j�j+ j�j � kR(�; @tu0) � k�+ cj�j�j�j+ j@s�j�1 + j�j�+ j�j+ j@s�j�+ cj�j � j@s�j:Estimates for r�F1 and r��F2To estimate r�F1 we may simply apply the corresponding estimate oflemma 5.2.2 (pointwise estimate I) with X = 0 and Y = 0. Moreover, asr��F2 = @�F2 � �ju0(@�u0; F2);we may use the estimate for F2 derived above for the second term and itremains to consider @�F2. Using the notation introduced in (53) we obtainj@�F2j � j@�IV j+ j@�V j+ j@�V Ijand proceed by treating each term separately.



5.1. THE FUNDAMENTAL QUADRATIC ESTIMATE 85Let us begin with term IV given by equation (55) as a product of twofactors which we denote by IV1 and IV2. Note that it turns out to besu�cient to estimate the ��2-terms individually. We obtainj@�IV j � j@�IV1j � jIV2j+ jIV1j � j@�IV2j� jdT (�)� @�� � dT (0)� @��j � jIV2j+ jT (�)� � T (0)� � dT (0)��j � j@�IV2j� c j�j � j@��j � jIV2j+ c j�j2 � j@�IV2j� c j�j � j@��j�1 + j�j+ j@s�j (1 + j�j) + j@s�j�+ c ��2 j�j � j@��j�1 + j@t�j+ j�j�+ c j�j2�1 + j�j (1 + j@s�j) + j@s�j (1 + j@��j)+ j@��j (j@s�j+ j@s�j+ j@s�j � j�j) + j@�@s�j (1 + j�j) + j@�@s�j�+ c ��2 j�j2�1 + j@t�j+ j@��j+ j@��j (1 + j�j+ j@t�j) + j@�@t�j�where we underlined the worst term with respect to the Newton method.Next we deal with term V I given by equation (54) and de�ne new �-independent functions V I1 and V I2 by the identityV I = dT j�0(�; V I1 + ��2V I2):We obtainj@�V Ij � c j@��j �jV I1j+ ��2jV I2j�+ c j�j �j@�V I1j+ ��2j@�V I2j� :Note that V I1 + ��2V I2 satis�es estimate (62) with the common term j�jreplaced by j@��j.j @�� j �jV I1j+ ��2jV I2j�� cj@��j��2�jrt� � g�1�j+ j�j2 � j�j+ j�j2�+ cj@��j�j�j+ j@s�j+ j@s�j � j�j+ j�j+ j@s�j�:(65)Use product and chain rule to calculate @�V I1 and then estimate each termcontaining �, � or partial derivatives thereof individually and pair the re-maining terms appropriately to obtainj�j � j@�V I1j � c j�j�j�j (1 + j@��j+ j@s�j+ j@��j � j@s�j)+ j@s�j (1 + j@��j) + j@��j (1 + j@s�j)+ j@��j+ j@�@s�j (1 + j�j) + j@�@s�j�:(66)



86 5. QUADRATIC ESTIMATESLet @�V I2 = k1 + k2 + k3wherek1 = dgja(u0;�)�@2a(u0; �) @��; @1a(u0; �) @tu0 + @2a(u0; �) @t��+ dgja(u0;�)�@1a(u0; �) @�u0 + @2a(u0; �) @��;+@2a(u0; �) @t��+ gja(u0;�)�@2@1a(u0; �) (@��; @tu0) + @1@2a(u0; �) (@�u0; @t�)+ @2@2a(u0; �) (@��; @t�)�� dT �1j�� (@��; g@tu0 + �)k2 = dgja(u0;�)(@1a(u0; �) @�u0; @1a(u0; �) @tu0)+ gja(u0;�) @1@1a(u0; �) (@�u0; @tu0)� T �1(�)� dgju0 (@�u0; @tu0)and k3 = gja(u0;�)�@1a(u0; �) @�@tu0 + @2a(u0; �) @�@t��� T �1(�)� �g@�@tu0 + @���:Estimate k1 term by term to obtain��2 j�j � jk1j � c ��2 j�j �j@t�j+ j@��j (1 + j@t�j+ j�j)�:Consider k2 as a function of �, then proposition A.1.2 iii) shows that k2(0) =0 and we obtain ��2 j�j � jk2(�)j � c ��2 j�j2:k3 is harder to deal with. We rewrite it in a form similar to (57)k3 = �gja(u0;�)@2a(u0; �)� gju0��r�rt� � g�1ju0r����+ g�r�rt� � g�1ju0r����+ �gja(u0;�)@2a(u0; �)� T �1(�)�gju0�g�1ju0@��+�gja(u0;�)�@1a(u0; �) @�@tu0 � @2a(u0; �)�ju0(@�@tu0; �)�� T �1(�)� gju0 @�@tu0�� gja(u0;�) @2a(u0; �) �d�j@�u0(@tu0; �) + �ju0(@tu0; @��)+ �ju0(@�u0; @t�) + �ju0�@�u0;�ju0(@tu0; �)�� �ju0(@�u0; �)�:The �rst line is estimated bycj�j � jr�rt� � g�1r���j;



5.1. THE FUNDAMENTAL QUADRATIC ESTIMATE 87the second one by cjr�rt��g�1r���j and the third one had been calculatedbefore in (59) and yields cj�j2j@��j. The fourth line contributes cj�j2 aswe know from (58). Estimate the remaining terms individually and getc (j�j+ j@t�j+ j�j+ j@��j) as upper bound. This implies��2 j�j � jk3j � c ��2 j�j�jr�rt� � g�1ju0r���j(1 + j�j) + j�j2j@��j+ j�j+ j@t�j+ j�j+ j@��j�and we �nally obtain��2 j�j � j@�V I2j � c ��2 j�j�jr�rt� � g�1r���j(1 + j�j) + j�j+ j�j+ j@t�j+ j@��j(1 + j@t�j+ j�j) + j�j2j@��j�:(67)Term @�V is the hardest one. Recall that V is given by equation (56) asa sum of nine terms hi, i 2 f1; : : : ; 9g, (here we consider everything insideoutmost brackets as being one term). So we may write@�V = @�h1 + : : :+ @�h8 + ��2@�h9and remark that only the last term contains a power of �. We only statethe results of estimating the terms with i = 1; : : : ; 8 as the calculations arerather lenghty but straightforward (given the explicit estimates done so far).A guiding principle is to group together terms with the same linear factors.Here are the results: Note that the constant c depends on u0 and its partialderivatives up to second order, all evaluated at the point (s; t)1c j@�h1j � j@��j � j@s�j+ j�j (j@�@s�j+ j@s�j)1c j@�h2j � j@��j � j@s�j � j�j+ j@�@s�j � j�j+ j@s�j � j@��j1c j@�h3j � j�j (j�j+ j@��j)1c j@�h4j � j@s�j (j�j+ j@��j)1c j@�h5j � j�j (j�j+ j@��j)1c j@�h6j � j�j � j@�@s�j+ j@s�j (j�j+ j@��j)1c j@�h7j � j�j (j�j+ j@��j)1c j@�h8j � j�j (j@s�j+ j@s�j � j@��j+ j@�@s�j) + j@s�j � j@��j:



88 5. QUADRATIC ESTIMATESNow hit h9 with @� and rewrite the resulting avalanche of terms as follows@�h9 =�dgja(u0 ;�)(@1a(u0; �) @�u0; @2a(u0; �) �)� dgju0(@�u0; �)� (rt� � g�1�)+ dgja(u0;�)�@2a(u0; �) @��;rt� � g�1��+ gja(u0;�) @2@2a(u0; �) �@��;rt� � g�1��+ �gja(u0 ;�)@1@2a(u0; �)(@�u0; �)� g@1@2a(u0; 0)(@�u0; �)�(rt� � g�1�)+ �gja(u0;�) � gju0� (r�rt� � g�1r���)� �gja(u0;�) � g����@�u0; @t��+ g�1��@�u0; ��+ ��@�u0;�(@tu0; �)��+ �dgja(u0 ;�)�@1a(u0; �) @�u0; @2a(u0; �) g�1��+ gja(u0;�) @1@2a(u0; �) �@�u0; g�1��� T �1(�)� dgju0�@�u0; g�1���+ �dgja(u0 ;�)�@2a(u0; �) @��; @2a(u0; �) g�1��+ gja(u0;�) @2@2a(u0; �) �@��; g�1��� dT �1j�� �@��; ���+ �gja(u0 ;�) @2a(u0; �)� T �1(�)�gju0��dg�1ju0(@�u0; �) + g�1@���+ �dgja(u0 ;�)�@2a(u0; �) @��; @1a(u0; �) @tu0�� dT �1j���@��; g@tu0�+ gja(u0;�) @2@1a(u0; �) �@��; @tu0�� gja(u0 ;�) @2a(u0; �) ��@tu0; @����+ dT �1j�0�@��; g@tu0�� dgju0�@��; g@tu0�+ g��@tu0; @���+ �gja(u0 ;�) @1a(u0; �) @�@tu0 � T �1(�)� g @�@tu0 + dT �1j�0��; g@�@tu0�� dgju0 ��; @�@tu0�+ g��@�@tu0; ��� gja(u0;�) @2a(u0; �) ��@�@tu0; ���+ �dgju0 �@�u0;�(@tu0; �)�� gja(u0 ;�) @2a(u0; �) d�ju0�@�u0; @tu0; ��+ gd�ju0�@�u0; @tu0; ��� gja(u0 ;�) @1@2a(u0; �) �@�u0;�(@tu0; �)�� dgja(u0;�)�@1a(u0; �) @�u0; @2a(u0; �) �(@tu0; �)��� �dgja(u0 ;�)�@2a(u0; �) @��; @2a(u0; �) �(@tu0; �)�+ gja(u0;�) @2@2a(u0; �) �@��;�(@tu0; �)��+ ��T �1(�)� + 1l + dT �1j�0 �� dgju0 �@�u0; @tu0�+ �dgja(u0 ;�)�@1a(u0; �) @�u0; @1a(u0; �) @tu0�� dgju0 �@�u0; @tu0�+ gja(u0;�) @1@1a(u0; �) �@�u0; @tu0�� d2gju0�@�u0; �; @tu0��:



5.1. THE FUNDAMENTAL QUADRATIC ESTIMATE 89We obtain termwise1c�2 j@�h9j� �jrt� � g�1�j�j�j+ j@��j+ j@��j+ j�j+ j�j�+ j�j�j@t�j+ j�j+ j�j��+ �j�j�j�j+ j@��j � j�j�+ j�j2�j�j+ j@��j��+ j�j � j@��j+ j�j2 + j�j2 + j�j � j@��j+ j�j2 + j�j2:All in all we getj@�V j � c��2jrt� � g�1�j � �j�j+ j@��j�+ c��2j�j2�j�j+ j@��j�+ c��2j�j�j�j+ j�j+ j@t�j+ j�j � j@��j+ j@��j�+ cj�j�j�j+ j�j+ j@��j+ j@s�j+ j@s�j+ j@�@s�j�+ cj@s�j � j@��j+ cj@��j�j�j+ j@s�j+ j@s�j+ j�j � j@s�j�+ cj�j�j@s�j+ j@�@s�j�:This estimate for @�V , the one for @�IV and estimates (65),(66),(67) for@�V I together give the claimed estimate for the second component r��F2.



90 5. QUADRATIC ESTIMATES5.2. Quadratic Estimate IThe following quadratic estimate is an essential qualitative ingredient tocarry out the induction step in the Newton method. The theorem followsfrom the pointwise estimate 5.2.2 via integration as described in remark5.0.8. Note that the conditions on k�k1 and kXk1 are necessary in orderfor the local constructions to be well de�ned. The other L1-conditionsonly serve to simplify the expressions. Terms involving s-derivatives havenot been dropped in simplifying the estimates for the components F1 andF2. This is of importance in the uniqueness part of the Newton methodbecause these terms may appear with negative powers of �. We underlinedthe worst terms with respect to rate of convergence in the existence part ofthe Newton method. Moreover, the theorem actually holds for any cylinderwith appropriate smoothness and asymptotic convergence properties.Theorem 5.2.1. (Quadratic estimate I) Let p > 2 and u be an el-ement of the moduli space M0(x�; x+), where x�, x+ 2 Crit IV , de�new = g(u)@tu and denoteF triv�;u (Z + �)�F triv�;u (Z)� dF triv�;u (Z)�� = �F1F2� :Then 9 a constant cp > 0 such that for Z = (X;Y ) 2 C10 (R � S1; u�TM �u�T �M) with kXk1 < �0M=2 and kY k1 + krtXk1 + krsXk1 � pcp=2kF1kp � cpk�k21�krtXkp + krsXkp + krtY kp�+ cpk�k1�k�kp + krt�kp + krs�kpk�k1 + k�kp + krt�kpk�k1�+ cpkXk21�k�kp + krs�kp + k�kp + krt�kp�+ cpkXk1k�k1krt�kpkF2kp � cpk�k21���2�kXkp + krtXkp�+ krsXkp + kY kp + krsY kp�+ cpk�k1�k�k1�2 �k�kp + krt�kp�+ krs�kp + k�kp�1 + krsXk1��+ cpkXk1���2�k�kp + krt�kp�kXk1 + krs�kpk�k1�andkr�F1kp � cpk�k21�krtXkp + kY kp + krsXkp + krtY kp + kr�Y kp+ kr�rtXkp + kr�rtY kp + kr�rsXkp�+ cpk�k1�k�kp + k�kp + krt�kp + krt�kp + kr��kp+ krs�kp + kr��kp + kr�rt�kp + kr�rs�kpk�k1�



5.2. QUADRATIC ESTIMATE I 91+ cpk�k1�krtXkp + kr�Xkp + krtY kp�kXk1 + krtXk1�+ kr�Y kpkrt�k1 + kr�rtXkpk�k1�+ cpkXk21�k�kp + krt�kp + kr�rs�kp�+ cpkXk1�kXkp + k�kp + kr��kp + krs�kp + kr��kp+ kr�rs�kpk�k1 + kr�rt�kpk�k1�+ cpk�k1�krt�kp + kr��kp + kr�rt�kpk�k1�+ cpkr��kp�krtXk1 + krt�k1�andkr�F2kp� cpk�k21���2�kXkp + krtXkp + kr�Xkp + kr�rtXkp�+ krsXkp + kr�Y kp + krsY kp + kr�rsXkp + kr�rsY kp�+ cpk�k1���2�k�kp + krt�kp + kr��kp + kr�rt�kp�+ krs�kp + k�kp + kr��kp + krs�kp + kr�rs�kp�+ cpk�k1�kXkp + kr�Xkp + kr�Y kpkrs�k1+ krsY kp�kr�Xk1 + kr��k1��+ cpkXk21��2�k�kp + krt�kp + kr��kp + kr�rt�kp�+ cpkXk1���2�k�kp + krt�kp�+ kr��kp + kr��kpkrs�k1+ krsY kpk�k1 + kr�rs�kpk�k1�+ cpkr��k1���2�k�kp + krt�kp�+ krs�kp + krsXkp�+ cpk�k1�kr��kp + krs�kp + krsXkpk�k1 + kr�rsXkpk�k1�for � 2 (0; 1] and � = (�; �) 2 C10 (R � S1; u�TM � u�T �M) with k�k1 <�0M=2 and k�k1 + krt�k1 + krs�k1 � pcp=2.



92 5. QUADRATIC ESTIMATESLemma 5.2.2. (Pointwise estimate I) Let u 2 Px;y, x, y smooth loopsin M , and denoteF triv�;u (Z + �)�F triv�;u (Z)� dF triv�;u (Z)�� = �F1F2� = �T1 + T2 + T3T4 + T5 + T6�for Z = (X;Y ), � = (�; �) 2 C10 (R � S1; u�TM � u�T �M) with k�k1,kXk1 � �0M=2. Then in a local coordinate chart (Ui � Vi; 'i) as abovethe following pointwise estimates hold: There exists a continuous functionc(~�) � 0 such thatj ~F1j � c(~�) j~�j2 �1 + j@t ~Xj�1 + j~Y j�+ j@s ~X j+ j~Y j+ j@t~Y j+ j@t~�j�+ c(~�) j~�j�j@t~�j�1 + j~�j+ j~Y j�+ j@s~�j � j~�j+ j~�j�1 + j@t ~X j��+ c(~�) j ~X j�j@t~�j � j~�j+ j@s~�j � j ~X j+ j@t~�j � j ~Xj�j ~F2j � c(~�) j~�j2 ���2�1 + j@t ~Xj�+ j@s ~X j�1 + j~Y j�+ j~Y j+ j@s~Y j�+ c(~�) j~�j���2j@t~�j � j~�j+ j@s~�j�1 + j~�j+ j~Y j�+ j~�j�1 + j@s ~Xj��+ c(~�) j ~X j���2j@t~�j � j ~X j+ j@s~�j � j~�j�j~r� ~F1j � c�(79) + (82) + (81) + j ~F1j�j~r� ~F2j � c�(83) + (80) + (78) + j ~F2j�for � 2 (0; 1], where j � j = j � jTu(s;t)M and an arrow on top of an objectindicates that it is represented in local coordinates and is evaluated at (s; t).Proof. (of lemma 5.2.2 { pointwise estimate I) Throughout theproof we use the notation introduced in remark 5.0.10.Estimates for F1 and F2The term T6 : Use the de�nition (50) of b to get�2T6 = �T (X + �)�b(u;X + �; Y + �) + T (X)�b(u;X; Y )+ dd� ��0�T (X + ��)�b(u;X + ��; Y + ��)�= �� + dd� ��0(w + Y + ��);i.e. T6 = 0:(68)



5.2. QUADRATIC ESTIMATE I 93The term T3 :T3 = �T �1(X + �)�rVtja(u;X+�) + T �1(X)�rVtja(u;X)+ dd� ��0�T �1(X + ��)�rVtja(u;X+��)�= ��T �1(X + �)� T �1(X)� dT �1jX����rVtja(u;X)� T �1(X + �)��rVtja(u;X+�) �rVtja(u;X) � d(rVtja(u;X))���� �T �1(X + �)� T �1(X)��d(rVtja(u;X))��= I + II + IIIwhere in the 2nd equality we have added twice zero (terms 1 + 5 as well as6 + 7). Now use lemma 5.0.9 to getjIj � T �1(X + �)� T �1(X)� dT �1jX�� � ��rVtja(u;X)��� c(X; �) � j�j2 � c(X)jIIj � T �1(X + �) � ��rVtja(u;X+�) �rVtja(u;X) � d(rVtja(u;X))����� c(X; �) � ~c(X; �) � j�j2jIIIj � T �1(X + �)� T �1(X) � d(rVt)ja(u;X)�@2a(u;X)��� c(X; �) � j�j � c(X) � j�j:As the constants depend continuously on X and kXk1 � �0M=2 it followsjT3j � c j�j2:(69)The term T1 :T1 = T �1(X + �)�@sa(u;X + �)� T �1(X)�@sa(u;X)� dd� ��0�T �1(X + ��)�@sa(u;X + ��)�= �T �1(X + �)� T �1(X)� dT �1jX����@sa(u;X)+ T �1(X + �)��@sa(u;X + �)� @sa(u;X) � @s(@2a(u;X)��)�+ �T �1(X + �)� T �1(X)��@s(@2a(u;X)��)= I + II + IIIwhere in the 2nd equality we again added twice zero (terms 1+5 and 6+7).Using lemma 5.0.9, equations (51) and (52), adding zero and moving a term



94 5. QUADRATIC ESTIMATESin III containing @s� to II, we obtainjIj� c(X; �) j�j2 � j@1a(u;X)�@su+ @2a(u;X)�@sXj� c(X; �) j�j2 c(X)�c+ j@sXj�jIII � T �1(X + �)@2a(u;X)@s� + @s�j� kT �1(X + �)� T �1(X)k � j@1@2a(u;X)�(@su; �) + @2@2a(u;X)�(@sX; �)j+ j � T �1(X)@2a(u;X)�@s� + @s�j� c(X; �)�j�j2 + j�j2j@sXj+ jXj2j@s�j�jII + T �1(X + �)@2a(u;X)@s� � @s�j� ���T �1(X + �)�@1a(u;X + �)� @1a(u;X)� @2@1a(u;X)��(@su+ @sX)���+ jT �1(X + �)@2a(u;X + �)�@s� � @s�j� c(X; �)�j�j2 + j�j2 � j@sXj+ jX + �j2 � j@s�j�where we applied results derived in appendix A toh(X) = T �1(X)@2a(u;X) � 1l:Namely, we get h(0) = 0 and dh(0)X = dT �1j0(X; �) + @2@2a(u; 0)(X; �) = 0.The assumption on kXk1 impliesjT1j � c�j�j2 + j�j2j@sXj+ j�j2j@s�j+ jXj2j@s�j�:(70)The term T5 : Again add twice zero in the 2nd equality (as above) to get�2 T5 = T (X + �)��gja(u;X+�)�@ta(u;X + �)� T (X)��gja(u;X)�@ta(u;X)� dd� ��0�T (X + ��)��gja(u;X+��)�@ta(u;X + ��)�= �T (X + �)��gja(u;X+�) � T (X)��gja(u;X)� d(T (X)��gja(u;X))����@ta(u;X)+ T (X + �)�gja(u;X+�)�@ta(u;X + �)� @ta(u;X) � @t(@2a(u;X)��)�+ �T (X + �)��gja(u;X+�) � T (X)��gja(u;X)��@t(@2a(u;X)��)= I + II + III



5.2. QUADRATIC ESTIMATE I 95Using lemma 5.0.9, equations (51) and (52), adding zero and moving a termin III containing @t� to II, we obtainjIj� c(X; �) j�j2 j@1a(u;X)�@tu+ @2a(u;X)�@tXj� c(X; �) j�j2 c(X)�c+ j@tXj�jIII � �T (X + �)�gja(u;X+�)@2a(u;X)� gju� @t�j� jT (X + �)�gja(u;X+�) � T (X)�gja(u;X)j� j@1@2a(u;X)�(@tu; �) + @2@2a(u;X)�(@tX; �)j+ j ��T (X)�gja(u;X)@2a(u;X) + gju� @t�j� c(X; �)�j�j2 + j�j2 � j@tXj+ jXj2j@t�j�jII + �T (X + �)�gja(u;X+�)@2a(u;X)� gju� @t�j� ���T (X + �)�gja(u;X+�)�@1a(u;X + �)� @1a(u;X) � @2@1a(u;X)��@tu���+ ���T (X + �)�gja(u;X+�)�@2a(u;X + �)� @2a(u;X) � @2@2a(u;X)��@tX���+ ��T (X + �)�gja(u;X+�)@2a(u;X + �)@t� � gju@t���� c(X; �)�j�j2 + j�j2 � j@tXj+ jX + �j2 � j@t�j�where we used a result derived in the proof of the fundamental quadraticestimate theorem 5.1.1, namely (59) which states thatT (X)�gja(u;X)@2a(u;X)� gjuis of order jXj2. The assumption on kXk1 impliesjT5j � c ��2�j�j2 + j�j2j@tXj+ j�j2j@t�j+ jXj2j@t�j�:(71)The term T4 : Add twice zero in the 2nd equality (terms 1 + 5 and 6 + 7)to get T4 = T (X + �)��r�sb(u;X + �; Y + �)� T (X)��r�sb(u;X; Y )� dd� ��0�T (X + ��)��r�sb(u;X + ��; Y + ��)�= �T (X + �)� � T (X)� � d(T j�X)����r�sb(u;X; Y )+ T (X + �)���r�sb(u;X + �; Y + �)�r�sb(u;X; Y )� dd� ��0(r�sb(u;X + ��; Y + ��))�+ �T (X + �)� � T (X)��� dd� ��0r�sb(u;X + ��; Y + ��)= I + II + III



96 5. QUADRATIC ESTIMATESWe need to compute�r�sb(u;X; Y )= ��@s � ��ja(u;X)(@sa(u;X); �)��T �1(X)��(w + Y )= �dT �1j�X�(@sX;w + Y )� T �1(X)��(@sw + @sY )+ �ja(u;X)��@1a(u;X)�@su+ @2a(u;X)�@sX ;T �1(X)��(w + Y )�(72)
and r�sb(u;X + �; Y + �)= dT �1j�X+��(@sX + @s�; w + Y + �)+ T �1(X + �)��(@sw + @sY + @s�)� �ja(u;X+�)��@1a(u;X + �)�@su+ @2a(u;X + �)�(@sX + @s�) ;T �1(X + �)��(w + Y + �)�(73)
as well asdd� ��0r�sb(u;X + ��; Y + ��)= dd� ��0�@s�T �1(X + ��)��(w + Y + ��)�� �ja(u;X+��)�@sa(u;X + ��);T �1(X + ��)��(w + Y + ��)��= d2T �1j�X�(@sX; �;w + Y ) + dT �1j�X�(@s�; w + Y )+ dT �1j�X�(�; @sw + @sY ) + dT �1j�X�(@sX; �) + T �1(X)��@s�� d�ja(u;X)�@2a(u;X)��; @1a(u;X)�@su+ @2a(u;X)�@sX;T �1j�X�(w + Y )�� �ja(u;X)�@1@2a(u;X)�(@su; �) + @2@2a(u;X)�(@sX; �)+ @2a(u;X)�@s� ; T �1j�X�(w + Y )�� �ja(u;X)�@1a(u;X)@su+ @2a(u;X)@sX; dT �1j�X (�; w + Y )+ T �1(X)���

(74)

where we used dd� ��0@s� = @s dd� ��0 as well as equations (51) and (52). Usinglemma 5.0.9 and equation (72) we can estimate IjIj � kT (X + �)� � T (X)� � dT j�X��k � jr�sb(u;X; Y )k� c j�j2�1 + j@sXj+ j@sXj � jY j+ jY j+ j@sY j�



5.2. QUADRATIC ESTIMATE I 97where we used kXk1 � �0M=2. In what follows we transfer the terms con-taining @s� from III to II so that they will disappear. Equation (74) leadsto jIII � T (X + �)�T �1(X)�@s� + @s�j� kT (X + �)� � T (X)�k � �� dd� ��0r�sb(u;X + ��; Y + ��)� c(X; �) j�j c(X)�j�j � j@sXj+ j�j � j@sXj � jY j+ j@s�j+ jY j � j@s�j+ j�j+ j�j � j@sY j+ j�j � j@sXj+ 0+ j�j+ j�j � jY j+ j@sXj � j�j+ j@sXj � j�j � jY j+ j@s�j+ j@s�j � jY j+ j�j+ j�j � jY j+ j@sXj � j�j+ j@sXj � j�j � jY j+ j�j+ j@sXj � j�j�� c j�j�j�j+ j@s�j+ j�j � j@sXj+ j�j � j@sY j+ j�j+ 0+ j�j � j@sXj+ j�j � jY j+ j@s�j � jY j+ j�j � jY j � j@sXj�where in the last step we used kXk1 � �0M=2. Now we estimate term IIusing equations (73), (72) and (74) as well as lemma 5.0.9jII + T (X + �)�T �1(X)�@s� � @s�j� c(X; �) jr�sb(u;X + �; Y + �)�r�sb(u;X; Y )� dd� ��0r�sb(u;X + ��; Y + ��)��� c(X; �)�0 + T �1(X + �)� � T �1(X)� � dT �1j�X�� � j@sw + @sY j+ dT �1j�X+� � dT �1j�X � d2T �1j�X�� � j@sXj � jw + Y j+ dT �1j�X+� � dT �1j�X � j@sXj � j�j+ dT �1j�X+� � dT �1j�X � j@s�j � jw + Y j+ ����ja(u;X)�@1a(u;X)�@su+ @2a(u;X)�@sX;T �1j�X(w + Y )�� �ja(u;X+�)�@1a(u;X + �)�@su+ @2a(u;X + �)�@sX;T �1j�X+�(w + Y )�+d��ja(u;X)�@1a(u;X)�@su+ @2a(u;X)�@sX ; T �1j�X (w + Y )�������+ �����ja(u;X+�)�@1a(u;X + �)�@su+ @2a(u;X + �)�@sX;T �1j�X+����+�ja(u;X)�@1a(u;X)�@su+ @2a(u;X)�@sX;T �1j�X������+ �����ja(u;X+�)�@2a(u;X + �)�@s�; T �1j�X+��(w + Y )�+�ja(u;X)�@2a(u;X)�@s�; T �1j�X�(w + Y )����+ dT �1j�X+�(@s�; �)� �ja(u;X+�)�@2a(u;X + �)�@s�; T �1j�X+�����



98 5. QUADRATIC ESTIMATESwhere the last term in the sum is less or equal toc(X; �) jX + �j � j@s�j � j�j � c(X; �) j�j � j@s�j (j�j+ jXj) :Inspecting the estimate above term by term leads tojIIj � c(X; �)�0 + j�j2�1 + j@sY j�+ j�j2j@sXj�1 + jY j�+ j�j � j@sXj � j�j+ j�j � j@s�j�1 + jY j�+ j�j2�1 + jY j+ j@sXj+ j@sXj � jY j�+ j�j � j�j�1 + j@sXj�+ j�j � j@s�j�1 + jY j�+ (j�j+ jXj) j@s�j � j�j�� c j�j�j@s�j+ j�j � (1 + j@sXj+ jY j+ j@sY j) + j�j (1 + j@sXj)+ 0 + j�j � j@sXj � jY j+ j@s�j (1 + jY j)�+ c j�j � j@s�j�j�j+ jXj�where we used kXk1 � �0M=2. The estimates for I, II and III givejT4j � c j�j�j�j�1 + j@sXj+ j@sXj � jY j+ jY j+ j@sY j�+ j@s�j+ j@s�j � jY j+ j�j (1 + j@sXj)�+ c j�j � j@s�j�j�j+ jXj�:(75)The term T2 : This term is quite similar to T4, we therefore only give theresults of the calculations. Add twice zero in the 2nd equality (terms 1 + 5and 6 + 7) to getT2 = �T �1(X + �)�g�1ja(u;X+�)�r�t b(u;X + �; Y + �)+ T �1(X)�g�1ja(u;X)�r�t b(u;X; Y )+ dT �1jX��� ; g�1ja(u;X)�r�t b(u;X; Y )�+ T �1(X)� dd� ��0�g�1ja(u;X+��)�r�t b(u;X + ��; Y + ��)�= ��T �1(X + �)� T �1(X)� dT �1jX����g�1ja(u;X)�r�t b(u;X; Y )� T �1(X + �)��g�1ja(u;X+�)�r�t b(u;X + �; Y + �)� g�1ja(u;X)�r�t b(u;X; Y )� dd� ��0(g�1ja(u;X+��)�r�t b(u;X + ��; Y + ��))�� �T �1jX+� � T �1jX�� dd� ��0�g�1ja(u;X+��)r�t b(u;X + ��; Y + ��)�= I + II + III:



5.2. QUADRATIC ESTIMATE I 99Using equation (72) with s replaced by t together with lemma 5.0.9 and thefact that g�1 is an isometry we getjIj � c(X; �) j�j2 jr�t b(u;X; Y )k� c(X; �) j�j2 c(X)�j@tXj+ j@tXj � jY j+ 1 + j@tY j+ 1 + jY j+ j@tXj+ j@tXj � jY j�� c j�j2�1 + j@tXj+ j@tXj � jY j+ jY j+ j@tY j�where we used kXk1 � �0M=2. To estimate term III we need to calculatedd� ��0�g�1ja(u;X+��)r�t b(u;X + ��; Y + ��)�= dg�1ja(u;X)��@2a(u;X)��;r�t b(u;X; Y )�+ g�1ja(u;X)� dd� ��0r�t b(u;X + ��; Y + ��):(76)Now replace the terms involving b by equations (72), (74) with s replacedby t and transfer two terms from III to II, thenjIII + �T �1(X + �)� T �1(X)� g�1ja(u;X)T �1(X)�@t�j� c j�j�j�j (1 + j@tXj+ j@tXj � jY j+ jY j+ j@tY j)+ j@t�j+ j@t�j � jY j+ j�j+ j�j � j@tXj+ 0�where we used kXk1 � �0M=2. To estimate term II insert equations (73)and (72) with s replaced by t as well as equation (76) to get exactly the sameestimate as for term II in T4 just with s replaced by t (the extra metric termpresent here does not contribute additional terms to the �nal estimate)jII � �T �1(X + �)� T �1(X)� g�1ja(u;X)T �1(X)�@t�j� c j�j�j�j (1 + j@tXj+ j@tXj � jY j+ jY j+ j@tY j) + j@t�j � j�j+ j@t�j (1 + jY j) + j�j (1 + j@tXj)�+ c jXj2j@t�j+ c j�j � j@t�j�j�j+ jXj�where we used kXk1 � �0M=2. Note that the terms containing @t� appearedas follows:�T �1(X)g�1ja(u;X)T �1(X)�@t� � g�1ju@t��+ ��T �1(X + �)g�1ja(u;X+�)T �1(X + �)�@t� + g�1ju@t��= h1(X) + h2(X):



100 5. QUADRATIC ESTIMATESNow use that h1(0) = 0 and dh1(0)X = 0 and so h1 contributes jXj2j@t�jand h2 contributes jX + �j2j@t�j. These results together implyjT2j � c j�j�j�j (1 + j@tXj+ j@tXj � jY j+ jY j+ j@tY j) + j@t�j � j�j+ j@t�j (1 + j�j+ jY j) + j�j (1 + j@tXj)�+ c jXj�j@t�j � j�j + j@t�j � jXj�:(77)Estimates for r�F1 and r��F2Using the same notation as above for F1 = T1 + T2 + T3 and F2 =T4 + T5 + T6 we obtainj r�F1 j=j @�F1 + �(u)(@�u; F1) j�j @�(T1 + T2 + T3) j +c j F1 jand similarly for r�F2. We derive estimates for the individual terms @�Ti,however in some cases interactions between them have to be taken intoaccount. Moreover, we only indicate the main steps of the calculations asthey involve the same techniques as in the case of the Fi's considered above.The di�erence is that the extra partial derivative @� considered here blowsup the number of terms involved by a great factor and full details wouldrequire some extra thirty pages { of local calculations.The term @�T6 : As we derived above T6 = 0 and so@�T6 = 0:(78)The term @�T1 :@�T1 = @���T �1(X + �)� T �1(X)� dT �1jX����@sa(u;X)�+ @��T �1(X + �)��@sa(u;X + �)� @sa(u;X) � @s(@2a(u;X)��)��+ @���T �1(X + �)� T �1(X)��@s(@2a(u;X)��)�=: @�I + @�II + @�IIIand straightforward calculation leads toj@�Ij � c(u;X; �; @su; @�u) j�j�j@��j(1 + j@sXj)+ j�j�1 + j@�Xj+ j@sXj(1 + j@�Xj)��:Moving a term from III to II we getj@�II + @��T �1(X + �)@2a(u;X)@s� � @s��j� c(u;X; �; @�u; @su)�j�j2�j@��j+ j@�@s�j+ j@�Xj(1 + j@sXj) + j@�@sXj�



5.2. QUADRATIC ESTIMATE I 101+ j�j�j�j(1 + j@�@suj) + j@s�j(1 + j@��j+ j@�Xj) + j@sXjj@��j+ j@�Xj�+ jXj�j@�Xj+ j@��j+ j@s�j(1 + j@��j+ j@�Xj) + j�j � j@�@s�j�+ jXj2j@�@s�j�and j@�III � @��T �1(X + �)@2a(u;X)@s� � @s�j�� c(u;X; �; @�u; @su)�j�j2�j@��j+ j@�@s�j(1 + j@�Xj)+ j@�Xj(1 + j@sXj) + j@sXj+ j@�@sXj�+ j�j�j�jj@�@suj+ j@��j � j@sXj�+ jXj � j@s�j(1 + j@�Xj) + jXj2j@�@s�j�:Altogether we obtainj@�T1j � c(u;X; �; @�u; @su; @�@su)�j�j2�j@�@s�j+ j@�Xj(1 + j@sXj)+ j@�@sXj�+ j�j�j�j+ j@��j(1 + j@sXj) + j@s�j(1 + j@��j+ j@�Xj)�+ jXj�j@�Xj+ j@��j+ j@s�j(1 + j@��j+ j@�Xj) + j�j � j@�@s�j�+ jXj2j@�@s�j�:
(79)
The term @�T5 : A similar calculation as for term @�T1 leads toj@�T5j � ��2c(u;X; �; @tu; @�u; @�@tu)�j@��j � j@t�j(1 + j@tXj)+ j�j�j�j+ j@t�j(1 + j@�Xj) + j@��j(1 + j@tXj) + j@�@t�j�+ jXj�j@t�j(1 + j@�Xj) + (jXj + j�j)j@�@t�j�+ j�j2(1 + j@tXj)�j@�Xj+ j@tXj(1 + j@�Xj) + j@�@tXj��:(80)
The term @�T3 :@�T3 = �@���T �1(X + �)� T �1(X)� dT �1jX����rVtja(u;X)�� @��T �1(X + �)��rVtja(u;X+�) �rVtja(u;X) � d(rVtja(u;X))����� @���T �1(X + �)� T �1(X)��d(rVtja(u;X))���:Now compactness of M implies that jrVt(p)j is uniformly bounded for all(t; p) 2 S1 �M . Similarly such a uniform bound exists for j(@�rVt)(p)j incase � = t. For � = s this expression is zero anyway since the potential



102 5. QUADRATIC ESTIMATESV does not depend explicitely on s. Now straightforward application ofproduct and chain rule leads toj@�T3j � c(u;X; �; @�u)j�j�j�j+ j@��j+ j@�Xj�:(81)The term @�T2 : Note that @�T4 is quite similar to @�T2 except for themissing metric term g�1 in front of it and partial s-derivatives instead ofpartial t-derivatives. In what follows we underline all terms which vanish incase of @�T4. Let us now get startedT2 = @���T �1(X + �)g�1ja(u;X+�)r�t b(u;X + �; Y + �)+ T �1(X)g�1ja(u;X)r�t b(u;X; Y )+ dd� ��0�T �1(X + ��)g�1ja(u;X+��)r�t b(u;X + ��; Y + ��)��=: @�I + @�II + @�IIIwhere@�I = �@���T �1(X + �)� T �1(X)� dT �1jX��g�1ja(u;X)r�t b(u;X; Y )�@�II = �@��T �1(X + �)�g�1ja(u;X+�)r�t b(u;X + �; Y + �)� g�1ja(u;X)r�t b(u;X; Y )� dd� ��0(g�1ja(u;X+��)r�t b(u;X + ��; Y + ��))�+ �T �1(X + �)� T �1(X)�g�1ja(u;X)T �1(X)�@t��and @�III = �@���T �1jX+� � T �1jX�dd� ��0�g�1ja(u;X+��)r�t b(u;X + ��; Y + ��)�� �T �1(X + �)� T �1(X)�g�1ja(u;X)T �1(X)�@t��:The �rst term @�I clearly is the easiest one, with w = g(u)@tu andc = c(u;X; �; @tu; @�u;w; @tw; @�w; @�@tw)we arrive atj@�Ijc � j�j � j@��j�1 + jY j+ j@tXj(1 + jY j) + j@tY j�+ j�j2(1 + jY j)�1 + j@tXj+ j@�Xj(1 + j@tXj) + j@�@tXj�+ j�j2�j@tY j(1 + j@�Xj) + j@�Y j(1 + j@tXj) + j@�@tY j�:



5.2. QUADRATIC ESTIMATE I 103The term @�III should be rewritten as followsj@�IIIj = �����dT �1jX+�(@�X + @��)� dT �1jX@�X��dg�1ja(u;X)(@2aju;X�;r�t bju;X;Y )���+ �����T �1(X + �)� T �1(X)���d2g�1ja(u;X)(@�aju;X ; @2aju;X�;r�t bju;X;Y )+ dg�1ja(u;X)�@�(@2aju;X�);r�t bju;X;Y �+ dg�1ja(u;X)(@2aju;X�; @�r�t bju;X;Y )+ dg�1ja(u;X)(@�aju;X ; dd� ��0r�t bju;X+��;Y+��)� dg�1ja(u;X)(@�aju;X ;T �1(X)�@t�)����+ �����dT �1jX+�(@�X + @��)� dT �1jX@�X���g�1ja(u;X) dd� ��0r�t b(u;X + ��; Y + ��)� g�1ja(u;X)T �1(X)�@t��� �T �1(X + �)� T �1(X)���g�1ja(u;X)@� dd� ��0r�t b(u;X + ��; Y + ��)� g�1ja(u;X)(dT �1j�X (@�X; @t�)+ T �1(X)�@�@t�)����in order to obtainj@�IIIjc � j�j2(1 + jY j)�j@tXj(1 + j@�Xj) + j@�Xj(1 + j@tY j) + j@�@tXj+ j@�@tY j�+ j�j2�j@tY j+ j@�Y j(1 + j@tXj)�+ j�j(1 + jY j)�j�j+ j@t�j(1 + j@�Xj) + j@��j(1 + j@tXj)+ j@�@t�j�+ j�j�j@t�j(1 + j@�Y j) + j@��j � j@tY j+ j�j+ j�j�j@tXj(1 + j@�Xj) + j@�Xj+ j@�@tXj�+ j@��j(1 + j@tXj)�+ j@��j�j@t�j(1 + jY j) + j�j(1 + j@tXj)�:The term of greatest complexity is @�II, which we rewrite as follows@�II = a1 + a2 + a3 + a4



104 5. QUADRATIC ESTIMATESwherea1 = �dT �1jX+�(@�X + @��)�g�1ja(u;X+�)r�t bju;X+�;Y+�� g�1ja(u;X)r�t bju;X;Y � dg�1ja(u;X)(@2a(u;X)�;r�t bju;X;Y )� g�1ja(u;X) dd� ��0r�t bju;X+��;Y+�� + g�1ja(u;X)T �1(X)�@t�� g�1ja(u;X+�)T �1(X + �)�@t��a2 = �T �1(X + �)�g�1ja(u;X+�)@�r�t bju;X+�;Y+� � g�1ja(u;X)@�r�t bju;X;Y� dg�1ja(u;X)�@2a(u;X)�; @�r�t bju;X;Y �� g�1ja(u;X)@� dd� ��0r�t bju;X+��;Y+�� � g�1ja(u;X+�)dT �1j�X+�(@��; @t�)� g�1ja(u;X+�)T �1(X + �)�@�@t� + g�1ja(u;X)T �1(X)�@�@t��a3 = �T �1(X + �)�dg�1ja(u;X+�)�@�a(u;X + �);r�t bju;X+�;Y+��� dg�1ja(u;X)�@�a(u;X);r�t bju;X;Y �� d2g�1ja(u;X)(@�a(u;X); @2a(u;X)�;r�t bju;X;Y )� dg�1ja(u;X)�@�(@2a(u;X)�);r�t bju;X;Y �� dg�1ja(u;X)�@�a(u;X); dd� ��0r�t bju;X+��;Y+���� dg�1ja(u;X+�)�@2a(u;X + �)@��; T �1(X + �)�@t���:andja1j = ����dT �1jX(@�X; g�1ja(u;X)T �1(X)�@t�)� dT �1jX+�(@�X; g�1ja(u;X+�)T �1(X + �)�@t�)� �T �1(X + �)� T �1(X)���dg�1ja(u;X)�@ta(u;X);T �1j�X@t��+ g�1ja(u;X)dT �1j�X(@�X; @t�)�+ �T �1jXg�1ja(u;X)T �1j�X � T �1jX+�g�1ja(u;X+�)T �1j�X+��@�@t�� dT �1jX + ��@��; g�1ja(u;X+�)T �1(X + �)�@t��� T �1(X + �)g�1ja(u;X+�)dT �1jX + ��(@��; @t�)� T �1(X + �)dg�1ja(u;X+�)�@2a(u;X + �)@��; T �1(X + �)�@t�)����� cj�j � j@t�j�1 + j@�Xj+ j@��j�+ cjXj � j@t�j � j@��j:



5.2. QUADRATIC ESTIMATE I 105Moreover, we obtainja1j � cj�j2�j@�Xj+ j@��j��1 + j@tXj+ jY j(1 + j@tXj) + j@tY j�+ cj�j�j@�Xj+ j@��j��j�j(1 + j@tXj+ j@t�j) + j@t�j(1 + jY j)�+ cj�j�j@�Xj+ j@��j�j@t�j � jXjandja2jc � j�j2�j@�Y j(1 + j@tXj) + j@�@tXj(1 + jY j) + j@�@tY j�+ j�j(1 + jY j)�j@t�j(1 + j@�Xj) + (j�j+ j@��j+ j@�Xj)(1 + j@tXj)�+ j�j�j@t�j(j@��j+ j@�Y j) + j@��j � j@tY j+ j�j(1 + j@�Xj)(1 + j@tXj)+ j�j+ j@�Xj�1 + j@t�j+ j@tY j(1 + j@tXj)�+ j@��j(1 + j@tXj)�+ j@t�j�j�j(1 + j@�Xj+ j@��j) + j@��j(1 + jY j) + j@��j � jXj�+ j�j�j@��j(1 + j@tXj) + j@�@t�j(jXj + j�j) + j@�@tXj � j�j�+ j@tXj � j@��j(1 + j�j+ jY j):The estimate for a3 turns out to beja3jc � j�j(1 + jY j)�j�j(1 + j@tXj)(1 + j@�Xj) + j@t�j(1 + j@�Xj)+ j@��j(1 + j@tXj) + j�j(1 + j@tXj) + j@t�j�+ j�j � j@��j � j@tY j+ j�j � j@��j(1 + j@tXj)+ j�j � j@t�j�1 + j@�Xj+ j@��j(1 + jY j)�:Altogether these estimates lead toj@�T2j � cj�j2�j@tY j+ j@�Y j(1 + j@tXj)�+ cj@��j(1 + jY j)�j@t�j+ j@tXj�+ cj�j2(1 + jY j)�j@tXj+ j@�Xj � j@tY j+ j@�@tXj+ j@�@tY j�+ cj�j�j@�Xj�j@t�j+ j@t�j+ j@tY j(1 + j@tXj)�+ j@��j�1 + j@tXj+ j@t�j�+ j@t�j � j@�Y j+ j@��j � j@tY j+ j@t�j�j@tXj+ j@��j(1 + jXj)�+ j@��j � j@t�j+ j�j�j@�Xj(1 + j@tXj) + j@�@t�j+ j@�@tXj��
(82)



106 5. QUADRATIC ESTIMATES+ cj�j(1 + jY j)�j�j+ j@t�j(1 + j@�Xj) + j@��j+ j@�@t�j+ j@�Xj(1 + j@tXj) + j@t�j�+ cj�j � j�j(1 + jY j)(1 + j@sXj) + jXj�j@t�j � j@��j+ j@�@t�j � j�j�+ cj�j�j@t�j(1 + j@�Xj+ j@��j) + j@��j(1 + j@tXj)�:The term @�T4 : We drop all the underlined terms in the estimate for@�T2 (they come from the extra metric term present there) and replace allpartial derivatives @t by @s to obtainj@�T4j � cj�j2j@�Y j(1 + j@sXj) + j�j2(1 + jY j)�j@sXj+ j@�Xj � j@sY j+ j@�@sXj+ j@�@sY j�+ cj�j�j@�Xj(j@s�j+ j@s�j+ j@sY j) + j@��j � j@sY j+ j@��j�1 + j@sXj+ j@s�j�+ j@��j � j@s�j+ j@s�j � j@�Y j+ j@s�j�j@sXj+ j@��j(1 + jXj)�+ j�j�j@�Xj(1 + j@sXj) + j@�@s�j+ j@�@sXj��+ cj�j(1 + jY j)�j�j+ j@s�j(1 + j@�Xj) + j@��j+ j@�@s�j+ j@�Xj(1 + j@sXj)�+ cj�j � j�j(1 + j@sXj) + jXj�j@s�j � j@��j+ j@�@s�j � j�j�+ cj@��j(1 + jY j)�j@s�j+ j@sXj�+ cj�j�j@s�j(1 + j@�Xj+ j@��j) + j@��j(1 + j@sXj)�:
(83)



5.3. QUADRATIC ESTIMATE II 1075.3. Quadratic Estimate IIThe following quadratic estimate is an essential qualitative ingredient tocarry out the induction step in the Newton method.The theorem follows from the pointwise estimate 5.2.2 via integration asdescribed in remark 5.0.8. Note that the conditions on k�k1 and kXk1are necessary in order for the local constructions to be well de�ned. Theother L1-conditions only serve to simplify the expressions. We underlinedthe worst terms with respect to rate of convergence in the existence part ofthe Newton method. Moreover, the theorem actually holds for any cylinderwith appropriate smoothness and asymptotic convergence properties.Theorem 5.3.1. (Quadratic estimate II) Let p > 2 and u be anelement of the moduli space M0(x�; x+), where x�, x+ 2 Crit IV , de�new = g(u)@tu and denotedF triv�;u (Z)�� � dF triv�;u (0)�� = �F1F2� :Then there exists a constant cp > 0 such that for Z = (X;Y ) 2 C10 (R �S1; u�TM � u�T �M) with kXk1 < �0M=2 and kY k1 + krtXk1 � pcp=2kF1kp � cpk�k1�krtXkp + krsXkpkXk1 + kY kp + krtY kpkXk1�+ cpkXk1�k�kp + krt�kp + krs�kpkXk1 + k�kp�kF2kp � cpk�k1���2krtXkpkXk1 + krsXkp + kY kp�+ cpkXk1���2�k�kp + krt�kpkXk1�+ krs�kp + k�kp�andkr�F1kp� cpk�k1�kXkp + krtXkp + krsXkp + kY kp + kr�Y kp+ �krtY kp + krsY kp�kr�Xk1 + kr�rtXkp + kr�rsXkpkXk1�+ cpk�k1�k�kp + krt�kp + kr��kp + kr�rt�kp�+ cpkXk1�krt�kp + krs�kp + k�kp + kr��kp + kr�Y kpkrt�k1+ kr�rt�kp + kr�rs�kpkXk1�+ cpk�k1�krtXkp + kr�Xkp + kr�rtXkpkXk1�+ cpkr��k1�kY kp + krtXkp�+ cpkrt�k1�kY kp + kr�Xkp�



108 5. QUADRATIC ESTIMATESas well askr�F2kp� cp��2k�k1�k�kp + krt�kp + kXkp + kr�Xkp + kr�rtXkpkXk1�+ cpk�k1�kY kp + krsXkp + kr�Y kp�1 + krsXk1��+ cp��2kXk1�krt�kp�1 + kr�Xk1�+ kr��kp + kr�rt�kpk�k1�+ cpkXk1�k�kp + krs�kp + kr�Y kpkrs�k1 + kr��kp�1 + krsXk1��+ cpkr�rsXkp�kXk1k�k1 + k�k1�+ cpkr�rs�kp�kXk1 + k�k1�+ cpk�k1krsXkp + cpkrs�k1�kY kp + kr�Xkp�+ cpkr��k1�kY kp + krsXkp�for � 2 (0; 1] and � = (�; �) 2 C10 (R � S1; u�TM � u�T �M) with k�k1 <�0M=2. and k�k1 � pcp=2.Next we state and prove the pointwise estimate.Lemma 5.3.2. (Pointwise estimate II) Let u 2 Px;y, x, y smoothloops in M , and denotedF triv�;u (Z)�� � dF triv�;u (0)�� = �T1 + T2T3 + T4�for Z = (X;Y ), � = (�; �) 2 C10 (R�S1 ; u�TM�u�T �M). Assume kXk1 ��0M=2, then in a local coordinate chart (Ui � Vi; 'i) as above the followingpointwise estimates hold: There exists a constant c > 0 such thatj~T1 + ~T2j� c j~�j�j ~X j+ j@t ~X j�1 + j ~X j��1 + j~Y j�+ j@s ~Xj � j ~X j+ j~Y j+ j@t~Y j � j ~Xj�+ c j ~X j�j@t~�j�1 + j~Y j�+ j@s~�j � j ~X j+ j�j�1 + j@t ~Xj��and j~T3 + ~T4j � c j~�j�j@s ~X j�1 + j~Y j�+ j~Y j�+ c j ~X j���2j~�j�1 + j@t ~X j�+ ��2j@t~�j � j ~X j+ j@s~�j�1 + j~Y j�+ j~�j�1 + j@s ~Xj��:for � 2 (0; 1], where j � j = j � jTu(s;t)M and an arrow on top of an objectindicates that it is represented in local coordinates and is evaluated at thepoint (s; t). The estimates for covariant derivatives of ~T1 + ~T2 and ~T3 + ~T4are as in theorem 5.3.1.



5.3. QUADRATIC ESTIMATE II 109Proof. (of lemma 5.3.2 { pointwise estimate II) Throughout theproof we use the notation introduced in remark 5.0.10. The main point isagain that we are working in a local coordinate chart and therefore may usesimply calculus in Rn . Let us �rst specify the terms Ti. Setw = g(u)@tuand denotef1(u;X; Y ) = @sa(u;X) � g�1ja(u;X)r�t b(u;X; Y )�rVtja(u;X)f2(u;X; Y ) = r�sb(u;X; Y ) + ��2�gja(u;X)@ta(u;X) � b(u;X; Y )�then T1 = dT �1jX�(�; f1(u;X; Y ))� dT �1j0�(�; f1(u; 0; 0))T2 = T �1(X)� dd� ��0f1(u;X + ��; Y + ��)� dd� ��0f1(u; ��; ��)T3 = dT j�X�(�; f2(u;X; Y ))� dT j�0�(�; f2(u; 0; 0))T4 = T (X)�� dd� ��0f2(u;X + ��; Y + ��)� dd� ��0f2(u; ��; ��):The term T3 : Note that we have already a linear factor �.jT3j = kdT j�X(�; f2(u;X; Y ))� dT j�0(�; f2(u; 0; 0))k = kI + II + IIIk:Use (51), @2a(u; 0) = 1l and lemma 5.0.9 in the following two estimates.Moreover, the performance of the quadratic estimates will be crucially im-proved, if we consider certain terms in term II of T3 and T4 together (simi-larly for III and I). In order to do so, we subtract a term here and add itto II respectively III and I of T4. Call the modi�ed terms fII , gIII and eI.�2kfIIk = �2kII � dT j�X(�; gja(u;X)@2a(u;X)�@tX)k= dT j�X(�; gja(u;X)@ta(u;X))� dT j�0(�; g(u)@tu)�dT j�X(�; gja(u;X)@2a(u;X)�@tX)= dT j�X(�; gja(u;X)@1a(u;X)�@tu)� dT j�0(�; gju@tu)� c(X) jXj � j�jand �2kgIIIk = �2kIII + dT j�X(�; T �1(X)�Y )k= �dT j�X(�; T �1(X)��(w + Y )) + dT j�0(�; w)+dT j�X(�; T �1(X)�Y )= �dT j�X(�; T �1(X)�w) + dT j�0(�; T �1(0)��w)� c(X) jXj � j�j:



110 5. QUADRATIC ESTIMATESUse formula (72) for r�sb(u;X; Y ) to getkeIk = kI + T (X)�dT �1j�X(�; @sY )k� dT j�X�r�sb(u;X; Y )� dT j�0�r�sw � dT �1j�0@sY  � j�j� dT j�X�T �1(X)��@sw � dT j�0�@sw � j�j+ �dT j�X��ja(u;X)�@1a(u;X)�@su;T �1(X)�w�+dT j�0��ja(u;0)�@1a(u; 0)�@su;T �1(0)�w� � j�j+ dT j�X�dT �1j�X��@sX;w + Y � � j�j+ dT j�X�T �1(X)��@sY + T �1(X)�dT �1j�X@sY  � j�j (= 0)+ �dT j�X��ja(u;X)�@2a(u;X)�@sX;T �1(X)�w� � j�j+ �dT j�X�ja(u;X)�@1a(u;X)@su+ @2a(u;X)@sX;T �1j�XY � � j�j� c(X)j�j�jXj+ jXj + j@sXj�1 + jY j�+ jXjj@sY j+ j@sXj+ jY j�1 + j@sXj��� c(X)j�j�jXj+ j@sXj�1 + jY j�+ jY j�:Using the assumption kXk1 � �0M=2 these estimates implyjeI +fII +gIIIj � c j�j���2jXj+ j@sXj (1 + jY j) + jY j�:(84)The term T1 :jT1j = ��dT �1jX�(�; f1(u;X; Y ))� dT �1j0�(�; f1(u; 0; 0))��= jI + II + IIIj:Use lemma 5.0.9 to getjIIIj = ���dT �1jX(�;rVtja(u;X)) + dT �1j0(�;rVtja(u;0))�� � c(X) jXj j�j:I respectively II work step by step the same as II respectively I in termT3. We therefore only state the results. Note that we are moving a termfrom I here to I in T2 and one from II here to II2 in T2.kI � dT �1jX(�; @2a(u;X)@sX)k � c(X) jXj j�jkII + dT �1jX(�; g�1ja(u;X)T �1(X)�@tY )k � c(X)j�j�jXj+ jY j+ jXj � j@tXj�1 + jY j��



5.3. QUADRATIC ESTIMATE II 111and, using kXk1 � �0M=2, we getjT1j � c j�j�jXj�1 + j@tXj�1 + jY j��+ jY j�:(85)The term T2 :jT2j = ���T �1(X) dd� ��0�@sa(u;X + ��)� g�1ja(u;X+��)r�t b(u;X + ��; Y + ��)�rVtja(u;X+��)�� dd� ��0�@sa(u; ��)� g�1ja(u;��)r�t b(u; ��; ��) �rVtja(u;��)����= jI + II + IIIj:Applying lemma 5.0.9 to III, I and (52) with t replaced by s to I we getjIIIj = ���T �1(X)�drVtja(u;X)�@2a(u;X)�� + drVtja(u;0)�@2a(u; 0)����� c(X) jXj � j�j:Carrying over the disturbing term from I in T1 we getjI + dT �1jX(�; @2a(u;X)@sX)j= ��T �1(X)�@s�@2a(u;X)���� @s�@2a(u; 0)���+ dT �1jX(�; @2a(u;X)@sX)��= ���T �1(X)�@1@2a(u;X)�(�; @su) + @2@2a(u;X)�(�; @sX) + @2a(u;X)�@s��� T �1(0)�@1@2a(u; 0)�(�; @su) + @2a(u; 0)�@s��+dT �1jX(�; @2a(u;X)@sX)��� c(X)�jXj � j�j+ jXj � j�j � j@sXj+ kR(X; @s�)Xk � j@s�j�where the curvature in the last term of the sum arises as follows: Letk(X) = T �1(X)@2a(u;X)@s� � @s�;then k(0) = 0 anddk(0)X = dT �1j0(X; @S�) + @2@2a(u; 0)(X; @s�) = 0d2k(0)(X;X) = R(X; @s�)X:Here we used results from appendix A. Similarly for the term involving @sX.Let h(u;X) = �T �1(X)�g�1ja(u;X), then together with the term carried over



112 5. QUADRATIC ESTIMATESfrom II in T1 we getjII � dT �1jX(�; g�1ja(u;X)T �1(X)�@tY )j= ���T �1(X)� dd� ��0�g�1ja(u;X+��)r�t b(u;X + ��; Y + ��)�+ dd� ��0�g�1ja(u;��)r�t b(u; ��; ��)�� dT �1jX(�; g�1ja(u;X)T �1(X)�@tY )��� ���T �1(X)dg�1ja(u;X)�@2a(u;X)�;r�t b(u;X; Y )�+ dg�1ju��;r�tw���+ ��h(u;X)� dd� ��0r�t b(u;X + ��; Y + ��)�h(u; 0)� dd� ��0r�t b(u; ��; ��) � dT �1jX(�; g�1ja(u;X)T �1(X)�@tY )��= jII1 + T �1(X)dg�1ja(u;X)(@2a(u;X)�; T �1(X)�@tY )j+ jII2 � T �1(X)dg�1ja(u;X)(@2a(u;X)�; T �1(X)�@tY )� dT �1jX(�; g�1ja(u;X)T �1(X)�@tY )jwhere we moved a term from II2 to II1. Estimate exactly like I in term T3with s replaced by t:jII1 + T �1(X)dg�1ja(u;X)(@2a(u;X)�; T �1(X)�@tY )j� c(X) j�j�jXj�1 + j@tXj�1 + jY j��+ jY j�:(86)Use formula (74) with s replaced by t for dd� ��0r�t b(u;X + ��; Y + ��) to getjfII2j = jII2 � T �1(X)dg�1ja(u;X)(@2a(u;X)�; T �1(X)�@tY )� dT �1jX(�; g�1ja(u;X)T �1(X)�@tY )j� ��h(u;X)�d2T �1j�X(@tX; �;w + Y )��+ ��h(u;X)�dT �1j�X(@t�; w)� h(u; 0)�dT �1j�0(@t�; w)��+ ��h(u;X)�dT �1j�X(@t�; Y )� h(u;X)�dT �1j�X(@t�; Y )��+ ��h(u;X)�dT �1j�X(�; @tw)� h(u; 0)�dT �1j�0(�; @tw)��+ ��h(u;X)dT �1j�X(�; @tY )� T �1jXdg�1ja(u;X)(@2a(u;X)�; T �1(X)�@tY )�dT �1jX(�; g�1ja(u;X)T �1(X)�@tY )��+ ��h(u;X)�dT �1j�X(@tX; �)� h(u;X)�dT �1j�X(@tX; �)��+ ��h(u;X)�T �1(X)��@t� � h(u; 0)�T �1(0)��@t��� (= 0 by lemma A.1.11)+ ���h(u;X)��ja(u;X)�@2a(u;X)�@t�; T �1(X)�w�+h(u; 0)��ju�@t�; w���+ ���h(u;X)�ja(u;X)�@2a(u;X)@t�; T �1(X)�Y �+ h(u;X)dT �1j�X(@t�; Y )��+ ���h(u;X)��ja(u;X)�@1a(u;X)�@tu; dT �1j�X (�; w)�+h(u; 0)��ju�@tu; dT �1j�0(�; w)���

(87)



5.3. QUADRATIC ESTIMATE II 113+ ���h(u;X)��ja(u;X)�@1a(u;X)�@tu; dT �1j�X (�; Y )���+ ���h(u;X)��ja(u;X)�@2a(u;X)�@tX; dT �1j�X (�; w + Y )���+ ���h(u;X)�ja(u;X)�@1a(u;X)@tu;T �1(X)��� +h(u; 0)�ju�@tu; ����+ ���h(u;X)�ja(u;X)�@2a(u;X)�@tX;T �1j�X��+ h(u;X)dT �1j�X(@tX; �)��+ ���h(u;X)��ja(u;X)�@1@2a(u;X)�(�; @tu);T �1(X)�w�+h(u; 0)��ju�@1@2a(u; 0)�(�; @tu); w���+ ���h(u;X)��ja(u;X)�@1@2a(u;X)�(�; @tu);T �1(X)�Y ���+ ���h(u;X)��ja(u;X)�@2@2a(u;X)�(�; @tX);T �1(X)�Y ���+ ���h(u;X)�d�ja(u;X)�@2a(u;X)��; @1a(u;X)�@tu;T �1(X)�w�+h(u; 0)�d�ju��; @tu;w���+ ���h(u;X)�d�ja(u;X)�@2a(u;X)��; @1a(u;X)�@tu;T �1(X)�Y ���+ ���h(u;X)d�ja(u;X)�@2a(u;X)�; @2a(u;X)@tX;T �1(X)�(w + Y )���where we combined terms 3 and 9 in the sum so that term 3 results in a zerocontribution and { calling term 9 k(X), we get k(0) = 0 (use results fromappendix A) { term 9 in one of order c(X) jXj � j@t�j � jY j. Moreover, in term5 we pro�ted from transferring the inconvenient term between II1 and II2.Similarly we combined terms 6 and 14 so that the former one contributeszero and the latter c(X) jXj � j@tXj � j�j. Note also that the terms carriedover to II2 appear in term 5 of the sum. Denoting that term by k1(X)one readily computes using lemma A.1.11 that k1(0) = 0 and so we get acontribution c(X) j�j � jXj � j@tY j. We get (keeping the order of terms)jfII2j � c(X)�j@tXj � j�j(1 + jY j) + jXj � j@t�j+ 0 + jXj � j�j+ j�j � jXj � j@tY j+ 0 + 0 + jXj � j@t�j+ j@t�j � jY j � jXj+ jXj � j�j+ j�j � jY j+ j@tXj � j�j(1 + jY j) + jXj � j�j+ j@tXj � j�j � jXj+ jXj � j�j+ j�j � jY j+ j�j � j@tXj(1 + jY j) + jXj � j�j+ j�j � jY j+ j�j � j@tXj(1 + jY j)�� c(X) j�j�jXj+ j@tXj (1 + jY j) + jY j+ j@tY j � jXj�+ c(X) jXj�j@t�j (1 + jY j) + j�j (1 + j@tXj)�:These estimates together with the assumption kXk1 � �0M=2 �nally givejT2j � c j�j�jXj+ j@tXj (1 + jY j) + jXj � j@sXj+ jY j+ j@tY j � jXj�+ c jXj�j@t�j (1 + jY j) + j@s�j � jXj+ j�j � (1 + j@tXj)�:(88)



114 5. QUADRATIC ESTIMATESThe term T4 :jT4j � ���T (X)� dd� ��0�r�sb(u;X + ��; Y + ��)+ ��2gja(u;X+��)@ta(u;X + ��)� ��2b(u;X + ��; Y + ��)�� dd� ��0�r�sb(u; ��; ��) + ��2gja(u;��)@ta(u; ��)� ��2b(u; ��; ��)����= jI + II + IIIj:Recall that according to our modi�cation of terms I, II and III of T3 wehave to add here what we subtracted there. Denote the modi�ed versionsof I, II respectively III here by eI, fII respectively gIII . We may use result(87) with t replaced by s to estimate IjI � T (X)�dT �1j�X(�; @sY )j= ���T j�X dd� ��0r�sb(u;X + ��; Y + ��)� dd� ��0r�sb(u; ��; ��)� T (X)�dT �1j�X(�; @sY )���� c(X) j�j�jXj+ j@sXj (1 + jY j) + jY j�+ c(X) jXj�j@s�j (1 + jY j) + j�j (1 + j@sXj)�:Moreover, we get�2jgIIIj = �2jIII � dT j�X(�; T �1(X)�Y )j= ����T (X)� dd� ��0�T �1(X + ��)��(w + Y + ��)�+ dd� ��0�T �1(��)��(w + ��)�� dT j�X(�; T �1(X)�Y )���� ���T (X)��dT �1j�X�(�; w) + dT �1j�0�(�; w)��+ ���T (X)��dT �1j�X�(�; Y )� dT j�X(�; T �1(X)�Y )��+ ���T (X)��T �1(X)��� + ���� c(X) jXj � j�j:To see that the second term in the sum vanishes apply the formula dA�1 =�A�1�dA�A�1 which holds for any smooth family of matrices A : Rn !L(Rn). Moreover,�2jfIIj = jII + dT j�X(�; gja(u;X)@2a(u;X)@tX)j= ��T (X)� dd� ��0�gja(u;X+��)@ta(u;X + ��)�� dd� ��0�gja(u;��)@ta(u; ��)�+ dT j�X(�; gja(u;X)@2a(u;X)@tX)��



5.3. QUADRATIC ESTIMATE II 115� ��T (X)��dgja(u;X)�@2a(u;X)��; @1a(u;X)�@tu�� dgju��; @tu�+T (X)��gja(u;X)�@1@2a(u;X)(@tu; �)� gju�@1@2a(u; 0)(@tu; �)��+ ��T (X)��dgja(u;X)(@2a(u;X) �; @2a(u;X) @tX)+ T (X)��gja(u;X)�(@2@2a(u;X) (@tX; �))+dT j�X(�; gja(u;X)@2a(u;X)@tX)��� c(X)�jXj � j�j+ jXj2 � j@t�j+ jXj � j@tXj � j�j�:Clearly in these estimate we used lemma 5.0.9 in combination with the re-sults of analyzing the relation between exponential maps and parallel trans-port in appendix A section A.1. Using the assumption kXk1 � �0M=2 andthe estimates for eI;fII and gIII givesjeI +fII +gIII j � c jXj���2j�j (1 + j@tXj) + ��2j@t�j � jXj+ j@s�j (1 + jY j) + j�j (1 + j@sXj)�+ c j�j�+j@sXj (1 + jY j) + jY j�:(89)We skip the proof of the estimates for r�T1 + r�T2 and r�T3 + r�T4because the way to proceed is similar as in quadratic estimate I above.
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CHAPTER 6TransversalityIn section 6.1 we discuss transversality theory from a fairly general point ofview and isolate the input which varies case by case from the mechanismsthat are intrinsic to the general theory. As it will turn out, conditions(F ) and (A) below, as well as the degree of di�erentiability of the sectioninvolved, is the external input to be checked in a particular situation.Verifying these conditions for the classical action IV and the symplecticaction AV in section 6.2 leads to the transversality theorem for loops 6.2.1which states, roughly speaking, that both functionals are Morse functionsfor generic potential V .6.1. Thom-Smale transversalityLet A;B be smooth Banach manifolds modeled on separable Banachspaces and such that they admit a countable atlas. E ! A � B denotesa smooth Banach space bundle and F a section of E of class Ck, k � 1.Assume F has the following two properties(F ) dFb(a) : TaA ! E(a;b) is Fredholm for all a 2 F�1b (0) and dFa(b) isbounded.(S) dF(a; b) : TaA� TbB ! E(a;b;0) is surjective for all (a; b) 2 F�1(0).Note that Fb : A ! E is de�ned by a 7! F(a; b) and similarly forFa. Moreover, the above di�erentials are to be understood as the ordinarydi�erential followed by projection onto the �bres of E . Here we use thenatural splitting of the tangent space of E at the zero sectionT(a;b;0)E ' T(a;b)(A� B)� E(a;b):Condition (F ), lemma 6.1.5 i) below anddF(a; b) = dFb(a)� dFa(b)imply that dF(a; b) has a closed range. In order to verify (S) it is thereforesu�cient to prove that Ran dF(a; b) is dense. It is a consequence [Br83,corollaire I.8] of the Hahn-Banach theorem that this is equivalent to thetriviality of its annihilator (Ran dF(a; b))?(A) fv� 2 E�(a;b) j v�(v) = 0 8v 2 RandF(a; b)g = f0g 8(a; b) 2 F�1(0).117



118 6. TRANSVERSALITYPlug the Fredholm (F ) and surjectivity (S) properties of F intolemma 6.1.5 to obtain that dF(a; b) admits a right inverse for all (a; b) 2F�1(0); in other words 0 is a regular value of F . The implicit functiontheorem C.3.4 then implies that the universal moduli spaceX = F�1(0)is a Ck-Banach manifold. It is locally at (a; b) modeled on the separable Ba-nach space ker dF(a; b) and admits a countable atlas. De�ne the projectiononto the second factor � : X ! Band observe that for any (a; b) 2 F�1(0)d�(a; b) : T(a;b)X = ker (dFb(a)� dFa(b))! TbB ; (A;B) 7! Bis a Fredholm operator by lemma 6.1.5 ii) withInd d�(a; b) = Ind dFb(a):Hence � is a Fredholm map of class Ck between Banach manifolds and so wecan apply the Sard/Smale theorem 6.1.4 to its representations with respectto the countably many coordinate charts of X and B and obtain that theset of regular values of � is of the second category in B fork � maxf1; Ind dFb(a) + 1g:Definition 6.1.1. A subset of a complete metric space is said to be ofthe second category in the sense of Baire if it contains a countable intersec-tion of open and dense sets.Recall that by Baire's category theorem, every set of the second category isdense; for references cf. [RS1, Notes to section III.5]. The crucial step isnow to observe thatLemma 6.1.2.fregular values of �g = fb 2 B j dFb(a) onto 8a 2 F�1b (0)g:Proof. Because � is a Fredholm map, the kernel of its linearizationautomatically admits a topological complement (lemma C.2.2) and so wehave b regular value of �, d�(a; b) onto 8(a; b) 2 ��1(b), d�(a; b) onto 8a 2 F�1b (0), 8a 2 F�1b (0) 8B 2 TbB 9A 2 TaA with (A;B) 2 T(a;b)Xsuch that d�(a; b)�AB� = B:(90)



6.1. THOM-SMALE TRANSVERSALITY 119On the other handb 2fb0 2 B j dFb0(a) onto 8a 2 F�1b0 (0)g, 8a 2 F�1b (0) 8e 2 E(a;b) 9Â 2 TaA : dFb(a) Â = e:(91)(91) ) (90): Let a 2 F�1b (0), pick B 2 TbB and de�ne e = �dFa(b) B.By (91) 9A 2 TaA such thatdFb(a) A = e = �dFa(b) B:(90) ) (91): Here surjectivity of dF(a; b) for (a; b) 2 F�1(0) enters:8e 2 E(a;b) 9(A0; B0) 2 TaA� TbB :dF(a; b)�A0B0� = dFb(a) A0 + dFa(b)B0 = e:Let now a 2 F�1b (0) and pick e 2 E(a;b), then by surjectivity of dF(a; b)there exists (A0; B0) such thatdFb(a) A0 + dFa(b)B0 = e:For this B0 there exists by (90) an element A such that (A;B0) 2 T(a;b)X;i.e. dFb(a) A+ dFa(b) B0 = 0:Â as required in (91) is now obtained by setting Â = A0 �A:dFb(A) (A0 �A) = e� dFa(b)B0 + dFa(b)B0 = e:For the sake of completeness we recall the theorem of Sard/Smale [SS73]as well as two technical lemmata used above.Definition 6.1.3. Ametric space is called separable if it admits a densesequence.Theorem 6.1.4. (Sard/Smale) Let X and Y be separable Banachspaces and U � X be an open set. Suppose that f : U ! Y is a C1-smoothFredholm map. Then the setYreg = fy 2 Y j Ran df(x) = Y for all x 2 U with f(x) = ygof regular values of f is of the second category in the sense of Baire. Moreprecisely, this continues to hold if f is of class Ck with k � maxf1; Indf+1g.For a proof using a local Kuranishi model we refer to [Sa96] theoremB.13. The next lemma may be found there, too (lemma B.5).Lemma 6.1.5. Let X;Y;Z be Banach spaces. Assume D : X ! Y is aFredholm operator and L : Z ! Y is bounded and linear, theni) the bounded linear operator D � L : X � Z ! Y has a closed rangewith a �nite-dimensional complement.



120 6. TRANSVERSALITYii) if D � L is onto, then ker (D � L) admits a topological complement(i.e. D�L admits a right inverse). Moreover, the projection on the secondfactor � : ker (D � L)! Zis a Fredholm operator withker � ' ker D ; coker � ' coker Dand hence Ind� = Ind D.Lemma 6.1.6. Let (X; k � k) be a normed linear space, theni) if V � X is a closed and W � X a �nite dimensional subspace, thenV +W is a closed subspace of X.ii) if V � X is a closed subspace with �nite dimensional complementand W � X is any subspace, then V +W is a closed subspace of X.Proof. (of lemma 6.1.6) i) Assume W 6= f0g and V \ W = f0g.Otherwise consider V + W 0 = V + W , where W 0 = W n (V \ W ) anddim W 0 < 1, W 0 \ V = f0g. Let �� = v� + w� 2 V +W be such that�� ! � 2 X for � ! 1. We have to show � 2 V +W . If � 2 V we aredone, so assume the contrary. It follows lim�!1w� 6= 0 since otherwiseV 3 v� = �� � w� ! � for � ! 1. Because V is closed we get to thecontradiction � 2 V .Compactness of the unit ball BW in W leads to the existence of a subse-quence such that w�kjw�k j k!1�! w 2 BW :We conclude that fjw�k j : k 2 Ng is bounded, because otherwise a furthersubsequence (same notation) converges to +1 and soV 3 v�kjw�k j = ��kjw�k j � w�kjw�k j k!1�! 0� w:Hence w 2 V \W = f0g { a contradiction to w 2 BW . Taking a furthersubsequence if necessary we may assume jw�k j ! !0 2 R n f0g for k ! 1.Closedness of V impliesV 3 v�kjw�k j = ��kjw�k j � w�kjw�k j k!1�! �!0 � w 2 Vand so � � !0w = !0� �!0 � w� 2 V:Therefore � = (� � !0w) + !0w 2 V +W:ii) Writing V +W = V +�XV \W�



6.1. THOM-SMALE TRANSVERSALITY 121reduces the problem to part i) because X=V is �nite dimensional and so is(X=V ) \W .Proof. (of lemma 6.1.5) i) As RanD is closed with �nite dimensionalcomplement lemma 6.1.6 ii) applies and yields closedness ofRan (D � L) = Ran D +Ran L:Because Ran D � Ran (D � L) we obtainYRan (D � L) � YRan Dwhere the latter is �nite dimensional.ii) As D is Fredholm dim ker D < 1 and so we can choose a topologicalcomplement X1 by lemma C.2.2. Ran D closed with �nite dimensionalcomplement coker D implies that we can write Y = Ran D � coker D.Because D � L : X � Z ! Y is surjective it follows coker D � Ran L andso we can choose a basis fLe1; : : : ; leNg of coker D, where fe1; : : : ; eNg isa set of linearly independent elements of Z.Our claim is that W := Ran T is the required topological complement ofker (D � L), where the linear map T is de�ned as follows (actually T is aright inverse of D)T : RanD � coker D ! ker D �X1 � Z(y1; y2) 7! (0; x1; NX�=1 ��e�):Here x1 is determined uniquely by y1 = Dx1 and y2 =PN�=1 ��Le� .W closed: W = X1 + Span(e1; : : : ; eN ) and so lemma 6.1.6 i) applies.W \ ker (D � L) = f0g : Let (0; x1;PN�=1 ��e�) 2W \ ker (D � L), then(0; 0) = (D � L) (0; x1; NX�=1 ��e�) = (Dx1; NX�=1 ��Le�)and so x1 = 0 (because D is injective on X1) and �� = 0 for all � 2f1; : : : ; Ng because fLe1; : : : ; LeNg is a basis.W +ker (D�L) = X �Z : � is trivial. To see � pick (x; z) 2 X �Z, writex = (x0; x1) 2 ker D �X1 and Lz = y0 +PN�=1 ��Le� 2 Ran D � coker D.Note that y0 = Dx0 for a unique x0 2 X1. Now(x; z) = (x0; x1; z) = (0; x1 + x0; NX�=1 ��e�)+ (x0;�x0; z � NX�=1 ��e�) 2W + ker (D � L):



122 6. TRANSVERSALITYIt remains to check(D � L) (x0;�x0; z � NX�=1 ��e�) = 0�Dx0 + Lz � NX�=1 ��Le� = 0because Dx0 = y0.The above proves that W is a topological complement of ker (D�L). Nowassume (x; z) 2 ker (D � L), then(x; z) 2 ker �, 0 = �(x; z) = z, Dx = 0, x 2 ker D:This proves ker � = ker D � 0. De�neL�1(Ran D) := fz 2 Z j Lz = Dx for some x 2 Xg;then Ran� = L�1(RanD) and this set is closed: RanD is closed and so isits preimage under the continuous map L. Finally we obtaincoker D ' YRan D ' Ran LRanD \Ran L ' ZL�1(Ran D) ' ZRan� ' coker �where in the second step we used D � L onto and soYRan D = RanD +Ran LRan D ' Ran LRanD \Ran L:To see the third step observe thatL�1(Ran D) ' Zker Lso that ZL�1(Ran D) ' Zker L� (Ran D \Ran L) ' Ran LRan D \Ran L:



6.2. TRANSVERSALITY FOR LOOPS 1236.2. Transversality for loopsIn this section we prove that the classical action IV and, equivalently,the symplectic action AV are Morse functions for generic potential V 2Ck(M � S1;R). Throughout let us �x an integer k � 2.Recall that �M =W 1;2(S1;M) and�aM = fx 2 �M j IV (x) < ag:Note that the de�nition of �aM depends on the choice of V . As the criticalpoints of IV and AV are canonically identi�ed we denote them by Crit. LetCrita := Crit \ �aM .On the other hand, in the language of the previous section, we have asmooth Banach space bundle E over the smooth Banach manifold A� B =W 2;2(S1;M)� Ck(M � S1;R) together with a Ck�1-sectionF(x; V ) = �rt _x�rVt(x):The �bre of E at (x; V ) is given by E(x;V ) = L2(x�TM). Smoothness of Eand A � B comes from the smoothness of (M; g), whereas V 2 Ck impliesrV 2 Ck�1 and therefore F is only k � 1 times continuously di�erentiable.A is modeled on the separable Banach space W 2;2(S1;Rn) and admits acountable atlas whereas B = (Ck(M � S1;R); k � kCk) is a separable Banachspace itself. The di�erential of F at a zero (x; V ) followed by projectiononto the �bre of E is given by the bounded linear operatordF(x; V ) :W 2;2(S1;M)� Ck(M � S1;R) ! L2(x�TM)(�; _V ) 7! dFV (x)� + dFx(V ) _Vwhere FV (x) = F(x; V ) and Fx(V ) = F(x; V ).The relation between both formulations of the problem, namely analyz-ing critical points of a functional or zeroes of a section, is as followsCrit = fx 2 �M j dIV (x)� = 0;8� 2W 1;2(x�TM)g= fx 2W 2;2(S1;M) j F(x; V ) = 0g= fx 2 Ck+1(S1;M) j �rt _x�rVt(x) = 0g;where V 2 Ck(M � S1;R) with k � 2. We are ready to state the maintheorem of this chapter.Theorem 6.2.1. ( Transversality for loops ) Fix an integer k � 2.i) The functionals IV and AV are Morse functions for any V 2 Vkreg,where Vkreg := fV 2 Ck(M � S1;R) j dFV (x) onto 8x 2 Critgis a subset of the Banach space (Ck(M�S1;R); k�kCk) of the second categoryin the sense of Baire.



124 6. TRANSVERSALITYii) Fix a 2 R, then the restricted functionals IV : �aM ! R and AV :�aT �M ! R are Morse functions for any V 2 Vk;areg, whereVk;areg := fV 2 Ck(M � S1;R) j dFV (x) onto 8x 2 Critagis an open and dense subset of (Ck(M � S1;R); k � kCk).iii) Fix a 2 R, then the restricted functionals IV : �aM ! R andAV : �aT �M ! R are Morse functions for any V 2 Vareg, whereVareg := fV 2 C1(M � S1;R) j dFV (x) onto 8x 2 Critagis an open and dense subset of the complete metric space (C1(M�S1;R); d)with d(V1; V2) := 1Xk=0 12k kV1 � V2kCk1 + kV1 � V2kCk :iv) The functionals IV and AV are Morse functions for any V 2 Vreg,where Vreg := fV 2 C1(M � S1;R) j dFV (x) onto 8x 2 Critgis a subset of (C1(M�S1;R); d) of the second category in the sense of Baire.It su�ces to prove the theorem for IV , because its Hessian at a critical pointis nondegenerate i� the corresponding Hessian of AV is.Transversality in the Ck-category. Recall thatdFV (x)� = �rtrt� �R(�; _x) _x�r�rVt(x)is the perturbed Jacobi operator analyzed in appendix B.2. We calleddim ker dFV (x) nullity, which turned out to be �nite (Morse index theo-rem B.2.8). dFV (x) proved to be selfadjoint and soker dFV (x) ' coker dFV (x);which means that the operator is Fredholm and its Fredholm index is zero.Note that this is true at all zeroes (x; V ) of F . The operator dFx(V ) _V =�r _V (x) is boundedkdFx(V ) _V k2L2 = Z 10 hr _Vt(x);r _Vt(x)i dt � jS1j � k _V k2C1 � jS1j � k _V k2Ckand so we have veri�ed the Fredholm assumption (F ) in section 6.1. Assumefor now the surjectivity assumption (S) was true, too.Let us summarize the results of the general theory of section 6.1. Theuniversal moduli space X = F�1(0) is a Banach manifold of class Ck�1 mod-eled on a separable Banach space and it admits a countable atlas. More-over, the projection onto the second factor � : X ! Ck(M � S1;R) is aCk�1-Fredholm map with Ind d�(x; V ) = Ind dFV (x) = 0. The condition



6.2. TRANSVERSALITY FOR LOOPS 125k � 1 � maxf1; Ind �g in the Sard/Smale theorem reects precisely our as-sumption k � 2. Now the set of regular values of � is of the second categoryin the sense of Baire and by lemma 6.1.2 coincides withfV 2 Ck(M � S1;R) j dFV (x) onto;8x 2 F�1V (0)g = Vkreg:So to prove part i) of the theorem it remains to verify surjectivity (S) whichis a consequence of condition (A): 8(x; V ) 2 F�1(0)f� 2 L2(x�TM) j h�; �iL2 = 0 8� 2 Ran dF(x; V )g = f0g:Proof. (Condition (A) holds) We have to show thath�; dFV (x)�i = 0 8� 2W 2;2(x�TM)and h�; dFx(V ) _V i = 0 8 _V 2 Ck(M � S1;R)together imply � = 0. The �rst condition says that � 2 ker dFV (x). So itsatis�es a second order ODE with coe�cients of class Ck�2 and therefore� 2 Ck(x�TM). Now assume by contradiction that there is t0 2 S1 suchthat �(t0) 6= 0. In �ve steps we are going to construct _Vt 2 C1 such thath�;r _Vt(x)iL2 6= 0:As our construction will be local, we may choose geodesic normal co-ordinates ~� = (�1; : : : ; �n) around x0 = x(t0). Let � denote the injectivityradius of (M; g). The piece of the loop x(t) which lies inside the coordinatepatch is represented by ~�(t) 2 Rn viax(t) = expx0 ~�(t):Clearly ~�(t0) = 0. An arrow indicates quantities represented in our localcoordinates. h�; �i denotes the euclidean inner product on Rn and j � j theassociated norm.Step 1 Because x(t) is continuous, we may choose a constant �1 > 0su�ciently small such thatj ~�(t) j� �=2 ; 8t 2 [t0 � �1; t0 + �1]:Step 2 Because � is continuous and �(t0) 6= 0, we may choose a constant�2 > 0 su�ciently small such thath~�(t); ~�(t0)i > 0 ; 8t 2 [t0 � �2; t0 + �2]:Step 3 Set � = minf�1; �2g and choose a cut-o� function  2C1(R; [0; 1]) such that(t) = (1 ; t 2 [ t0��2 ; t0+�2 ]0 ; t =2 [t0 � �; t0 + �]:



126 6. TRANSVERSALITYStep 4 Choose a cut-o� function � 2 C1(R; [0; 1]) such that�(j ~� j2) = (1 ; j ~� j2� �2=20 ; j ~� j2� �2:Step 5 We are ready to de�ne _Vt_Vt(expx0~�) = ((t) �(j ~� j2) h~�(t0); ~�i ; j ~� j2< �20 ; else:Putting everything together we geth�;r _Vt(x)iL2 = Z 10 g ��(t);r _Vt(x(t))� dt= Z 10 d _Vt(x(t))��(t) dt= Zft:j~�(t)j<�g @ _Vt@�j jexpx0~�(t) �j(t) dt= Z t0+�t0�� �2(t) �0(j ~� j2) h~�(t); ~�(t)i h~�(t0); ~�(t)i+ (t) �(j ~� j2) h~�(t0); ~�(t)i�dt= Z t0+�t0�� (t) h~�(t0); ~�(t) dt > 0:The third equality follows from the de�nition of _Vt (Step 5), and the fourthone from Step 3 (supp ) as well as a straight forward calculation. In the�fth equality we used that for t 2 [t0��; t0+�] Step 1 implies j ~�(t) j2� �2=2and therefore, by Step 4, �0 � 0 and � � 1. Step 2 gives the �nal strictinequality.To prove part ii) of the theorem we observe thatVkreg � Vk;areg;(92)where the former space is of the second category in (Ck(M �S1;R); k � kCk)and hence, according to de�nition 6.1.1, the bigger space Vk;areg is, too.Openess of Vk;areg in (Ck(M � S1;R); k � kCk) is harder and relies on com-pactness of Crita for regular V : Pick V 2 Vk;areg. This means that dFV (x)is onto for all x 2 Crita. Equivalenty, 0 is a regular value of FV onW 2;2(S1;M)\�aM , so that by the implicit function theorem Crita is a man-ifold of dimension InddFV (x) = 0. In view of the a-priori action bound a wederived in remark 1.2.1 compactness of Crita. Because Xa = F�1(0)\�aMis open in X, restriction of the projection � yields a Fredholm map of classCk�1 �a : Xa ! Ck(M � S1;R):



6.2. TRANSVERSALITY FOR LOOPS 127Now ��1a (V ) = f(xj ; V ) j fx1; : : : ; xNg = Critagconsists of �nitely many elements pj = (xj ; V ) around each of which we may�nd an open neighbourhood Uj in Xa such that(x0; V 0) 2 Uj ) dFV 0(x0) onto:Continuity of �a then allows to �nd an open neighbourhood W of V inCk(M � S1;R) such that ��1a (W ) � SNj=1 Uj and therefore W � Vk;areg.It remains to prove openess of the surjectivity property of dFV (xj) in Xa,which allowed us to choose the Uj 's above. Note that for (x0; V 0) near(xj; V ) the operators dFV (xj) and dFV 0(x0) di�er (after representing themwith respect to a common trivialization) by a bounded operator. In view ofthe subsequent lemma we getdim ker dFV 0(x0) � dim ker dFV (xj) = 0;where the last equation follows from the surjectivity and selfadjointness ofdFV (xj). For the same reason we obtain0 = dim ker dFV 0(x0) = dim coker dFV 0(x0):Lemma 6.2.2. Let X;Y be Banach spaces and D : X ! Y be a Fred-holm operator. Then there exists an � > 0 such that for any linear mapL : X ! Y with kLk < �dim ker (D + L) � dim ker D:Proof. Following [BB85, I.5.C ex.9], let X1 be a topological comple-ment of ker D. We proveker (D + L) \X1 = f0g;which implies our claim in view of kerD�X1 = X. Because ~D : X1 ! RanDis a bounded bijection between Banach spaces, it has a bounded inverse ~D�1by the open mapping theorem. Let x 2 X1 \ ker (D + L), then x = � ~DLxand so kxkX = k ~D�1LxkX � k ~D�1k � kLk � kxkX � c�kxkX :For 0 < � < k ~D�1k it follows x = 0.Transversality in the C1-category. To prove part iii) of thetransversality theorem let us start with density of Vareg in (C1; d): Given anyV 2 C1(M � S1;R) we have to construct a sequence V 0k 2 C1(M � S1;R)such that 8� > 0 9k0 2 N 8k > k0 : d(V; V 0k) < �:The idea will be to approximate V by regular Vk's in the Ck-topology andthen approximate Vk by smooth regular elements V 0k in the Ck-topology.



128 6. TRANSVERSALITYFinally we make use of the observation that in order to control the metricd we essentially have to control only �nitely many Ck-norms in its series,because the strong weights 1=2k take care of all the other ones.Step 1 Because Vk;areg is dense in (Ck(M �S1;R); k � kCk) for any integerk � 2, we can �nd Vk 2 Ck(M � S1;R) with kV � VkkCk < 1=(2k). Fork = 0; 1 let us de�ne V0 = V1 = V .Step 2 Because Vk;areg is open in (Ck(M � S1;R); k � kCk) for any integerk � 2, we can choose 0 < �k < 1=(2k) su�ciently small such that B�k(Vk),the open �k-ball around Vk, is contained in Vk;areg.Step 3 BecauseM�S1 is compact, C1(M�S1;R) is dense in (Ck(M�S1;R); k � kCk) for k 2 N0 , cf. [Hi76, theorem 2.6]. Hence we can �ndV 0k 2 C1 \B�k(Vk) for k � 2. For k = 0; 1 we de�ne V 00 = V 01 = V .Now pick � > 0 and choose �0 2 N su�ciently large such that f(�0) =P1�=�0+1 2�� < �=2. Choose k0 > maxf�0; 4=�g and observe that by Steps1,2 and 3 for k � 2kV � V 0kkCk � kV � VkkCk + kVk � V 0kkCk � 12k + �k � 1k :Note that this implies kV � V 0kkC� � kV � VkkCk � 1k for any 2 � � � k.We get for any k > k0d(V; V 0k) = �0X�=0 12� �1=kz }| {kV � V 0kkCk1 + kV � V 0kkCk + 1X�=�0+1 12� �1z }| {kV � V 0kkCk1 + kV � V 0kkCk� 2k + �2 < �:Openess of Vareg is easier: Pick V 2 Vareg and set k = 2. Exploitingopeness of V2;areg in (C2(M � S1;R); k � kC2) we are able to choose a constant�0 > 0 such that for any V 00 of class C2 with kV � V 00kC2 < �0 it followsV 00 2 V2;areg. Now de�ne � = 14 �01 + �0 :Let V 0 of class C1 be such that d(V; V 0) < �. Therefore each term in theseries on the left hand side has to be strictly smaller then �, in particularthe second one 122 kV � V 0kC21 + kV � V 0kC2 < � = 14 �01 + �0 :But this is equivalent to kV � V 0kC2 < �0and therefore V 0 2 V2;areg. Finally Vareg = V2;areg \ C1(M � S1;R) impliesV 0 2 Vareg.



6.2. TRANSVERSALITY FOR LOOPS 129We prove part iv) of the transversality theorem: As Vareg is open anddense in (C1; d) it is of the second category in the sense of Baire. Theidentity Vreg = 1\a=0Varegimplies the claim, because by Baire's category theorem any countable inter-section of sets of the second category is again of the second category.



130 6. TRANSVERSALITY



APPENDIX ALinearization and trivialization of operatorsIn section A.1 foundations are laid to carry out the geometric analysis inthe main body of this text; particularly to get optimal quadratic estimatesin chapter 5. The crucial nonstandard results (at the level of textbooks) areformulae for derivatives of the exponential map and the parallel transportof vector and covector �elds.Section A.2 contains a detailled calculation in local coordinates of thelinearization D�~w of the �-dependent nonlinear elliptic equations at a solution~w. In other words we linearize the Banach bundle sectionF� : Ep ! P1;px�;x+at a zero ~w 2 F�1� (0). Somewhat implicitely contained is a formula for D0~uthe linearization of the parabolic operator F0 at a zero ~u.Using results from section A.1 about the parallel transport we derive insection A.3 a formula for the derivative at (0; 0) of F triv�;w { the representativeof F� in a local trivialization of the Banach bundle at any w. This will bedone intrinsically. It turns out that the formula for dF triv�;w (0; 0) coincideswith the one for D�~w.Finally section A.4 provides simpler formulae for the linear operators D0~uand D�~w in orthogonal respectively unitary frames.A.1. Some Riemannian geometryWe recall fundamental concepts in Riemannian geometry, such as Levi-Civita connection and curvature tensor (A.1.1), exponential map (A.1.2)and parallel transport (A.1.3). Throughout let (Mn; g) denote a smoothRiemannian manifold of dimension n and �(TM) the set of smooth sectionsof TM { in other words smooth vector �elds on M .A.1.1. Levi-Civita connection and curvature tensor. The Levi-Civita connection r on the tangent bundle TM ! M with respect to themetric g is the uniquely determined connection on TM which satis�es theconditions of being torsion freeT (X;Y ) = rXY �rYX � [X;Y ] = 0 ; 8X;Y 2 �(TM);(93)where [X;Y ] = XY � Y X;131



132 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSand being compatible with the metric (i.e. a Riemannian connection)Xg(Y;Z) = g(rXY;Z) + g(Y;rXZ) ; 8X;Y;Z 2 �(TM):(94)Let r� denote the associated connection on T �M de�ned by(r�X�)(Y ) = X(�(Y ))� �(rXY ) ; 8X;Y 2 �(TM); � 2 �(T �M):If u 2 C1(R � S1;M) there are induced connections on the vector bundlesu�TM and u�T �M . By abuse of notation we use the same symbols r andr� for these induced connections and occasionally we will even use simplythe symbol r to denote any one of them.Let fx1; : : : ; xng be a system of local coordinates on an open subsetU � M and ~x = (x1; : : : ; xn) represent a point x 2 M . Then we have thenatural bases f@k = @=@xkgnk=1 of the tangent space and fdxjgnj=1 of thecotangent space to U at x. Expressing X, Y and � with respect to thesebases as X = Xi@i, Y = Y j@j and � = �jdxj we getrxY = Xi�@Y k@xi + �kij(~x) Y j� @k ; where �kij = dxk�r@i@j�r�X� = Xi�@�j@xi � �kij(~x) �k� dxj ; where � �kij = �r�@idxk� @j :The quantities �kij are called Christo�el symbols and they satisfy�kij(x) = 12gkl(x)�@gil(x)@xj + @gjl(x)@xi � @gij(x)@xl � :(95)The curvature tensor R is a skew-symmetric bilinear form Rq : TqM �TqM ! End(TqM) de�ned byR(X;Y )Z = rXrY Z �rYrXZ �r[X;Y ]Z(96)for X;Y;Z 2 �(TM). The riemannian condition on r (compatibility withthe metric) implies R(X;Y ) 2 so(TM) for all X and Y (cf. [Sa96] se. 2.1).Note that there is no agreement in the mathematical literature concerningthe sign in the de�nition of the curvature tensor. In local coordinates(R(X;Y )Z)m = Rmkij(x)XiY jZk(97)where Rlkij(x) = @�ljk(x)@xi � @�lik(x)@xj + �li�(x)��jk(x)� �lj�(x)��ik(x):(98)Moreover there is the following consequence of the �rst Bianchi identityg(R(X;Y )Z; V ) = g(R(Z; V )X;Y ) :(99)



A.1. SOME RIEMANNIAN GEOMETRY 133A.1.2. Exponential map. On a Riemannian manifold (Mn; g) onehas furthermore the concept of an exponential map, which is de�ned asfollows: Let u 2M and � 2 TuM , then de�neexpu� = (1)where (t) is the (unique) solution of the 2nd order initial value problem(0) = u ; @t(0) = � ; rt@t � 0;i.e. (t) is the geodesic emanating from u in direction �. Clearly expu0 = u.Before studying the derivatives of the exponential map let us consider twoinitial value problems which are closely related: Fix � � 0, then(�� ) �;u(s = 0) = u@s�;u(0) = ��rs@s�;u � 0 (�1) 1;u(t = 0) = u@t1;u(0) = �rt@t1;u � 0where s, t 2 [0;1) for compact M .Lemma A.1.1. Let �;u be the solution to (�� ) and 1;u be the one to(�1), then �;u(s) = 1;u(s�) for all s � 0.Proof. Uniqueness of the solution of (�� ) implies that it su�ces toshow that f(s) := 1;u(s�) solves (�� ):f(0) = 1;u(0) = u@sf(0) = @s1;u(s�)js=0 = @t1;u(0) � � = ��rs@sf(s) = �2rt@t1;u(t) = �2 � 0 = 0:This lemma is the crucial ingredient in calculating the derivatives of theexponential map, which we will also denote bya(u; �) = expu�:Note that ii) in the following proposition, more precisely dexpu(0) = idTuM ,implies that there exists a constant �u > 0 such that expu : TuM � B�u(0)!expu(B�u(0)) � M is a di�eomorphism (inverse function theorem C.3.2 inappendix C). �u is called injectivity radius at u. If M is compact, thenthere exists � > 0 such that expu is injective on the ball B�(0) � TuM for allu 2M . � is called injectivity radius of M .



134 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSProposition A.1.2. In local coordinates ~u = (u1; : : : ; un) on M thefollowing statements are true for any i; j; k; l 2 f1; : : : ; ngi) a(~u; 0)k = ukii) @1a(~u; 0)ki = �ki = @2a(~u; 0)kiiii) @1@1a(~u; 0)kij = @1@2a(~u; 0)kij = @2@1a(~u; 0)kij = 0iv) @2@2a(~u; 0)kij = ��kij(~u)v) @2@2@1a(~u; 0)klij = �@�kij(~u)@ulvi) @2@1@1a(~u; 0)klij = 0:Proof. i) has been shown above. To prove ii) use the de�nition ofexpu�� = � (1) as well as lemma A.1.1 to compute@2a(~u; 0)ki �i = dd� ���=0 a(~u; � ~�)k = dd� ���=0 (exp~u� ~�)k = dd� ���=0 �;~u(1)k= dd� ���=0 1;~u(�)k = @t1;~u(0)k = �kand @1a(~u; 0)ki xi = dd� ���=0 a(~u+ �~x; 0)k = dd� ���=0 (uk + �xk) = xk:Similarly we obtain the �rst statement in iii)@1@1a(~u; 0)kij xixj = d2d�2 ����=0 a(~u+ �~x; 0)k = d2d�2 ����=0 (uk + �xk) = 0:Commutativity of partial derivatives in Rn implies that to prove the othertwo statements it su�ces to show@1@2a(~u; 0)kij �ixj = dd� ����=0 dd� ���=0 �exp~u+�~x� ~��k= dd� ����=0 dd� ���=0 �;~u+�~x(1)k = dd� ����=0 dd� ���=0 1;~u+�~x(�)k= dd� ����=0 @t1;~u+�~x(0)k = dd� ����=0 �k = 0:We prove iv)@2@2a(~u; 0)kij �i�j = d2d�2 ����=0 �exp~u� ~��k = d2d�2 ����=0 �;~u(1)k= d2d�2 ����=0 1;~u(�)k = @�@�1;~u(0)k= ��kij(~u) @�1;~u(0)i @�1;~u(0)j = ��kij(~u) �i�j
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Figure A.1. Parallel transport of vector �elds along curveswhere we used that 1;~u(�) satis�es r�@�1;~u(� ) = 0 8� � 0 as well as@�1;~u(0)i = �i. Finally use iv) to get v)@2@2@1a(~u; 0)klij xl�i�j = @1@2@2a(~u; 0)kijl �i�jxl= dd� ����=0 d2d�2 ����=0 a(~u+ �~x; � ~�)k = dd� ����=0 � �kijj~u+�~x �i�j= � d�kijdul j~u xl�i�jand ii) to get vi)@2@1@1a(~u; 0)kijl xixj�l = @1@1@2a(~u; 0)klij �lxixj= d2d�2 ����=0 dd� ���=0 a(~u+ �~x; � ~�)k= d2d�2 ����=0 @2a(~u+ �~x; 0)kl �l = d2d�2 ����=0 �kl �l = 0:A.1.3. Parallel transport. In this subsection we follow closely theexposition in [St88], Teil 1. Let  2 C1(R;M) be a curve and �0 2 T(0)M ,then we de�ne the parallel transport of the vector �0 along  to be the linearmap T (�; 0) : T(0)M ! T(�)M�0 7! �(�)(100)(cf. �gure A.1), where the vector �eld �(�) along  is de�ned by the initialvalue problem r�� = 0 ; �(0) = �0:(101)In local coordinates we have a linear system of n �rst order ode's with n



136 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSinitial values given@� �k(�) + �kij((� ))@�i(�)�j(�) = 0 ; �k(0) = �k0 ; k = 1; : : : ; n:(102)By the existence and uniqueness theorem for ode's T (c; b)T (b; a) = T (c; a)and T (a; a) = id, a; b; c 2 R. Being a linear map we may represent T (�; 0)with respect to the basis of coordinate vector �elds f@1; : : : ; @ng byT (�; 0)kj �j0 = �k(�) ; k = 1; : : : ; n:(103)Lemma A.1.3. dd� ���=0 T (�; 0)kj = ��kij((0)) @�i(0) for all k; j =1; : : : ; n and more generally@�T (�; 0)kj = ��kil((� )) @�i(�) T (�; 0)lj :Proof. �(�) = T (�; 0) �0 is parallel along , i.e.0 = @� �k(�) + �kij((� )) @�i(�) �j(�)= @��T (�; 0)kl �l0�+ �kij((� )) @�i(�)�T (�; 0)jl �l0� :Setting � = 0 and using T (0; 0)il = �il the �rst statement follows.Lemma A.1.4. dd� ���=0 T (0; �)kj = � dd� ���=0 T (�; 0)kj .Proof. Apply dd� ���=0 to the identity T (�; 0)kj �T (0; �)jl = �kl .Proposition A.1.5. Let � be a vector �eld along , thendd� ���=0 T (0; �) �(�) = (r� �)j�=0 :Proof. The kth component of the LHS equals� dd� ���=0 T (0; �)kj� �j(0) + �kj @� �j(0) = �kij((0)) @�i(0)�j(0) + @� �k(0)= (r� �)k(0):The �rst equality holds by Lemma (A.1.3) and Lemma (A.1.4).The parallel transport of the covector �0 2 T �(0)M along  is de�ned tobe the linear map T �(�; 0) : T �(0)M ! T �(�)M�0 7! �(�)(104)where the covector �eld �(�) along  is de�ned byr��� = 0 ; �(0) = �0 ;(105)or in local coordinates for j = 1; : : : ; n@��j(�)� �kij((� )) @�i(�) �k(�) = 0 ; �j(0) = �0j :(106)Again T �(c; b)T �(b; a) = T �(c; a), T �(a; a) = id for a; b; c 2 R andT �(�; 0)kj �0k = �j(�) ; j = 1; : : : ; n:(107)



A.1. SOME RIEMANNIAN GEOMETRY 137Lemma A.1.6. Let �; � be parallel (co)vector �elds along , thendd� h�(�); �(�)i = 0where h�; �i denotes evaluation of covectors on vectors.Proof. The left hand side equals@��j(� ) �j(� )+ �k(� ) @��k(� )= �kij((� )) @�i(� ) �k(� ) �j(� )� �k(� ) �kij((� )) @�i(� ) �j(� )The second equality holds by using the assumption on �; � to be parallel, cf.(102), (106).Lemma A.1.7. T �(�; 0) = T (0; �)� ; T �(�; 0)mk = T (0; �)mk .Proof. Lemma A.1.6 implies�k0�0k = h�0; �0i = h�(�); �(�)i = hT (�; 0) �0;T �(�; 0) �0i= T (�; 0)jk�k0 T �(�; 0)lj�0lfor all �0 2 T(0)M and �0 2 T �(0)M . This is equivalent to T �(�; 0)�T (�; 0) =1l or T �(�; 0)ljT (�; 0)jk = �lk.Lemma A.1.8. dd� ���=0 T �(�; 0)kj = �kij((0)) @�i(0) 8k; j = 1; : : : ; n .Proof. To the LHS apply �rst Lemma A.1.7, then use Lemma A.1.4and Lemma A.1.3.Proposition A.1.9. Let � be a covector �eld along , thendd� ���=0 T �(0; �) �(�) = (r���)j�=0 :Proof. Use lemma A.1.7 to getdd� ���=0 �T �(0; �)kj �k(�)� = dd� ���=0 �T (�; 0)kj �k(�)�= ��kij((0)) @�i(0) �k(0) + �kj @��k(0)= (r���)j(0):The second equality follows by the product rule and lemma A.1.3.Lemma A.1.10. Let � be a curve in T �(0)M such that �(0) = v anddd� ���=0 �(�) = �0,  and T � as above, thenDd� ���=0 T �(�; 0) �(�) = �0:Proof. The jth component of the LHS is given bydd� ���=0 �T �(�; 0)kj �k(�)�� �kij((0)) �lk �l(0) @�i(0)= � dd� ���=0 T �(�; 0)kj� vk + �kj �0k � �kij(0) vk �i = �0jwhere the last step follows using Lemma A.1.8.



138 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSThe next result is essential to derive the fundamental quadratic estimatein chapter 5 section 5.1. Note that until the end of this subsection the curvesalong which we transport (co)vectors are geodesics of the form �(�) =a(u; ��) = expu��.Lemma A.1.11. In local coordinates fu1; : : : ; ung and for � � 0, � 2TuM and k; l = 1; : : : ; n it holdsT �(�; 0)kl = glrja(u;��) T (�; 0)rs gsk(u)(108)and 0 =� @�T �(�; 0)kl + @glr@uj ja(u;��) (@2a(u; ��) �)j T (�; 0)rs gsk(u)� glrja(u;��) �rijja(u;��) (@2a(u; ��) �)i T (�; 0)js gsk(u)which for � = 0 reduces to0 = � dd� ���=0 T �(�; 0)kl + @glr@uj (u) �jgrk(u)� glr(u) �rij(u) �igjk(u):Moreover,0 = � d2d�2 ����=0 T �(�; 0)kl + @2glr@ui@uj (u) �i�jgrk(u)� @glr@uj (u) �jis(u) �i�s grk(u)� 2@glr@uj (u) �j �ris(u) �i gsk(u)� glr(u) @�rij(u)@us �s�i gjk(u)+ glr(u) �rij(u) �ism(u) �s�m gjk(u)+ glr(u) �rij(u) �i �jms(u) �m gsk(u):Proof. Assume that (108) holds and take the derivative with respectto � , then the second statement follows using the product and chain rules aswell as lemma A.1.3 in the last term of the sum. Evaluation at � = 0 givesthe third statement. The last one follows by taking another � -derivative ofstatement 2 and evaluating at � = 0. We use again lemma A.1.3 as well asproposition A.1.2 iv).To prove (108), let �0 2 T �uM and set�(�) = T �(�; 0)kl �0k dulY (�) = glrja(u;��) T (�; 0)rs gsk(u) �0k dul:Both are covector �elds along the curve � 7! a(u; ��) = expu�� and �(0) =�0 = Y (0). By de�nition �(�) satis�es r�� � 0 and � � Y will follow oncewe have shown r�Y � 0 (uniqueness of solution to initial value problem ofa system of 1st order ODE's). Consider the jth component of r�Y and use



A.1. SOME RIEMANNIAN GEOMETRY 139the de�nition of Y in the second equality to get(r�Y )j(� ) = @�Yj(� )� �kij ja(u;��) (@�a(u; ��))i Yk(� )= @gjr@ul ja(u;��) (@�a(u; ��))l T (�; 0)rs gsk(u) �0k+ gjrja(u;��) (@�T (�; 0)rs) gsk(u) �0k� �ijkja(u;��) (@�a(u; ��))i �gkrja(u;��) T (�; 0)rs gsl(u) �0l �= �@gjr@ui � gjl�lir � glr�lij� ja(u;��) (@�a(u; ��))i T (�; 0)rs gsk(u) �0k= 0where in the third equality we replaced @�T (�; 0)rs according to lemma A.1.3and renamed several indices. The fourth equality follows as the term inbrackets (the covariant derivative of the metric tensor) is zero, which maybe shown by direct calculation using formula (95) for the Christo�el symbolsin terms of derivatives of the metric.



140 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSA.2. Linearization at a zeroLet u 2 C1(R �S1;M) be a smooth cylinder in M and w 2 �(u�T �M)a smooth covector �eld along u. The coordinates on R � S1 are denoted by(s; t). Recall the nonlinear equationsi) @su� g�1(u)r�tw � grV (t; u) = 0 ;ii) �2r�sw + g(u)@tu� w = 0 :(109)Our goal is to linearize these equations. To do so we represent them inlocal coordinates and linearize the local expression. In order to get back tointrinsic quantities it will be crucial to use the nonlinear equations duringthe linearization procedure. One way to think of this is interpreting (109)as a zero of a section F� in a Banach bundle and then linearizing the sectionat this zero.Let now u be represented in local coordinates by ~u = (u1; : : : ; un)and w 2 T �uM in the hereby induced coordinates on T �M by (~u;~v) =(u1; : : : ; un; v1; : : : ; vn). With respect to these coordinates the equationstake the formi) @suk � gkl(~u)�@tvl � ��jl(~u)(@tuj)v��� gkl(~u)@V (t; ~u)@ul = 0 ;ii) �2 �@svk � �jik(~u)(@sui)vj�+ gkl(~u)@tul � vk = 0 ;(110)for k = 1; : : : ; n. Assume that (~u;~v) solves (110). Let (~u� ; ~v� ), � 2 (��; �),� > 0 small, be a variation of (~u;~v), that is it satis�es(~u0; ~v0) = (~u;~v) ;dd� (~u� ; ~v� ) j�=0= (~�; ~y) :(111)Note that varying ~u gives the vector ~�, but varying ~v will not give us acovector, it just gives a local quantity ~y without intrinsic meaning. Later onwe will replace yl by �l+�jlk(u)�kvj in order to interpret the linearization of(110) as a section of u�TM � u�T �M .Replacing (~u;~v) in (110) by the variation (~u� ; ~v� ) and applying dd� j�=0 weget (from now on we simply write u instead of ~u)i) @s�k � @gkl(u)@ui �i �@tvl � ��jl(u)(@tuj)v��� gkl(u)�@tyl � @��jlju@ui �i(@tuj)v� � ��jlju(@t�j)v� � ��jlju(@tuj)y��� @gkl(u)@ui �i@V (t; u)@ul � gkl(u)@2V (t; u)@ul@ui �i = 0 ;(112)



A.2. LINEARIZATION AT A ZERO 141ii) �2@syk � �2@�jik(u)@ul �l(@sui)vj � �2�jik(u)(@s�i)vj � �2�jik(u)(@sui)yj+ @gkl(u)@ur �r@tul + gkl(u)@t�l � yk = 0 :Now we de�ne the component of a covector (using that we have �xed asolution (~u;~v) of (110)) �l = yl � ��il(u)�iv�(113)and replace yl in (112) by this new quantity. Moreover we are going to usethe identities @gkl(u)@ui = �gk� @g��(u)@ui g�l(114)(which follows by applying the operator @@ui to the identity gk�g�� = �k�) aswell as @tyl = @t�l + @��il(u)@u� (@tu�)�iv� + ��il(u)(@t�i)v� + ��il(u)�i@tv�(115)(apply @t to (113)) to geti) @s�k + gk� (u)@gk�(u)@ui g�l(u)�i �@tvl � ��jl(u)@tujv��� gkl(u)�@t�l + @��il(u)@u� (@tu�)�iv� + ��il(u)(@t�i)v� +��il(u)�i(@tv�)�+ gkl(u) @��jl(u)@ui �i(@tuj)v� + ��jl(u)(@t�j)v�!+ gkl(u)���jl(u)(@tuj)�� + ��jl(u)(@tuj)�si�(u)�ivs�� @gkl(u)@ui �i@V (t; u)@ul � gkl(u)@2V (t; u)@ul@ui �i+ �kij(u)�i�@suj � gjl(u)@tvl + gjl(u)��sl(u)(@tus)v� � gjl(u)@V (t; u)@ul �= 0 ;ii) �2�@s�k + @��ik(u)@u� (@su�)�iv� + ��ik(u)(@s�i)v� + ��ik(u)�i(@sv�)�� �2@�jik(u)@ul �l(@sui)vj � �2�jik(u)(@s�i)vj

(116)



142 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORS� �2 ��jik(u)(@sui)�j + �jik(u)(@sui)��ij(u)�iv��+ @gkl(u)@ur �r(@tul) + gkl(u)@t�l � ��k � ��ik(u)�iv�� = 0 :Note that in (116)i) we have added in the last but one line the nonlinearequation (110)i) as this is zero (here we have to use the fact that we arelinearizing at a zero of our nonlinear map). The additional terms coming inare essential to identify the global expressions rs� and �r�grV (t; u):(rs�)k = @s�k +�kji(u)�i@suj = (1st + 14th) term in (116)i) ;(117) � (r�grV (t; u))k =� �i@(grV )k(t; u)@ui � �kij(u)�i(grV )j(t; u);where (grV )k(t; u) = gkl(u)@V (t; u)@ul=� �i@gkl(u)@ui @V (t; u)@ul � �igkl(u)@2V (t; u)@ul@ui� �kij(u)�igjl(u)@V (t; u)@ul=(12th + 13th + 17th(last)) term in (116)i) :(118)
Moreover term 6 and 9 of (116)i) cancel and�g�1(u)r�t � =� gkl(u)�@t�l � ��jl(u)(@tuj)���=(4th + 10th) term in (116)i) :(119)Subtracting from equation (116)i) the terms involved in (117)-(119) its lhsreduces togk�(u)@g��(u)@ui g�l(u)�i@tvl � gk�(u)@g��(u)@ui g�l(u)�i��jl(u)(@tuj)v�� gkl(u)@��il(u)@u� (@tu�)�iv� � gkl(u)��il(u)�i@tv�+ gkl(u)@��jl(u)@ui �i(@tuj)v� + gkl(u)��jl(u)(@tuj)�si�(u)�ivs� gjl(u)�kij(u)�i@tvl + gjl(u)�kij(u)��sl(u)�i(@tus)v�(120)
and we are going to show that this equals the curvature tensor de�ned inequation (96) �R(@tu; �)g�1w�l = Rlkij(u)(@tui)�jgk�(u)v� :(121)First of all we observe that the sum of terms 1,4 and 7 in (120) is zeroas was to be expected, because they are the only ones containing a factor@tvl. That their sum is zero may be seen as follows: Replace the Christo�el



A.2. LINEARIZATION AT A ZERO 143symbols according to (95), then rename the appropriate summation indices.So (120) equalsv��j(@tuk)gls(u) �@gs�(u)@uj g�� (u)��k�(u)� @��js(u)@uk + @��ks(u)@uj !+v��j(@tuk)�gls(u)�rks(u)��jr(u)+ gs�(u)�ljs(u)��k�(u)�=v��j(@tuk)gls(u)��2��sj(u)��k�(u)+ g��(u)@gj�(u)@us ��k�(u)�+ v��j(@tuk)gls(u) �g��(u)@gsj(u)@u� ��k�(u)� @��js(u)@uk + @��ks(u)@uj !+ v��j(@tuk)�+gls(u)��ks(u)��j�(u)+ gs�(u)�ljs(u)��k�(u)� ;
(122)
here we replaced�g�� (u)@gs�(u)@uj = �2��sj(u)+ g�� (u)@gj�(u)@us � g�� (u)@gsj(u)@u�(123)(coming from (95)) in the �rst term of (122). We also need to compute thesum of terms 2,3,6 of the right hand side of (122)gls(u)g��(u)@gj�(u)@us � gls(u)g��(u)@gsj(u)@u� + gs�(u)�ljs(u)=gls(u)g��(u)@gj�(u)@us � gls(u)g��(u)@gsj(u)@u� + 12gs�(u)glr(u)@gsr(u)@uj+ 12gs�(u)glr(u)@gjr(u)@us � 12gs�(u)glr(u)@gsj(u)@ur=12glr(u)g��(u)�+@g�r(u)@uj + @g�j (u)@ur � @gjr(u)@u� �=glr(u)��jr(u)(124)
In the �rst equality we replaced the Christo�el symbol according to (95),the second equality follows by renaming indices, the third one again uses(95). We proceed by replacing these terms in the right hand side of (122)and get v��j(@tuk)gls(u) ���k���js + ��j���ks + @��ks@uj � @��js@uk !=v��j(@tuk)gls(u)R�sjk(u)=v��j(@tuk)gls(u)g�i(u)Risjk(u)=� v��j(@tuk)g�i(u)gls(u)Rsijk(u)=� �R(u)(�j@uj ; (@tuk)@uk)gi�(u)v�@ui�l=� �R(u)(�; @tu)g�1w�l :
(125)



144 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSSummarizing the results obtained so far gives the �rst component of thelinearized equationrs� � g�1r�t � �R(�; @tu)g�1w �r�grV (t; u) = 0 :(126)Now we are going to analyze the second equation (116)ii). Terms threeand six cancel each other. The �rst and seventh term together give thecovariant derivative�2r�s� = �2 �@s�k � �jik(u)(@sui)�j� duk ;(127)term 11 clearly is �� = ��kduk :(128)Ignoring terms 1; 3; 6; 7; 11 and replacing �2@sv� in term 4 by the secondnonlinear equation (110)ii) the lhs of (116)ii) reduces to�2@��ik(u)@ur (@sur)�iv�+�i ��2��r�(u)��ik(u)(@sur)v� � g�r(u)��ik(u)@tur + ��ik(u)v����2�iv��@��rk(u)@ui @sur + (@sur)��ij(u)�jrk(u)�+@gkr(u)@ui �i@tur + gkl(u)@t�l � ��ik(u)�iv�=�2�iv�(@sur)�@��ik(u)@ur � @��rk(u)@ui +��r�(u)��ik(u)� ��i�(u)��rk(u)�+ �i(@tur)�@gkr(u)@ui � g�r(u)��ik(u)�+ gkl(u)@t�l=� �2R�kir(u)�i(@sur)v� + �i(@tur)gks(u)�sri(u)+ gks(u)@t�s=�2gkj(u)Rjlir(u)�i(@sur)(glj (u)v�) + gks(u) �@t�s + �sri(u)(@tur)�i�=�2gkj(u) �R(�; @su)g�1w�j + gks(u)(rt�)s :
(129)
The �rst equality follows just by putting the terms in appropriate order andobserving that terms 4 and 9 cancel each other. In the second equality weuse the identity (98) for the curvature tensor as well as the following fact@gkr(u)@ui � g�r(u)��ik(u)= @gkr(u)@ui � g�r(u) 12g�l(u)�@gkl(u)@ui + @gli(u)@uk � @gki(u)@ul �= 12 �@gkr(u)@ui + @gki(u)@ur � @gri(u)@uk �= gks(u)�sri(u) ;(130)



A.2. LINEARIZATION AT A ZERO 145where we used (95) in the second and fourth equality. The third equality isinduced by �R�kir(u) =� g�l(u)Rlkir(u) = g�l(u)Rklir(u)=g�l(u)gkj(u)Rjlir(u)(131)Now the second linearized equation is given by�2r�s� + �2gR(�; @su)g�1w + grt� � � = 0 :(132)Setting � in the nonlinear equations (110) and in the linear ones (126),(132)formally zero we get i)@su�rt@tu� grV (t; u) = 0ii)v = g(u)@tu(133)and therefore i)rs� �rtrt� �R(�; @tu)@tu�r�grV (t; u) = 0ii)� = g(u)rt�:(134)The riemannian geometer observes immediately the occurence of the geo-desic curvature in (133) i) and the Jacobi equation in (134) i). In manytextbooks one term of the Jacobi equation di�ers in sign. This is a conse-quence of the nonexistence of a standard sign convention in the de�nitionof the curvature tensor. Note that in the second term in (134) i) we used(setting X = @tu)Lemma A.2.1. Let X; � 2 �(TM), � 2 �(T �M), g : TM ! T �M themetric isomorphism, r respectively r� the Levi-Civita connection on TMrespectively T �M , then i) g�1�r�X(g�) = rX� ;ii) r�X� = g�rX(g�1�) :Proof. ad i)�g�1(u)�r�X(g�)�s = gsi(u)�Xj @(gik(u)�k)@uj � �kji(u)Xj(glk(u)�k)�= Xj @�s@uj +Xj�kgsi(u)�@gik(u)@uj � glk(u)�lji(u)�= Xj @�s@uj +Xj�k�sjk(u)= rX� ;where in the last but one equality we used (95).ad ii) Apply g from the left to i) and set � = g�1�.Remark A.2.2. (Linearized ow satis�es linearized equations) Ignoringthe terms involving s-derivatives and setting � = 1, the nonlinear equations



146 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORS(109) reduce to _z = XHt(z) = �JgrHt(z) for a smooth loop z in T �M . Aswas shown above, linearizing this equation at a solution z leads to�g�1(x)r�t � �R(�; _x) _x�r�rVt(x) = 0g(x)rt� � � = 0(135)where (�; �) 2 �(x�TM � x�T �M) and x = ��Mz. On the other hand XHtgives rise to the time-t-map 't on T �M and z(t) = 'tz0 for z0 = z(0) and_z = XHt(z). The crucial fact is that its linearization d't(z0) : Tz0T �M !T'tz0T �M along the solution z satis�es the linearized equations (135) forany initial condition (�0; �0). To prove this we work in natural coordinatesand pick a particular variation of ~z = (~x; ~y) in (111). Namely, let ~z(0) =~z0 = (~x0; ~y0) and (~x � ; ~y � ) = ~'t(~x0 + � ~�0; ~y0 + �~� 00)then (~x 0; ~y 0) = ~'t(~x0; ~y0) = (~x; ~y)dd� ���=0 (~x � ; ~y � ) = d~'t j(~x0;~y0) (~�0; ~� 00):Setting (~�; ~� 0) = dd� j�=0 (~x � ; ~y � ) we obtain a variation of the form (111)and the result follows.



A.3. LINEARIZATION IN A LOCAL TRIVIALIZATION 147A.3. Linearization in a local trivializationRecall that the section F� : P1;px�;x+ ! Ep is given for a smooth cylinderw in T �M by F�(w) = �@su� g�1(u)r�tw �rV (t; u)r�sw + ��2g(u)@tu� ��2w �where u(s; t) = ��Mw(s; t)and ��M : T �M !M . As we have seen in the former section its linearizationD�w0 = dF�(w0) is well-de�ned at a zero w0 2 F�1� (0) =M�(x�; x+) and itis a linear operator on the space C10 (R � S1; u�TM � u�T �M).Locally trivializing the bundle of maps, the section F� induces a nonlin-ear map between linear spaces: Fix any smooth cylinder w, then de�neF triv�;w : C10 (R � S1; u�TM � u�T �M) 	���� 7! �T (0; 1) 00 T �(0; 1)� �F�� expu�T �(1; 0) (w + �)�(136)where T (1; 0) respectively T �(1; 0) denotes parallel transport of covec-tor respectively vector �elds along the geodesic � : [0; 1] ! M , � 7!expu(s;t)��(s; t). Note that, strictly speaking, F triv�;u;v is de�ned only for(�; �) 2 C10 (R � S1; u�TM � u�T �M) such that sup(s;t)2R�S1 j�(s; t)j � �,where � > 0 denotes the injectivity radius of M .Theorem A.3.1.dF triv�;w (0; 0)���� = �rs� � g�1r�t � �R(�; @tu)g�1w �r�rV (t; u)r�s� + gR(�; @su)g�1w + ��2grt� � ��2� �This means that for any smooth cylinder w the linearization of F triv�;w at0 coincides formally with the linearization D�w0 of F� at a zero w0 2 F�1� (0).Prior to proving the theorem we are going to introduce the concept of two-parameter maps.Two-parameter maps (cf. [O'N] Ch.4)Let D � R2 be an open set such that horizontal or vertical lines intersectD in intervals (or not at all). A two-parameter map is a smooth mapf : D !M;(137) the s-parameter curve t = t0 of f is s 7! f(s; t0),the t-parameter curve s = s0 of f is t 7! f(s0; t).The partial derivatives@sf(s; t) = df(s; t) @s ; @tf(s; t) = df(s; t) @t



148 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSare vector �elds on f , i.e. �M �@sf = f , where �M : TM ! M denotes thetangent bundle. If f lies in the domain of a coordinate system (u1; : : : ; un),i.e. f = (f1; : : : ; fn)@sf(s; t) = @f i@s (s; t) @i ; @tf(s; t) = @f i@t (s; t) @i :If Z is a smooth vector �eld on f , we denote byDdsZ = rsZ = r@sfZ = �@sZk + �kij(f)@sf iZj� @k(138)the (partial) covariant derivative of Z along s-parameter curves. DdtZ isde�ned analoguously.Lemma A.3.2. ([O'N] Prop. 4.44) (1) If f is a two-parameter map intoa (semi-) riemannian manifold M equipped with the Levi-Civita connectionr, then rs@tf = rt@sf .(2) If Z is a vector �eld on f , then rsrtZ �rtrsZ = R(@sf; @tf)Z.(3) If � is a covector �eld on f , then r�sr�t ��r�tr�s� = g�R(@sf; @tf)g�1�.Proof. ad (1): In local coordinates we havers@tf = �@s@tfk + �kij(f)@sf i@tf j� @krt@sf = �@t@sfk + �kij(f)@tf i@sf j� @kThe result follows by commuting the partial derivatives in the �rst term andthe symmetry of �kij in the lower indices.ad (2):(rsrtZ �rtrsZ)k= @s(rtZ)k + �kij(f )(rtZ)j@sf i � @t(rsZ)k � �kij(f )(rsZ)j@tf i= @s�@tZk + �kmn(f )Zn@tfm�+ �kij(f ) �@tZj + �jmn(f )Zn@tfm�@sf i� @t�@sZk + �kmn(f )Zn@sfm�� �kij(f )�@sZj + �jmn(f )Zn@sfm�@tf i= @sf i@tf jZm @�kjm@ui (f )� @�kim@uj (f )+ �ki�(f )��jm(f )� �kj�(f )��im(f )!= @sf i@tf jZmRkmij = (R(@sf; @tf )Z)k :We got the �rst two equalities by expressing the (partial) covariant derivativein local coordinates as in (138). The third equality follows by carrying outthe partial derivatives with respect to s and t, using the product and chainrule; note that �kij depends on f(s; t). Now use the local expression (98) forthe curvature tensor.



A.3. LINEARIZATION IN A LOCAL TRIVIALIZATION 149ad (3): De�ne � = g�1(f )� and apply (2) to getg�1(r�sr�t � �r�sr�t �) = rsrt� �rsrt�= R(@sf; @tf)�= R(@sf; @tf) g�1�:To pull g�1 through the covariant derivatives we used Lemma A.2.1. Nowapply g from the left.Proof. (of Theorem A.3.1) Consider the two-parameter maps givenby f(s; �) = expu(s)��(s) (here we assume t = const) and h(t; �) =expu(t)��(t) (here we assume s = const). As dexpu(0) = id it follows@�f(s; 0) = �(s) and @�h(t; 0) = �(t). Fixing s and t we de�ne the ge-odesic �(�) = expu��; note that �(0) = u and @��(0) = �. T �� (1; 0)respectively T�(1; 0) denotes parallel transport of (co)vector �elds along �from �(0) = u to �(1) = expu�. We observe thatdF triv�;w (0; 0)����= dd� �����=0 F triv�;w ������= dd� �����=0�T��(0; 1) 00 T ���(0; 1)� F�� expu��T ���(1; 0) (w + ��)�= dd� �����=0�T�(0; �) 00 T �� (0; �)� F�� expu��T �� (�; 0) (w + ��)�The last equality follows because parallel transport along a curve does notdepend on the parametrization of the curve, i.e. T��(0; 1) = T�(0; �) andsimilarly for T �.1st term: Z(s; �) = @s(expu(s)��(s)) is a vector �eld on f . Using propositionA.1.5 in the �rst and lemma A.3.2 (1) in the third equality we getdd� ���=0 T (0; �) @s(expu��) = (r�Z)j�=0= (r�@sf)j�=0= (rs@�f)j�=0= rs�:2nd term: Z(t; �) = �g�1(expu��)r�t (T �(�; 0) (w + ��)) is a vector �eldand �(t; �) = T �(�; 0) (w + ��) is a covector �eld on h. Using propositionA.1.5 in the �rst, Lemma A.2.1 in the third and Lemma A.3.2 (3) in the



150 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSfourth equality we get� dd� ���=0 T (0; �) g�1(expu��)r�t�T �(�; 0) (w + ��)� = (r�Z)j�=0= �r��g�1(h)r�t �T �(�; 0) (w + ��)������=0= �g�1(u) r��r�t �j�=0= �g�1 �r�tr��� + g R(@�h; @th) g�1�����=0= �g�1r�t � �R(�; @tu) g�1w:To get the last equality we employed Lemma A.1.10.3rd term: rV ((� )) = gkl(�) @V@ul ((� )) @k is a vector �eld along . Usingproposition A.1.5 in the �rst equality we getdd� ���=0 T (0; �)(�1)rV (expu��) = �r�rV ((� ))j�=0= � @@� ���=0 (rV )k((� )) @k � �kij((0)) @�i(0) (rV )j(0) @k= ��@(rV )k@uj (0) @�j(0)+ �kij(u) �i (rV )j(0)� @k= �r�rV:4th term: �1(s; �) = r�s (T �(�; 0) (w + ��)) and �2(s; �) = T �(�; 0)(w+��)are covector �elds on h. Using proposition A.1.9 in the �rst, Lemma A.3.2(3) in the third and Lemma A.1.10 in the fourth equality we getdd� ���=0 T �(0; �)r�s�T �(�; 0) (w + ��)� = (r���1)j�=0= (r��r�s�2)j�=0= �r�sr���2 + g R(@�h; @sh) g�1�2����=0= r�s� + g R(�; @su) g�1w:5th term: �(t; �) = g(expu(t)��(t)) @t(expu(t)��(t)) is a covector �eld on h.Using proposition A.1.9 in the �rst, Lemma A.2.1 in the third and LemmaA.3.2 (1) in the fourth equality we getdd� ���=0 T �(0; �) ��2g(expu��) @t(expu��) = ��2(r���)���=0= ��2r���g(h) @th����=0 = ��2g(u) (r�@th)���=0= ��2g(u) (rt@�h)���=0 = ��2g(u)rt�:6th term: dd� ���=0 T �(0; �) (�1)T �(�; 0)��2(w + ��) = ���2�.



A.4. THE LINEAR OPERATORS REPRESENTED IN FRAMES 151A.4. The linear operators represented in framesOur �rst claim is to represent the linear operatorDu : C10 (R � S1; u�TM)! C10 (R � S1; u�TM)� 7! rs� �rtrt� �R(�; _u) _u�r�rV (t; u)(139)where u 2 C1(R � S1;M) with u 7! x� 2 Crit IV for s! �1 uniformlyin t, as an operator acting on Rn -valued functionsD0 : C10 (R � S1;Rn)! C10 (R � S1;Rn) ; ~� 7! D0~�:If the Riemannian manifold (M; g) is orientable, then there exists an orthog-onal trivialization � : (R � S1)� Rn ! u�TM(s; t; ~�) 7! (s; t;�(s; t)~�):(140)Orthogonality here means that �(s; t)�g = h�; �i. Let fe1; : : : ; eng be thestandard orthonormal basis of Rn and de�neZi(s; t) = �(s; t)ei ; i = 1; : : : ; nthen fZ1(s; t); : : : ; Zn(s; t)g is an orthonormal basis of Tu(s;t)M . In thenonorientable case we construct an orthogonal trivialization over [0; 1] withboundary condition as discussed briey at the end of subsection B.1.8 inappendix B.Remark A.4.1. (Existence of � ) We �rst construct � for a �xedvalue s0 of s and then extend it to s 2 R via parallel transport of theZi(s0; t) along curves s 7! u(s; t) or by the same argument as in the proofof lemma B.1.13. Actually we prefer the parallel transport method in orderto get rid of terms rsZi in later computations. Cover S1 by �nitely manyintervals fIigNi=1 over which orthogonal trivializations �i(t) : Rn ! Tu(s0;t)Mexist. On Ii \ Ij = (ti; tj) we patch � and �j as follows: choose any smoothmap  ij : R ! SO(n;R) such that ij(t) = (1l , t near ti��1i (tj)��j(tj) , t near tjthen de�ne for t 2 Ii \ Ij�ji(t) = 8><>:�i(t) , t � ti and t 2 Ii�i(t)� ij(t) , t 2 (ti; tj)�j(t) , t � tj and t 2 Ij:Note that this construction works as the orientability of M allows us toreduce the structure group of the riemannian vector bundle from O(n;R) toSO(n;R), which is connected.



152 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSWith respect to the orthogonal trivialization � of u�TM (parallel withrespect to s) the covariant derivatives rs and rt are represented by~rs~� = ��1rs(�~�) = @s~� ; ~rt~� = ��1rt(�~�) = @t~� +A~� ; ~� = �ieiwhere the connection potential A 2 C1(R � S1;L(Rn ;Rn )) is de�ned byA(s; t)ei = ��1(s; t)rt�(s; t)ei:(141)Note that A(s; t)�ei = �A(s; t)ei, which follows from the formula for intrin-sic partial integration in proposition B.2.2. Moreover, it turns out that[@s; ~rt] = @sA = ��1R(@su; @tu)�:(142)Indeed [@s; ~rt]~� = @s@t~� + (@sA)~� +A@s~� � @t@s~� �A@s~� = (@sA)~�and using [@su; @tu] = 0 (cf. lemma A.3.2) we get��1R(@su; @tu)� = ��1rs���1rt�� ��1rt���1rs�= @s(@t +A)� (@t +A)@s = @sA:Lemma A.4.2. Du as in (139) is represented byD0~� = ��1Du(�~�) = @s~� � ~rt~rt~� �Q~� ;where Q 2 C1(R � S1;L(Rn ;Rn )) with Q(s; t)� = Q(s; t) is given byQei = ��1R(Zi; _u) _u� ��1rZirV (t; u):Proof.D0~� = ��1Du(�~�)= ��1 �rs(�iZi)�rtrt(�iZi)�R(�iZi; _u) _u�r�iZirV (t; u)�= ��1�(@s�i)Zi + �irsZi � (@t@t�i)Zi � 2(@t�i)rtZi � �irtrtZi� �iR(Zi; _u) _u� �irZirV (t; u)�= @s~� � ~rt~rt~� � �i��1�R(Zi; _u) _u�rZirV (t; u)�where we used several times equation (141). The symmetry of the �rst sum-mand of Q may be seen using the antisymmetry properties of the curvaturetensor g(R(Zi; _u) _u;Zk) =(99) g(R( _u;Zk)Zi; _u)= g(R(Zk; _u) _u;Zi):



A.4. THE LINEAR OPERATORS REPRESENTED IN FRAMES 153For the second summand we exploit that the Levi-Civita connection is tor-sionfree as well as its compatibility with the metricg(rZirV;Zk) =(94) Zig(rV;Zk)� g(rV;rZiZk)= ZiZkV � (rZiZk)V=(93) ZkZiV � (rZkZi)V= g(rZkrV;Zi):As usual setting u = ��Mw our second claim will be to show that the operatorDw : C10 (R � S1; u�TM � u�T �M)! C10 (R � S1; u�TM � u�T �M)���� 7! �rs� � g�1rt� �R(�; _u)g�1w �r�rV (t; u)rs� + gR(�; @su)g�1w + ��2(grt� � �); �where w 2 C1(R � S1; T �M) with w ! g(x�)@tx� 2 CritAV for s! �1uniformly in t, may be represented by an operator on R2n -valued functionsD� : C10 (R � S1;R2n)! C10 (R � S1;R2n)�~�~�� 7!  @s~� � ~rt~�@s~� + ��2(~rt~� � ~�)!� C~��B~�!(143)where Cei = ��1R(Zi; _u)g�1w + ��1rZirV (t; u)is asymptotically symmetric as C(s; t)! S�(t) for s! �1 andBei = (��)gR(Zi; @su)g�1w ! 0 for s! �1:Note that for w = g(u)@tuB�ej = (��)gR(Zj ; @tu)@su:To derive (143) we pick an orthogonal trivialization � of u�TM as before,then we de�ne� = �� 00 ���1� : (R � S1)� (Rn � Rn)! u�TM � u�T �M:(144)� is a unitary trivialization with�(s; t)�eiej� = �Zi(s; t)Zj(s; t)�where ej is the dual of ej and Zj(s; t) the dual of Zj(s; t) under the naturalidenti�cation of the vector space with its dual space via the metric h�; �i



154 A. LINEARIZATION AND TRIVIALIZATION OF OPERATORSrespectively g. We de�neD��~�~�� = ��1Dw � � ~����1~�� = ��1Dw � �iZi�jZj�= ���1�rs(�iZi)� g�1rt(�jZj)�R(�iZi; _u)g�1w �r�iZirV (t; u)����rs(�jZj) + ��2grt(�iZi) +R(�iZi; @su)g�1w � ��2�jZj� �=  @s~� � ~rt~� � �i��1�R(Zi; _u)g�1w +rZirV (t; u)�@s~� + ��2(~rt~� � ~�) + �i��gR(Zi; @su)g�1w !where we used (��)g� = 1l and our frames being parallel with respect to s.Note that in the special case w = g(u)@tu we getD��~�~�� =  @s~� � ~rt~�@s~� + ��2(~rt~� � ~�)!� Q~��B~�! :



APPENDIX BTwo variational problems { basic factsWe recall standard facts from the variational theories of the symplectic ac-tion functional in section B.1 and the classical action functional in sectionB.2 (usually called energy functional in Riemannian geometry). Their vari-ational formulae are derived and we discuss the assignment of integers (in-dices) to their critical points. In contrast to the canonically de�ned Morseindex of a critical point of the classical action, the Conley-Zehnder index of acritical point of the symplectic action usually involves noncanonical choices(of unitary trivializations) in its construction. These are related to the non-triviality of the �rst Chern class. However, here the �rst Chern class of therestriction of the tangent bundle TT �M ! T �M to any closed submanifoldof T �M vanishes and as a consequence the Conley-Zehnder index can beconstructed canonically. Moreover, we give an alternative construction inthis context { avoiding �rst Chern classes { by exploiting the existence of aglobal Lagrangian splitting of TT �M . Throughout we will use the followingterminology for projections: For any manifold N let �N denote its tangentbundle projection and ��N its cotangent bundle projection.B.1. The symplectic action functionalLet (Mn; g) be a closed (i.e. compact and without boundary), smoothRiemannian manifold of dimension n. After discussing the construction ofnatural coordinates on TT �M in B.1.1 we introduce certain canonical struc-tures on the 2n-dimensional manifold T �M . The Levi-Civita connection of(M; g), which we view in B.1.2 as a bundle morphism K : TT �M ! T �M ,called connection map de�nes a horizontal subbundle T hT �M ; the kernelof the linearized cotangent projection T��M { by T we denote the tangentmap { de�nes the vertical subbundle T vT �M . So we have a natural splittingTT �M �= Ker K �Ker T��M =: T hT �M � T vT �M . These subbundles maybe identi�ed via T��M jThT �M with TM and via KjT vT �M with T �M , respec-tively; the latter isomorphism however depends on the choice of coordinates.On the other hand { setting q = ��Mp { we have a natural isomorphism be-tween �bers �(p) = (T��M (p)�;K(p)�) : TpT �M ! TqM � T �qM , which wecan view as a change of �ber coordinates. The Liouville form � { in naturalcoordinates (qi; pj) given by pidqi { and the canonical symplectic structure
 = �d� on T �M are introduced in B.1.3. In B.1.4 we introduce a Rie-mannian metric G on T �M , whose pullback under �(p)�1 is given by theproduct metric g � g�. Moreover, the metric g on M leads canonically to155



156 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSan almost complex structure J 2 �(End TT �M), i.e. J2 = �id. (G; J;
)are compatible in the sense that G(�; �) = 
(�; J �). As we will see in B.1.5a Hamiltonian function H : R=Z � T �M ! R gives rise to the Hamiltonianvector �eld XH de�ned by the identity dH(�) = 
(XH ; �). It turns out inB.1.6 that the 1-periodic Hamiltonian orbits Per (H) of XH are exactly thecritical points of the symplectic action functional on the free loop space ofT �MAV : C1(S1; T �M) = C1(S1; T �M) ! Rz 7! ZS1 z��� Z 10 H(t; z(t)) dt:Assuming that the set Per (H) = CritAV is discrete we are going to de�nea map �CZ : CritAV ! Zcalled Conley-Zehnder index. The naturality of this index will be discussedin great detail (cf. introduction to this appendix).B.1.1. Natural coordinates on TT �M . First we introduce local co-ordinates (u1; : : : ; un), short notation (ui), on M and compute the trans-formation formulae under a change of coordinates of the coordinate vectorand covector �elds, the coordinate functions of vectors and covectors, thematrix-valued function representing the metric and the Christo�el symbolsof the Levi-Civita connection associated to g.Next we introduce natural local coordinates (ui; vj) for p 2 T �M byapplying the cotangent functor T � to the charts of M . The (v1; : : : ; vn)indeed transform like coordinate functions of a covector and may thereforebe interpreted as the �bre part, (u1; : : : ; un) representing the correspondingbase point q 2M � T �M . This procedure however fails in the next iterationstep, namely applying the tangent functor T to the natural charts of T �M toget local coordinates (ui; vj ; �k; yl) of TT �M : the �k transform as coordinatefunctions of a vector, but the yl do not transform as coordinate functions of acovector. In fact their transformation formula under a change of coordinatesinvolves the �k as well as the vj . There are also second derivatives of thetransition maps involved, just as in the case of the transition maps for theChristo�el symbols. This leads us to the de�nition�l = yl � �jlk(u)�kvj(145)and we will show that �l indeed transforms like a coordinate function of acovector. In fact we have a natural isomorphism of vector spaces�(p) : TpT �M ! TqM � T �qM ; q = ��Mp(146)given locally by (ui; vj ; �k; yl) 7! (ui; �k; yl � �jlk(u)�kvj) :(147)



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 157Note the implicit occurence of the metric via the Christo�el symbols. If p(t)denotes a smooth path in T �M and q(t) = ��Mp(t), then this isomorphismtakes @tp(t) 2 Tp(t)T �M to the element (@tq(t);r�t p(t)) 2 TqM�T �qM , wherer� denotes the Levi-Civita connection on M acting on covector �elds.Let (U; �); (U; ) be two coordinate charts of the manifold Mn and de-note by (ui); (~ui) the corresponding coordinate functions� : U ! Rn ;q 7! (u1; : : : ; un) ;  : U ! Rn ;q 7! (~u1; : : : ; ~un) :(148)f(~u) = �� �1(~u) = u denotes the transition map of the coordinates. Asso-ciated to (ui); (~ui) are the coordinate vector and covector �elds f@uig; f@~uigand fduig; fd~uig. They transform as follows (throughout this text we useEinstein's summation convention)Lemma B.1.1. For i; k = 1; : : : ; n we havei) @ui = @f�1j(u)@ui @~uj ; @~uk = @f j(~u)@~uk @uj ;ii) dui = @f i(~u)@~uj d~uj ; d~uk = @f�1k(u)@uj duj :Proof. Part two may be proven by the chain rule: As ui = f i(~u) we getdui = @f i(~u)@~uj d~uj . The proof of part one uses this fact as follows: f@uig; f@~ujgare bases of TqM , hence they are related by a linear transformation @uk =Alk@~ul . Now �ik = dui(@uk) = �@f i(~u)@~uj d~uj� (Alk@~ul) = @f i(~u)@~uj Ajkand therefore Ajk = @f�1j(~u)@~uk .Any element � 2 TqM respectively � 2 T �qM may be written as � =�i(u)@ui = ~�j(~u)@~uj respectively � = �i(u)dui = ~�j(~u)d~uj .Lemma B.1.2. For i; k = 1; : : : ; n we havei) �i = @f i(~u)@~uj ~�j ; ~�k = @f�1k(u)@uj �j ;ii) �i = @f�1j(u)@ui ~�j ; ~�k = @f j(~u)@~uk �j :Proof. ad i) �i@ui = � = ~�j@~uj LemmaB:1:1i)= ~�j @fk(~u)@~uj @uk :ad ii) �idui = � = ~�jd~uj LemmaB:1:1ii)= ~�j @f�1j(u)@uk duk :



158 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSLet gij(u) = g��1(u)(@ui ; @uj ), i; j = 1; : : : ; n, be the matrix-valued func-tion on �(U) representing the metric g. By �kij(u) we denote the Christo�elsymbols of the Levi-Civita connection associated to g. g� denotes the dualmetric. Its local representative gkl(u) is related to gij(u) by gkl(u)gli(u) = �ki ,i.e. it is the inverse matrix of (gij).Lemma B.1.3. For i; j; k = 1; : : : ; n we havei) gij(u) = @f�1k(u)@ui @f�1l(u)@uj ~gkl(~u) ;gij(u) = @f i(~u)@~uk @f j(~u)@~ul ~gkl(~u) ;ii) �kij(u) = @fk(~u)@~us  @2f�1s(u)@ui@uj + ~�srl(u)@f�1l(u)@uj @f�1r(u)@ui ! ;~�kij(~u) = @f�1k(u)@us �@2f s(~u)@~ui@~uj + �srl(u)@f l(~u)@~uj @f r(~u)@~ui � :Proof. ad i) �i1�j2gij(u) = g(�1; �2) = ~�k1 ~�l2~gkl(~u), now use LemmaB.1.2i), similarly for the dual metric.ad ii) Write the Christo�el symbol as sum of derivatives of the metric (95),then use i) and the product rule to calculate this derivatives. Replace alsogkl(u) using i). We get a formula involving only coordinates ~u. Again using(95) it may be simpli�ed to the form stated in ii).Starting with a chart (�;U) of M , there is a natural way to get a chart(�; T �U) of T �M :� := T �� : T �U ! �(U)� Rnp 7! (�(q); d�(q)��1p) ; q := ��Mp:(149)The coordinates are denoted by (ui; vj) = �(p). The vj are exactly thecoordinate functions of the �bre part of p 2 T �M , i.e. are components ofa covector. This may be seen by investigating the transformation behaviorunder a change of coordinates: Let (	; T �U) be the chart coming from( ;U), then (u; v) = ��	�1(~u; ~v) = �( �1(~u); d (q)�~v)= (�� �1(~u); d�(q)��1�d (q)�~v) :(150)Applying a similar procedure to (�; T �U) we get a chart (T�; TT �U) ofTT �M with coordinates (u1; : : : ; un; v1; : : : ; vn; �1; : : : ;�2n). Denoting thelast 2n variables by (�1; : : : ; �n; y1; : : : ; yn) we will see that the �k transformas coordinate functions of a vector, but the yl do not transform as coordinatefunctions of a covector:T� : TT �U ! (�(U )� Rn)� T (�(U )� Rn)� 7! (�(q); d�(q)��1p; d	(p)�) ;(151)



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 159where p = �T �M� and q = ��Mp. The transformation behavior is as follows(u; v; �; y) = T�(T	)�1(~u; ~v; ~�; ~y)= T�� �1(~u); d (q)�~v; d	(p)�1�~�~y��= �f (~u); df (~u)��1~v; d�(p)�d	(p)�1�~�~y��= �f (~u); df (~u)��1~v; d(f (~u); df (~u)��1~v)�~�~y�� :(152)
The last term may be expressed as followsd~u;~v(f (~u); d~uf (~u)��1~v)�~�~y�= �d~uf (~u)~�; du(d~uf (~u))��1(d~uf (~u)�1 ~�; ~v) + d~uf (~u)��1~y� ;(153)using indices the last expression readsyl = @2f�1i(u)@ul@us @f�1s(u)@uk ~�k~vi + @f�1k(u)@ul ~yk ; l = 1; : : : ; n ;(154)or ~ym = �@f r(~u)@~um @2f�1i(u)@ur@us @f�1s(u)@uk ~�k~vi + @f r(~u)@~um yr :(155)(The notation d~u;~v indicates that this is the di�erential with respect to vari-ables ~u and ~v).Hence we see that � transforms like a vector, but y involves second deriva-tives in its transformation formula. As we met a similar expression in thetransformation law of the Christo�el symbols, we might be tempted to de�nethe quantity �l = yl � �jlk(u)�kvj :(156)Lemma B.1.4. �l transforms like a coordinate function of a covector,i.e. �l = @f�1l(u)@uk ~�k ; k = 1; : : : ; n :Proof. In the �rst equality of the next calculation we are going to use(156), in the second one we use the transformation formulas Lemma B.1.2,



160 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSLemma B.1.3ii) and (154) for ~�k; ~vj ; ~�kij(~u) and yi:@f�1i(u)@ul ~�i =@f�1i(u)@ul �yi � ~�kij(~u)~�j~vk�=@f�1i(u)@ul  @f r(~u)@~ui yr � @f r(~u)@~ui @2f�1k(u)@ur@u� @f�(~u)@~uj ~�j~vk!� @f�1i(u)@ul ~�j~vk @f�1k(u)@u� �@2f�(~u)@~ui@~uj + ���s(u)@f s(~u)@~uj @f�(~u)@~ui �=yl � ~�j~vk @2f�1k(u)@ul@u� @f�(~u)@~uj + @2f�(~u)@~ui@~uj @f�1i(u)@ul @f�1k(u)@u� !� �jlk(u)�kvj=�l :It follows from applying @ul to the identity @f�1i(u)@uj @fj(~u)@~uk = �ik that thesecond summand in the last but one equation is zero.B.1.2. Natural splitting of TT �M . Let X (M) denote the set ofsmooth vector �elds on M . In Riemannian geometry the Levi-Civita con-nection r = gr is de�ned as the unique map X (M)�X (M)! X (M) suchthat 8f 2 C1(M) 8X;Y;Z 2 X (M) one has1. C1(M)-linearity in the �rst component2. R-linearity in the second component3. (Leibniz rule) rX(fY ) = (Xf)Y + frXY4. (torsion free) rXY �rYX + [X;Y ] = 05. (compatibility with metric) rZg(X;Y ) = g(rZX;Y ) + g(X;rZY ):Following [E67] and [Kl] we rede�ne this concept: First let us recall theshort notation (ui; vj) for (u1; : : : ; un; v1; : : : ; vn) and similarly for vectorswith another number of components. Let the vector bundle morphism K :TT �M ! T �M in natural local coordinates (cf. subsection B.1.1) be givenby K(ui; vj ; �k; yl) = (ui; yl � �kli�ivk):(157)K is called connection map. The Christo�el symbols �kij of r are de�ned byr@ui@uj = �kij@uk ; 8i; j = 1; : : : ; nwhere (u1; : : : ; un) are local coordinates on M . They may be expressed interms of derivatives of the metric as in equation (95). The relation betweenthe two concepts isr�X� = K�T�(X) ; X; Y 2 X (M) ; ! 2 
1(M) :Note that T denotes the tangent map. For instance for a 1-form � :M ! T �M we get T� : TM ! TT �M or in coordinates (ui; �k) 7!



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 161(ui; �j(u); �k; (@uk�j)�k). Let �N denote the projection of the tangent bundleof any manifold N and ��N the projection of its cotangent bundle. Locallywe have ��M : T �M !Mp 7! q(ui; vj) 7! (ui)(158) ��T �M : TT �M ! T �M� 7! p(ui; vj ; �k; yl) 7! (ui; vj):(159)We de�ne the horizontal respectively vertical subbundle of TT �M by�hT �M : T hT �M = Ker K ! T �M;�vT �M : T vT �M = Ker T��M ! T �M:In local coordinatesT hp T �M �= f(ui; vj ; �k;�kli�ivk)j(�1; : : : ; �n) 2 Rng;T vp T �M �= f(ui; vj ; 0; yl)j(y1; : : : ; yn) 2 Rng;where q = ��Mp is represented in the local coordinate ' : M � U ! Rn by'(q) = (u1; : : : ; un) and p = vjduj by (ui; vj). It can be seen from these localexpressions that T hT �M and T vT �M intersect in the zero section OT �M ofT (T �M). As their ranks are n and the rank of T (T �M) is 2n it follows thatTT �M is isomorphic to the direct sumTT �M �= T hT �M � T vT �M:Unfortunately the 2nd of the vector space isomorphismsT��M(p) : T hp T �M ! TqM(ui; vj ; �k;�klj�jvk) 7! (ui; �k)K(p) : T vp T �M ! T �qM(ui; vj ; 0; yl) 7! (ui; yl)(160)depends on the choice of coordinates as yl does not transform as a coordinatefunction of a covector (cf. subsection B.1.1). So they do not provide anatural isomorphism between T hp T �M�T vp T �M and TqM�T �qM . Howeverthere is a natural vector bundle isomorphism � between �T �M : TT �M !T �M and the pull-back bundle pr1 : (��M )�(TM � T �M) ! T �M which,restricted to a �bre TpT �M , is in natural coordinates given by�(p) : TpT �M ! (fpg � TqM � T �qM ; q = ��Mp(ui; vj ; �k; yl) 7! (ui; vj ; �k; �l := yl � �jli�ivj):(161)



162 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSSomewhat sloppy we will consider �(p) to be a �brewise isomorphism be-tween TpT �M and TqM � T �qM . Later on we will express various sectionsof bundles over T �M in these new coordinates (�k; �l) on TqM � T �qM .B.1.3. Liouville form and symplectic structure. The map� : TT �M ! R� 7! (�T �M �) (T��M �)(162)is a 1-form on T �M . � is called Liouville form. Linearity follows from itsexpression in natural local coordinates�(ui; vj ; �k; yl) = (ui; vjduj) (ui; �k@uk) = vj�kduj(@uk) = vj�j;hence �(ui; vj) = vj duj : TpT �M ! R�k@uk + yl@vl 7! vj�j:(163)Note that using the metric g the form � may be written in the form�(�) = g�(�T �M�; g�T��M�);where g� denotes the dual metric of g and in abuse of notation we denote bythe same symbol g also the metric isomorphism TM ! T �M : � 7! g(�; �),which in local coordinates corresponds to lowering of indices.Definition B.1.5. The natural symplectic form 
 on T �M is de�nedby 
 = �d�.Locally we get 
(ui; vj)(�; �) = (dui ^ dvi)(�; �), hence 
 is clearly closed.Nondegeneracy of 
, i.e. 
(�; ~�) = 0 8~� 2 TT �M ) � = 0, may be provenusing the fact that fdui; dvigni=1 is a basis of TpT �M .Lemma B.1.6.i) 
(�; ~�) = g�(g�T��M �;K ~�)� g�(K �; g�T��M ~�) 8�; ~� 2 TT �Mii)
 is represented under the isomorphism TpT �M �= TqM � TqM by
((�; �); (~�; ~�)) = ~�(�)� �(~�) ; 8(�; �); (~�; ~�) 2 TqM � T �qM:Proof. 
(�; ~�) is locally given at (ui; vj) by(dui ^ dvi)(�k@uk + yl@vl ; ~�k@uk + ~yl@vl) = �k~yk � yl ~�l= �k~yk � yl ~�l � �k�ski~�ivs + ~�l�sli�ivs= �k(~yk � �ski~�ivs)� ~�l(yl � �sli�ivs)= �k~�k � ~�l�l = ~�(�)� �(~�)where we added 0 in the 2nd equality (using �kij = �kji) and used the de�nition(145) of the covector � in the 4th equality. This proves ii); to prove i) we



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 163compute its RHS locallygikgkl�l(~yi � �lik ~�kvl)� gik(yk � �mkl�lvm)gir ~�r= �i~yi � �i�lik ~�kvl � ~�kyk + ~�k�mkl�lvm= �i~yi � yk ~�kwhich equals 
(�; ~�) as we have seen above. In the second equality we usedagain �kij = �kji.In view of ii) we see that 
 is represented on TqM � T �qM by
����� ;�~�~��� = ��0 �1l1l 0 ������T �~�~�� :(164)B.1.4. Riemannian metric and almost complex structure. Themap G : TT �M � TT �M ! R(�; ~�) 7! g�(K�;K ~�) + g(T��M�; T ��M ~�)de�nes a Riemannian metric on T �M : symmetry follows from symmetryof the metrics g and g�; the same for positive de�niteness. Nondegeneracyof G follows from the fact that the subbundles T hT �M and T vT �M areorthogonal with respect to G; hence it follows from nondegeneracy of g andg�. Note that under the natural isomorphism � in equation (161) the metricG is represented byGj(q;p) = �g 00 g�1� : (TqM � T �qM)�2 ! R����� ;�~�~��� 7! ��g 00 g�1������T �~�~�� :An almost complex structure J 2 �(End TT �M) is determined by theidentities i)(g�T��M )�J = �Kii)K�J = (g�T��M):(165)Applying J from the right to i) respectively ii) and then using ii) respec-tively i) shows that J2 = �id. The almost complex structure J is repre-sented on TqM � T �qM byJ (p) = � 0 �g�1(q)g(q) 0 � : TqM � T �qM ! TqM � T �qM;(166)where q = ��Mp. This coincides with the natural almost complex structureon the direct sum of a vector space with its dual space.



164 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSCompatibility of (
; G; J)We call 
 and J compatible if 
(�; J �) de�nes a Riemannian metric,which is the case - in fact it coincides with G. Let �; ~� 2 TT �M , then usingthe de�ning equations (165) for J
(�; J ~�) = g�(g�T��M�;K�J ~�)� g�(K�; g�T��M �J ~�)= g(T��M�; T ��M ~�) + g�(K�;K ~�)= G(�; ~�):On TqM � T �qM this proof reduces to matrix multiplicationJT
 = � 0 g�g�1 0��0 �11 0 � = �g 00 g�1� = G:Note that compatibility immediately implies that J is an isometry withrespect to G G(J�; J ~�) = 
(J�; J2~�) = �
(J�; ~�) = G(�; ~�);hence G(J�; ~�) = G(J2�; J ~�) = 
(J2�; J2~�) = 
(�; ~�)and 
(J�; J ~�) = G(J�; ~�) = G(~�; J�) = 
(~�; �) = �
(�; ~�):B.1.5. Hamiltonian functions and vector �elds. Consider (time-1-periodic) Hamiltonian functions of the form kinetic + potential energy,i.e. H : S1 � T �M ! RH(t; p) = 12g�(p; p) + V (t; q) ; q = ��Mp(167)where V 2 C1(R=Z�M;R) is the potential energy. The Legendre conditionin natural local coordinates (ui; vj) of T �M reads0 6= det � @2H@vi@vj�ni;j=1 = det (gij)ni;j=1and is satis�ed due to the nondegeneracy condition imposed on the metricg. Hence the Legendre transform of H is de�ned globally and we get theLagrangian L(t; _q) = p( _q)�H(t; p) ; q = ��Mp:(168)p = vjduj may be obtained as a function of _q = ( _q)i@ui from( _q)i = @H@vi = gikvk;i.e. by lowering of indices. ThereforeL(t; _q) = vi( _q)i � 12gikvivj � V (t; q)= 12g( _q; _q)� V (t; q):



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 165Associated to H and the symplectic structure 
 is the Hamiltonian vector�eld XH which - in view of nondegeneracy of 
 - is uniquely de�ned by theidentity dH(�) = 
(XH ; �):(169)For � 2 TT �M
(XH ; �) = dH(�) = G(rH; �) = G(JrH;J�)= 
(JrH;J2�) = 
(�JrH; �)and therefore XH = �JrH:(170)In natural �ber coordinates (161) we haveGrH(t; p) = �grV (t; q)p � ; q = ��MpXHt(p) = �J(p)rH(t; p) = � g�1(q)p�g(q)grV (t; q)� :(171)The former identity can be seen as follows: let � = (�k; yl) 2 T(u;v)T �M anddenote by (�k; �l) the corresponding element of TuM � T �uM ; the elementcorresponding to rHt(p) we denote by (a; b), thendHt(p) � = G(rH; �) = g(a; �) + g�(b; �):We compute now the LHS in local coordinates@H@uk (ui; vj) �k + @H@vl (ui; vj) yl= @V@uk (t; ui) �k + 12 @gij(u)@uk vivj�k + gij(u) viyj= g(grV (t; u); �) + 12 @gij(u)@uk vivj�k + gij(u) vi�j + gij(u) vi�sjr(u)�rvs= g(grV (t; u); �) + g�(v; �):In the third equality we replaced yj by �j+�sjrvs�r, the last equality followsas the 2nd+4th term is zero (use equation (95)). The statement now followsfrom the nondegeneracy of g and the orthogonality of the splitting of TT �M .XH generates the 1-parameter group of di�eomorphisms 't : T �M !T �M , t 2 R, de�ned by ddt't = XHt�'t ; '0 = id ;i.e. if x 2 C1(R; T �M) is a solution of the initial value problem( _x(t) = XHt(x(t))x(0) = x0(172)



166 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSthen 'tx0 = x(t). Per (H) denotes the set of 1-periodic solutions of (172).We denote by Symp(T �M;
) the set of symplectomorphisms, i.e. the setof di�eomorphisms ' of T �M which preserve the symplectic structure, i.e.'�
 = 
.Lemma B.1.7. 't 2 Symp(T �M;
) 8t 2 R.Proof. Clearly '0 = id preserves 
, the idea is now to show thatpreservation of 
 is constant in tddt ����t=0 '�t+t0
 = LXHt
 = d�XHt0
+ �XHt0 d
= ddHt0 = 0:The �rst equality is just the de�nition of the Lie-derivative L of a di�erentialform in the direction of a vector �eld. Then we used Cartan's formulaLX = d�X + �Xd (cf. [AM78] theorem 2:4:13 iv)), the fact that d
 = 0 andthe de�nition (169) of the Hamiltonian vector �eld XHt .B.1.6. First variation formula. Let the (perturbed) symplectic ac-tion functional be de�ned on the space of free, smooth loops in T �M byAV : C1(S1; T �M) ! Rz 7! ZS1 z��� Z 10 H(t; z(t)) dt(173)where � is the Liouville form (162) and H is a 1-periodic Hamiltonian as in(167). LetCritAV = fz 2 C1(S1; T �M) j dAV (z) = 0 on �(z�TT �M)g:(174)The next result says that z 2 Per(H)) z 2 CritAV .Proposition B.1.8. For z 2 C1(S1; T �M) and � 2 �(z�TT �M)dAV (z) � = Z 10 
( _z(t)�XHt(z(t)); �(t)) dt:Proof. (intrinsic) Denote by Exp the exponential map of the Levi-Civita connection Gr of (T �M;G). Consider the two-parameter map, cf.(137), A(t; �) = Expz(t)��(t):A(�) = A(�; �) can be interpreted as a path in C1(S1; T �M) with A(0) = zand dd� ���=0A(�) = �. We de�nef(�) = Z 10 �(@tA(t; � )) dt = ZS1 A(�)��



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 167and computef(0)� f(�) = ZS1 A(0)���A(�)��= ZS1�[0;� ] dA(�)�� = �ZS1�[0;� ]A(�)�
= �Z �0 Z 10 
(@tA(t; s); @sA(t; s)) dt ds=: Z �0 k(s) ds =: K(�):In the second equality the induced orientation on the boundary of S1� [0; � ]has to be used. Note that K(0) = 0. NowdAV (z) � = dd� �����=0AV (A(� ))= dd� �����=0 ZS1 A(�)��� Z 10 H(t; A(t; � )) dt= lim�!1 f(�)�f(0)� � Z 10 dHt(z(t)) �(t) dt= lim�!1 K(0)�K(�)� � Z 10 
(XHt(z); �) dt= �k(0)� Z 10 
(XHt (z); �) dt= Z 10 
( _z; �) dt� Z 10 
(XHt(z); �) dt= Z 10 
( _z(t)�XHt (z(t)); �(t)) dtwhere we have used the de�nition (169) of XHt in the third equality.Proof. (local coordinates) We set z = (ui; vj) and � = (ui; vj ; �k; yl),everything depending on t 2 R=Z. Now we pick smooth maps z� = (ui� ; v�j )such that (ui0; v0j ) = (ui; vj) and dd� ���=0 (uk� ; v�l ) = (�k; yl).dAV (z) � = dd� �����=0AV (ui� ; v�j )= dd� �����=0 Z 10 v�j _uj� � 12gij(u� )v�i v�j � V (t; ui� ) dt= Z 10 yj( _uj � 12gij(u)vi) + vj � _�j � 12 @gij (u)@ul �lvi � 12gij(u)yi�� @V (t; u)@ul �l dt:



168 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSWe replace yl by �l+�klivk�i (�l is an intrinsic object, namely the componentof a covector, cf. subsection B.1.1) and getZ 10 �j _uj +�ljk(u)vl�k _uj � 12gij(u)vi�j � 12gij(u)vi�ljk(u)vl�k � _vj�j�12vj @gij (u)@ul �lvi � 12gij(u)vj�i � 12gij(u)vj�lik(u)vl�k � @V (t; u)@ul �l dt:Denoting by h�; �i the pairing between a covector and a vector, the 1st termequals h�; @tui, the 2nd+5th equals�hr�t v; �i, the 3rd+7th equals�h�; g�1vi,the 9th equals �hdV (t; u); �i and the 4th + 6th + 8th equals 0. The laststatement can be seen by using (95). Hence we have with x = ��MzZ 10 h�; @txi � h�; g�1(x)zi � hdV (t; x); �i � hr�t z; �i dt= Z 10 h�; @tx� g�1(x)zi+ h��;r�t z + g(x)grV (t; x)i dt= Z 10 ���0 �11 0 ������T � @tx� g�1(x)zr�t z + g(x)grV (t; x)� dt= Z 10 �
(�(t); _z(t)�XHt(z(t))) dtwhere in the last equality we used the facts that _z 2 TT �M is rep-resented by (@tx;r�t z) on TxM � T �xM and XHt(z) by �J (z)rHt(z) =(g�1(x)z;�g(x)grVt(x)), as well as equations (164) and (171).Let us mention that one can extend the de�nition of AV to the free loopspace �T �M of T �M { the completion of C1(S1; T �M) with respect to theSobolev norm kzk21;2 = kzk2L2 + k@tzk2L2 :The norms on the RHS are de�ned via a cover of T �M by �nitely may(natural) coordinate charts (i.e. induced by a �nite coordinate cover ofM as explained in subsection B.1.1). Therefore this norm depends on thecover, but any two such norms are equivalent. As the elements of �T �M arealmost everywhere di�erentiable, the de�nition (173) ofAV still makes sense.Regularity theory techniques are now required to show Per H = CritAV .B.1.7. First Chern class. We are going to show that the �rst Chernclass of the bundle � : E = TM � T �M ! M is zero. Hence we need tointroduce a complex structure on E. Then we de�ne a connection r̂ onE and compute the trace of its curvature 2-form F r̂, which turns out tobe zero. The result now follows from Chern-Weil theory. Functoriality ofthe Chern class implies that for any closed submanifold N � T �M we havec1(TNT �M) = 0.



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 169Starting with a chart (�;U) of M we get a local trivialization� : ��1(U) = TUM � T �UM ! U � Rn � Rn(�; �) 7! (q; d�(q)�; d�(q)��1�)where q = �(�; �) denotes the base point. Let the canonical almost complexstructure on R2n be de�ned byJ0 = �0 �1l1l 0 � : R2n ! R2n ;i.e. J02 = �1l. Identifying the complex vector spaces (R2n ; J0) and (C n ; i)via the isomorphism I : (R2n ; J0) ! (C n ; i)(x; y) 7! x+ iy =: z;the complex linear group GL(n; C ) is identi�ed withGLC (2n;R) = fA 2 GL(2n;R) j J0A = AJ0g= fA 2 GL(2n;R) jA is of the form�X �YY X �g:We observe that �(q) respects the complex structuresJ (q) = � 0 �g�1(q)g(q) 0 � : TqM � T �qM ! TqM � T �qMand J0 on R2n , i.e. �(q)�J (q) = J0��(q) hence is a complex isomorphism. Let(~�;U) be another chart for U �M and f(~u) = ��~��1(~u) = u the transitionmap, cf. subsection B.1.1. The transition map for E�(q)�~�(q)�1 = �d�(q)�d~��1(~�q) 00 d�(q)��1�d~�(q)��indeed takes values in GLC (2n;R). We de�ne a connection r̂ on E byr̂X ���� = �rX�r�X�� ; X; � 2 X (M); � 2 
1(M)(175)where r respectively r� denotes the Levi-Civita connection of (M; g) actingon vector respectively covector �elds. In local coordinates we haver̂ = d+ Â = �d 00 d�+��idui 00 ��jduj�where �idui 2 
1(M;End Rn) is the connection potential of r, i.e. �kij arethe Christo�el symbols. The curvature 2-form is given byF r̂ = r̂2 = d2 + dÂ� Âd+ Âd+ Â ^ Â = dÂ+ Â ^ Â



170 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSwhich locally (in the following we use the bundle chart d�� d���1) readsF r̂ij dui ^ duj = 0@Pi;j @�i@uj duj^dui 00 Pi;j � @�j@ui dui^duj1A+0@Pi;j �i�jdui^duj 00 Pi;j �i�jdui^duj1A= Xi<j  � @�j@ui � @�i@uj �+[�i;�j ] 00 �� @�j@ui � @�i@uj �+[�i;�j ]! dui ^ duj :Note that F r̂ 2 
2(M;End R2n) and it transforms according to the ad-joint action of GL(2n;R) on End R2n , hence taking the trace of F r̂ inlocal coordinates is independent of the choice of these coordinates, thereforetr F r̂ 2 
2(M). Now the trace of a commutator vanishes and tr A = tr At,hence tr F r̂ = 0 2 
2(M):Moreover Chern-Weil theory asserts that the cohomology class [tr F r̂] isindependent of the choice of connection (cf. [Jo91] Lemma 1.4.2 or [Sa96]section 1.4). The �rst Chern class of E is now given byc1(TM � T �M) def= i2� [tr F r̂] = 0 2 H2dR(M;Z):(176)Theorem B.1.9. Let N be a closed submanifold of T �M , then it followsc1(TNT �M) = 0.Proof. Version A Let i : N ,! T �M denote the inclusion and ��M jN =��M�i : N !M the restriction of the cotangent projection to N , thenc1(TNT �M) = c1((��M jN )�E) = i�(��M )�(c1(E)) = 0:Proof. Version B Let ~E = TNT �M , then according to [GH78] chap-ter3 section3 c1( ~E) = �c1( ~E�) = �c1(�n ~E�)where �n ~E� denotes the canonical (complex) line bundle. Now c1(�n ~E�) =0 if and only if there exists a nonvanishing section s of �n ~E�. This is dueto the fact that the �rst Chern class of a complex line bundle equals thePoincare dual of the zero set of a generic section. Let (�k; �l) denote thecanonical �ber coordinates of ~E (cf. subsection B.1.1) and de�nezk = �k + i �k ; k = 1; : : : ; n ;then dz1 ^ : : : ^ dzn



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 171is a nonvanishing and globally de�ned section of �n ~E� (as the zi transformunder a change of coordinates by multiplication with an element of Sl(n; C )).In the case where N is a closed Riemann surface c1(TNT �M) = 0 isequivalent to TNT �M being symplectically trivial, i.e. there exists a sym-plectic bundle isomorphism � : N � R2n ! TNT �M . This statement is aconsequence of theorem B.1.14 in the next subsection.We would like to mention the following facts: We have a hermitianstructure H on TM � T �M given byH(�; �) = G(�; �) + i
(�; �);which is complex anti-linear in the �rst and complex linear in the secondvariable. The connection r̂ is Riemannian (r̂G � 0)r̂XG(�; �) = G(r̂X �; �) +G(�; r̂X �);unitary (r̂J � 0)(r̂XJ)���� = r̂X �J ������ Jr̂X ���� = 0and hence hermitian (r̂H � 0)r̂XH(�; �) = H(r̂X �; �) +H(�; r̂X �):B.1.8. Conley-Zehnder index of periodic Hamiltonian orbits.We are going to recall the de�nitions of the Maslov index of a loop of sym-plectic matrices and of the Conley-Zehnder index of a path of symplecticmatrices starting at the identity and ending at a matrix which doesn't con-tain 1 in its spectrum. Then we introduce the �rst Chern number of asymplectic vector bundle E over a closed Riemann surface � and use theresult of the former subsection c1(E) = 0 for � � T �M to construct awell-de�ned map �CZ : Per (H)! Z.Maslov index of loops in Sp(2n;R)Let Mat(2n;R) denote the set of 2n by 2n matrices with real entries.The symplectic linear group is given bySp(2n;R) = fA 2Mat(2n;R) jAtJ0A = J0g= fA 2Mat(2n;R) jA�!0 = !0gwhere the standard symplectic structure !0 on R2n is in coordinates(x1; : : : ; xn; y1; : : : ; yn) given by !0 = dxj ^ dyj and the standard complexstructure J0 by J0 = �0 �1l1l 0 � :



172 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSIt is known that �1(U (n; C )) ' Z (cf. [MS95] Prop. 2.21); an isomorphismof fundamental groups is induced by the determinant map det : U(n; C ) !S1. De�neU(2n;R) = f�X �YY X � 2 Gl(2n;R) j XtY = Y tX;XtX + Y tY = 1lgThen for any element of U(2n; 1lR) the transposed complex conjugate ofX + iY equals its inverse and so is an element of U(n; C ). Moreover,U(2n;R) = Sp(2n;R) \O(2n;R)and we have an isomorphismI� : U(n; C ) ! U(2n;R)X + iY 7! �X �YY X � :Now U(2n;R) is a strong deformation retract of Sp(2n;R) as there exists ahomotopy r(t) : Sp(2n;R) ! Sp(2n;R)A 7! (AAt)�t=2Asuch that r(0) = 1l, r(1)(Sp(2n;R)) = U(2n;R) and r(t)A = A 8t 2 [0; 1]8A 2 U(2n;R). According to [StZi], Satz 5.1.20, i : U(2n;R) ,! Sp(2n;R)induces an isomorphism of fundamental groups. Now consider the map� : Sp(2n;R) r(1)�! U(2n;R) I��! U(n; C ) det�! S1(177)and de�ne the Maslov index of a symplectic loop  : R=Z! Sp(2n;R) by�Symp() = deg ��:(178)�Symp provides an explicit isomorphism �1(Sp(2n;R)) ! Z. Moreover it isthe unique functor mentioned in the next theorem.Theorem B.1.10. ([MS95] thm. 2.27) There exists a unique functor�Symp, called Maslov index, which assigns an integer �Symp() to everyloop of symplectic matrices  : R=Z ! Sp(2n;R) and satis�es the followingaxioms(homotopy) Two loops in Sp(2n;R) are homotopic if and only if they havethe same Maslov index.(product) For any two loops 1; 2 : R=Z! Sp(2n;R) we have�Symp(1�2) = �Symp(1) + �Symp(2):In particular the constant loop (t) � 1l has Maslov index 0.(direct sum) If n = n0+n00 identify Sp(2n0;R)�Sp(2n0 0;R) in the obviousway with a subgroup of Sp(2n;R). Then�Symp(0 � 00) = �Symp(0) + �Symp(00):(normalization) The loop  : R=Z ! S1 ' U(1; C ) � Sp(2;R) de�ned by(t) = e2�it has Maslov index 1.



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 173
Figure B.1. The Maslov cycles C+ and Sp1(2;R)Remark B.1.11. For a generic path  we can interpret 2�Symp() asthe intersection number of the loop  with the Maslov cycle (cf. [MS95]section 2.2) Sp1(2n;R) = n[k=1Spk(2n;R)where Spk(2n;R) consists of all�A BC D� 2 Sp(2n;R)such that rank B = n � k. Each stratum Spk(2n;R) is a submanifold ofSp(2n;R) of codimension k(k+1)=2 consisting of two connected components,cf. [RS93] section 4.As is explained in great detail in Appendix D we can identify Sp(2;R) withthe interior of the full 2-torus (hereby solving an exercise in section 8.5.3of [Ar88]). The image of Sp1(2;R) under this homeomorphism is shownin �gure B.1 { the two surfaces to the left and right (actually due to nu-merical approximation this is only a sketch of the image). The double-trumpet like surface there corresponds to C+, the set of all symplectic ma-trices whose spectrum contains 1. The singular point of C+ represents theidentity. Clearly we could also interpret 2�Symp() as intersection numberof a generic loop with C+. C+ and Sp1(2;R) touch each other in a curvethrough the identity.Conley-Zehnder index of paths in Sp(2n;R)We briey recall the de�nition of the Conley-Zehnder index �CZ() of apath  : [0; 1]! Sp(2n;R) with (0) = 1l and (1) 2 Sp�2n = Sp(2n;R)nC+ .More details may be found in Appendix D. This index was introduced in1984 by Conley and Zehnder [CZ84]. Extend  by connecting (1) withinSp�2n (which has two connected components Sp�2n;�) to one of the two ref-erence matrices W� 2 Sp�2n;�W+ = �1l or W� = diag(2;�1; : : : ;�1| {z }(n�1) times ; 1=2;�1; : : : ;�1| {z }(n�1) times ):



174 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSLet ~ : [0; 2] ! Sp(2n;R) denote the extended path and let ~u = r(1)(~) bethe corresponding path in U(2n;R). Setting det ~u(t) = ei�(t) we de�ne�CZ() := �(2) � �(0)� 2 Z:(179)Note that �CZ is independent of the choice of the extension and invariantunder homotopies that keep the initial point 1l �xed and vary the endpointonly within Sp�2n. For an interpretation as an intersection number see theformer paragraph (�gure B.1) and Appendix D.TrivializationsThe following facts without proofs { including the construction of c1 {are taken from [MS95] section 2.6. Let E be a real vector bundle over anl-dimensional manifold N and ! a smooth nondegenerate section of E�^E�,i.e. on each �bre Eq we have a symplectic bilinear form !q varying smoothlywith q 2 N . (E;!) is called a symplectic vector bundle over N . A complexstructure on a vector bundle E ! N is an automorphism J of E such thatJ2 = �id. J is called compatible with ! if Jq is compatible with !q forall q 2 N , i.e. !q(Jq�; Jq�) = !q(�; �) and !q(v; Jqv) > 0 for all nonzerov 2 Eq. Let J (E;!) denote the space of complex structures compatiblewith !. J (E;!) is nonempty and contractible ([MS95] prop. 2.61). Forany compatible pair (J; !) the bilinear form gJ (�; �) = !(�; J �) is symmetric,nondegenerate and positive de�nite. A triple (!; J; g) with these propertiesis called a hermitian structure on E. E is called a hermitian vector bundle.A trivialization of a bundle E is an isomorphism from E to the trivial bundlewhich preserves the structure under consideration. As two symplectic vectorbundles (E1; !1) and (E2; !2) are isomorphic (i.e. 9 vector bundle morphism	 : E1 ! E2 such that 	�!2 = !1) if and only if their underlying complexbundles are isomorphic ([MS95] thm. 2.60), the notions of symplectic andcomplex trivialization are essentially the same. We therefore combine themby de�ning a unitary trivialization of a hermitian vector bundle E ! N tobe a smooth map � : N � R2n ! E(q; �) 7! �(q)�;where �(q) : R2n ! Eq is linear, which pulls back !; J and g to the standardstructures on R2n : ��J = J0 ; ��! = !0 ; ��g = g0:Proposition B.1.12. ([MS95] prop. 2.64) A hermitian vector bundleE ! � over a compact Riemann surface � with nonempty boundary @�admits a unitary trivialization.Let c : [0; 1] ! N be a smooth curve and E ! N be a hermitianvector bundle. Given any unitary isomorphisms �0 : R2n ! Ec(0) and



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 175�1 : R2n ! Ec(1) at the endpoints of c, there exists a unitary trivializa-tion �(t) : R2n ! Ec(t) of c�E which extends the ones at the endpoints([MS95] Lemma 2.63). This is a consequence of the pathwise connected-ness of U(n; C ), i.e. any two points are homotopic.Replacing the curve by a cylinder, a corresponding result clearly cannot beexpected to hold: The reason is that two loops in U(n; C ) are not homotopicin general. Moreover, the �rst Chern number of any symplectic vector bun-dle E ! �2 (as de�ned below by cutting � in pieces) could be arranged tobe zero.Lemma B.1.13. Let Z = f(r; #) 2 [0; 1] � R=2�Zg be the cylinder inpolar coordinates and E ! N be a hermitian vector bundle over an l-dimensional manifold N . Given a smooth map  : Z ! N and a uni-tary trivialization �0 : R=2�Z � R2n ! �0E over one end of Z, wherer(#) = (r; #), there exists a unitary trivialization � : Z � R2n ! �Ewhich extends �0.Proof. We give a parametrized version of the proof of Lemma 2.63in [MS95]. We �rst extend the trivialization �0 to a small neighborhood[0; �] � R=2�Z of 0 � R=2�Z: For � 2 R2n let �0(#)� = Pj sj0(#)�j, wherefsj0(#)g2nj=1 is the given symplectic, orthogonal frame of E(0;#). We have toconstruct 2n sections sj of E which satisfy g(sj ; sk) = �jk, !(sj; sj+n) = 1and !(sj; sk) = 0 for all other values of j and k. fsj(r; #))g2nj=1 is calleda unitary basis of E(r;#). Choose a Riemannian connection r on E andconsider the parallel transport ~sj(r; #) of sj0(#) along the curve r 7! (r; #)for �xed #. For small r(#) and �xed # the �rst n vectors ~s1(r; #); : : : ; ~sn(r; #)will be linearly independent over C . As R=2�Z is compact this also holds forall # 2 R=2�Z (choose r smaller than min# r(#)). Now apply Gram-Schmidtover the complex numbers to obtain a unitary basissk(r; #) := ~skj~skj � k�1XJ=1 g(sj ; ~sk)j~skj sj � k�1XJ=1 !(sj ; ~sk)j~skj Jsj ; sk+n := Jskwhere k = 1; : : : ; n. Cover the annulus Z by �nitely many annuli Zk =[ak; bk] � S1, k 2 f1; : : : ;mg, over which such a unitary trivialization ~�kexists. We may assume that ~�0(1; #) coincides with the given one �0(#) andZk \ Zk0 6= ; if and only if jk � k0j = 1. Starting at k = 0 we apply thefollowing procedure successively to all trivializations ~�k: Pick two adjacenttrivializations ~�k and ~�k+1 : Zk+1 � R2n ! �k+1E (where k = jZk) andconsider the transition map ~	k;k+1 := ~��1k �~�k+1 : Zk \ Zk+1 ! Sp(2n;R).We can associate a Maslov index to ~	k;k+1 by picking any k;k+1 : S1 !Zk \ Zk+1 generating �1(Zk \ Zk+1) = Z and setting �Symp( ~	k;k+1) :=�Symp( ~	k;k+1�k;k+1). Now pick a loop B in Sp(2n;R) with �Symp(B) =�Symp( ~	k;k+1) and replace ~�k+1(r; #) by �k+1(r; #) := ~�k+1(r; #) � B(#)�1,



176 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSthen 	k;k+1 := ~��1k � �k+1 = ~��1k � ~�k+1 �B�1:Clearly �Symp(	k;k+1) = �Symp( ~	k;k+1)� �Symp(B) = 0 and we can de�nea mapAk;k+1 : [ak+1; bk]� R=2�Z ! Sp(2n;R)(r; #) 7! (1l , for r near ak+1;	k;k+1(r; #) , for r near bk:Then �(r; #) := ~�k(r; #)�A(r; #) agrees with ~�k near ak+1 and with �k+1 nearbk. This way we get a unitary trivialization over Zk [ Zk+1 = [ak; bk+1].For k = m� 1 we end up this way with a trivialization �1 : R=2�Z�R2n !�1E over the second boundary component. We see that �1 is determinedby �0 up to homotopy: we can arrange to end up with any �1�B where�Symp(B) = 0.First Chern numberSince the set of isomorphism classes of symplectic and complex vectorbundles coincide, these are both characterized by the Chern classes. Weare only interested in the �rst Chern class c1, which is an element of theintegral 2-dimensional cohomology of the base manifold. For bundles over2-dimensional bases, c1 is completely described by the �rst Chern number,which is the value taken by c1 on the fundamental 2-cycle of the base.Theorem B.1.14. ([MS95] thm. 2.67) There exists a unique functorc1, called the �rst Chern number, which assigns an integer c1(E) 2 Z toevery symplectic vector bundle E over a compact oriented Riemann surface� without boundary and satis�es the following axioms(naturality) (E;!) ' (E0; !0) , rk E = rk E0 and c1(E) = c1(E0).(functoriality) For any smooth map � : �0 ! � of oriented Riemannsurfaces and any symplectic vector bundle E ! �c1(��E) = deg (�) � c1(E):(additivity) For any two symplectic vector bundles E1 ! � and E2 ! �c1(E1 �E2) = c1(E1 
E2) = c1(E1) + c1(E2):(normalization) c1(T�) = 2� 2g, where g is the genus of �.Remark B.1.15. ([MS95] remark 2.68) IfE is a symplectic vector bun-dle over any manifold N then the �rst Chern number assigns an integerc1(f�E) to every smooth map f : � ! N where � is a compact orientedRiemann surface without boundary. The axioms imply that this integerdepends only on the homology class of f . Thus the �rst Chern numbergeneralizes to an integral cohomology classc1(E) 2 H2(N;Z)



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 177which is called �rst Chern class.Theorem B.1.14 is proven by explicitly de�ning c1: let � be a compactoriented Riemann surface without boundary, choose a splitting� = �1 [C �2such that @�1 = @�2 = C. Orient the 1-manifold C as the boundary of �1:a vector v 2 TqC is positively oriented if f�(q); vg is a positively orientedbasis of Tq� where � : C ! T� is a normal vector �eld along C which pointsout of �1.Let E be the symplectic vector bundle over � and choose symplectic trivi-alizations for k = 1; 2 �k � R2n ! E(q; �) 7! �k(q)�of E over �1 and �2. By proposition B.1.12 they exist as @�k 6= ; fork = 1; 2.The overlap map is de�ned by	 : C ! Sp(2n;R)q 7! �1(q)�1 � �2(q):Using the map (177) � = det�I��r(1) : Sp(2n;R) ! S1 we de�ne c1(E) tobe the degree of ��	 : C ! S1c1(E) = deg ��	 = lXj=1 �Symp(	�j):(180)I.e. c1(E) equals the sum of the Maslov indices of the loops 	�j : R=Z !Sp(2n;R), where l is the number of components of C and each component isparametrized by a loop j : R=Z! C such that _j(t) is positively oriented.Conley-Zehnder index of periodic orbitsWe present two methods of canonically associating an integer to anynondegenerate 1-periodic Hamiltonian orbit z 2 Per H. Although the �rstmethod is very much along the lines of the standard one in Floer theory,we need to use the second construction in the main part of this thesis asit allows for an comparison between the Fredholm operators D0u and D�wappearing there.Method 1 Let z 2 Per (H) be a 1-periodic integral trajectory of theHamiltonian vector �eld XHt on T �M . We identify S1 �= R=Z and denotethe local coordinate by t. Let �zT �M be the connected component of thefree loop space containing z. Pick a reference loop z0 2 �zT �M and aunitary trivialization �z0 : S1 � R2n ! z�0TT �M



178 B. TWO VARIATIONAL PROBLEMS { BASIC FACTS
u

zz 0

u~Figure B.2. The reference loop z0 and z 2 Per (H)(this exists as U(n; C ) is connected). Now choose a homotopy u betweenz0 and z (the homotopy parameter is denoted by s 2 [0; 1]) and extend thetrivialization of z�0TT �M to u�TT �M by Lemma B.1.13. We get an inducedtrivialization �z : S1 � R2n ! z�TT �M:Denote by 't the time-t-map induced by XHt , i.e. z(t) = 'tz0 wherez0 = z(0), then de�neA : [0; 1] ! Sp(2n;R)t 7! �z(t)�1 � d't jz0 � �x(0):(181)Clearly A(0) = 1l and det (A(1)� 1l) = det (d'1(z0)� 1l) 6= 0 ; hence we mayde�ne the Conley-Zehnder index of the Hamiltonian orbit z by�CZ(z) := �CZ(A):(182)First of all we show that this is independent of the choice of the homotopyu. Here the crucial point is our result that the �rst Chern number is zero.Let ~u be another homotopy between z0 and z with corresponding unitarytrivializations ~�z0 = �z0 and ~�z. u and ~u �t together to form a torusT2 = u#z0;z~u � T �M (�gure B.2). Now0 = c1(TT2T �M) = �Symp(��1x0 �~�z0)� �Symp(��1z �~�z)= �Symp(1l)� �Symp(��1z �~�z) = ��Symp(	z;u;~u)where the minus sign comes in as we need to run through z in the oppo-site direction; the last equality is just the de�nition of the transition map	z;u;~u := ��1z �~�z. Using this we get ~�z = �z	z;u;~u and therefore�CZ( ~A) = �CZ(~�z(t)�1 d'tz(0) ~�z(0))= �CZ(	z;u;~u(t)�1 �z(t)�1 d'tz(0) �z(0)	z;u;~u(0))= 2�Symp(	�1z;u;~u) + �CZ(�z(t)�1 d'tz(0) �z(0)) + 0 = �CZ(A):Note that in the third equality we used the formula�CZ(	�A) = 2�Symp(	) + �CZ(A)



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 179from [DS94b] (property Loop) for the composition of a path A and a loop	 in Sp(2n;R).We observe that our de�nition of the Conley-Zehnder index depends onthe choice of the trivialization �z0 : These trivializations are characterizedup to homotopy �1(U (n; C )): the transition map between two trivializationsrepresents an element of the fundamental group. Our construction is inde-pendent of the reference loop as long as we extend �z0 along a homotopy ufrom z0 to a new reference loop ~z0. Di�erences of Conley-Zehnder indices ofperiodic orbits in the same connected component of the loop space, however,are well-de�ned in any case. Therefore our construction su�ces to expresscanonically, as required in standard Floer theory, a certain Fredholm indexas the di�erence of the Conley-Zehnder indices of two homotopic elementsof Per H.We remark that in the special case of a contractible periodic solution z, ourconstruction indeed reduces to the standard one described in [SZ92] section5: span in a disc u : D2 ! T �M and trivialize u�TT �M ! D2. Any twosuch unitary trivializations �; ~� restricted to S1 = @D2 are homotopic as~��1�� : S1 ! U(2n;R) is smoothly homotopic to the identity (as the �rstChern class is zero). So we have a natural trivialization at any periodicorbit.Method 2 In the main part of this thesis we would like to compare theConley-Zehnder index of z 2 Per(H) with the Morse index of the underlyingperturbed geodesic. As the latter is a well-de�ned integer, there should bea natural choice for the trivialization �z0 . Now to trivialize the Jacobi-operator (187) we need to assume that M is orientable. Let z 2 �T �M andx 2 �M be its base component. Choose any orthogonal trivialization�x : S1 � Rn ! x�TMwhich exists, precisely because M is orientable and SO(n;R) is connected.Let ��x�1 be the dual trivialization, then de�ne�z0(t) = ��x 00 ���1x � : Rn � Rn� ! x�TM � x�T �Mand A 2 C0([0; 1]; Sp(2n;R)) as in (181). Another orthogonal trivialization~�x leads to transition maps  x(t) = ��1x (t) ~�x(t) 2 O(n;R), hence~�z0 = �~�x 00 ~���1x � = ��x 00 ���1x �� x 00  x� = �z0�	:Now as before �CZ( ~A) = �CZ(A) because the transition map 	(t) 2Sp(2n;R) \ O(2n;R) has block diagonal form: therefore 	(t) lies entirelyin the stratum Spn(2n;R) and so �Symp(	) = 0 by [RS93] theorem4.1 (property Zero). Note that we have reduced the structure group ofx�TM �x�T �M to O(n;R). The underlying principle is the splitting in twoLagrangian subbundles.



180 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSIn the nonorientable case we proceed as above on those connected compo-nents of �M consisting of loops x such that x�TM admits an orthonormaltrivialization. On the others we may �nd an orthonormal trivialization �xover [0; 1] with boundary condition �x(0)�1��x(1) = diag(�1; 1; : : : ; 1).



B.2. THE CLASSICAL ACTION FUNCTIONAL 181B.2. The classical action functionalLet (M; g) be a closed Riemannian manifold. We introduce the energyfunctional of Riemannian geometry and call it classical action functionalthroughout this text. The �rst and second variational formulae are derivedin B.2.1. Its critical points are the (perturbed) closed geodesics and itsHessian at a critical point gives rise to the (perturbed) Jacobi operator. Thisis a selfadjoint operator on an appropriate L2-Hilbert space; the dimensionof the largest negative de�nite subspace is �nite as we will se in B.2.2 andis called the Morse index of the critical point.Let �M = W 1;2(R=Z;M) be the free loop space of M . For  2C1(S1;M) we denote by �(�TM) the smooth sections of the vector bundle�TM and W 1;2(�TM) denotes, for  2 �M , the completion of �(�TM)with respect to the norm k � k1;2.Definition B.2.1. Let V 2 C1(R=Z�M;R) andIV : �M ! R 7! Z 10 12g( _(t); _(t))� V (t; (t)) dt :We call IV the classical action functional (in Riemannian geometry I0 iscalled energy functional). Its integrand L : R=Z � TM ! R is called theLagrangian; the Lagrangian is the Legendre transform of the HamiltonianH : R=Z � T �M ! R.OnW 1;2(�TM) we have two inner products, namely the L2-inner prod-uct h�1; �2i0;2 = Z 10 g(�1(t); �2(t)) dt(183)and the W 1;2-inner producth�1; �2i1;2 = Z 10 g(�1(t); �2(t)) + g(rt�1(t);rt�2(t)) dt :(184)Proposition B.2.2. (partial integration) Let �1; �2 2 �(�TM),then hrt�1; �2i0;2 = h�1;�rt�2i0;2 :Proof. In natural local coordinates we have (we drop the argument tin our notation)hrt�1; �2i0;2 = Z 10 gij()� _�i1 + �ikl()�k1 _l� �j2 dt ;



182 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSh�1;�rt�2i0;2 = Z 10 �gij()�i1 � _�j2 + �jkl()�k2 _l� dt= Z 10 �@gij()@r _r�i1�j2 + gij() _�i1�j2 � gij()�i1�jkl()�k2 _l� dt:The second term is �ne, using (95) twice we observe that the �rst and thirdtogether equal Z 10 �k1�j2 _lgij()�ilk() dt ;hence we are done.B.2.1. First and second variation formulae.Lemma B.2.3. (1: variation formula) Let  2 C1(S1;M), � 2�(�TM), thendIV () � = Z 10 g (�rt@t(t)� grV (t; (t)); �(t)) dt :Proof. Let � , � 2 (��; �), � > 0 small be a variation of , i.e. (t; �) =� (t) is di�erentiable, 0 =  and dd� � j�=0= � (cf. [Jo95], Section 4.1),then the LHS is de�ned to bedd� IV (� )�����=0 = dd� �����=0 Z 10 12g( _� (t); _� (t))� V (t; � (t)) dt= Z 10 dd� �12gij(� ) _i�j�������=0 � @V@i �i dt= Z 10 12 @gij()@l �l _i _j + gij() _�i _j � gls()gil()@V@i �s dt= Z 10 gik()�kjl()�l _i _j + gji() _�j _i � gls()(grV (t; ))l�s dt= Z 10 g( _;rt�)� g(grV (); �) dt= h�rt@t � grV (t; ); �i0;2where in the 4th equality it is easier to proceed in the opposite directionusing (95) and renaming of indices (as there is a symmetry in indices i; j).The last equality follows from Proposition B.2.2 (partial integration).Note that without using proposition B.2.2 our result wasdIV () � = h@t;rt�i0;2 + h�grV (t; ); �i0;2 :(185)This continues to hold if  2 �M and � 2W 1;2(�TM).



B.2. THE CLASSICAL ACTION FUNCTIONAL 183Lemma B.2.4. (cf. [Jo95], lemma 7.2.1) 2 �M with dIV () � 0 on W 1;2(�TM)()  2 C1(S1;M) and �rt@t � grV (t; ) � 0 :Definition B.2.5. i)  2 C1(S1;M) with rt@t � 0 is called a closedgeodesic. We call  2 C1(S1;M) with�rt@t � grV (t; ) � 0a perturbed closed geodesic.ii) Let  2 �M , then we de�ne the L2-gradient of IV at  bydIV () � = hL2-grad IV (); �i0;2 ; 8� 2W 1;2(�TM):iii) Finally de�ne Crit IV = f 2 �M j dIV () � 0 on W 1;2(�TM)g :Hence if  2 C1(S1;M) we haveL2-grad IV () = �rt@t � grV (t; ) :(186)Lemma B.2.6. (2: variation formula) For any loop  2 C1(S1;M)with L2-grad IV () = 0 and any �1; �2 2 �(�TM) it holdsHess IV () (�1; �2):= d2IV () (�1; �2)= Z 10 g (�rtrt�1 �R(�1; _) _ �r�1grV (t; ); �2) dt :Proof. Let � be a variation of  as above,d2IV ()(�1; �2) = dd� dIV (� )�1�����=0= Z 10 dd� g(� )(�rt@t� � grV (t; � ); �1)�����=0 dt :Now de�ne F(� ) = �rt@t��grV (t� ), hence we have to linearize the mapF at a zero (and therefore we can neglect the term involving dd� g(� ) j�=0).For simplicity of notation let � = �2, then�(dF ()�)k = � dd� F (� )k�����=0= dd� �����=0 ��k� + �kij(� ) _i� _j� + gkj(� )@V (t; � )@j �= ��k + �kij()@l �l _i _j + 2�kij() _�i _j + @gkj()@l �l @V (t; )@j+ gkj()@2V (t; )@l@j �l :



184 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSAs we already know where we would like to end up, we are now goingbackwards: Using (grV ())k = gkl()@V ()@l(rtrt�)k + (R(�; _) _)k + (r�grV (t; ))k= @t(rt�)k +�kij _i(rt�)j +Rklij�i _j _l + �i@gkl@i @V@l+ �igkl @2V@l@i + gjl�kij�i @V@l= ���k + @�kij@l _l _i�j + �kij(��irs _r _s � gil @V@l )�j + �kij _i _�j�+ ��kij _i _j + �kij�jrs _i _r�s�+ �@�kjl@i � @�kil@j + �ki���jl � �kj���il��i _j _l+ �i@gkl@i @V@l + �igkl @2V@l@i + gjl�kij�i @V@l :In the last equality we used F() = 0. Now terms 1; (5+6); 8; 12; 13 are theones we are looking for. The remaining terms cancel in pairs: (2 + 9); (3 +10); (4 + 14); (7 + 11).Proposition B.2.7. The bilinear formd2IV () (�; �) : �(�TM)� �(�TM)! Ris symmetric.Proof. We have to check that 8�1; �2 2 �(�TM)Z 10 g(�rtrt�1 �R(�1; _) _ �r�1grV (t; ); �2) dt= Z 10 g(�1;�rtrt�2 �R(�2; _) _ �r�2grV (t; ); �2) dt :The �rst term is �ne which follows from partially integrating twice, Propo-sition B.2.2. The curvature term is also �ne�g(R(�1; _) _; �2) = �g(R( _; �2)�1; _) = �g(R(�2; _) _; �2) :The �rst equality uses the identity (99), in the second we get two minussigns. It remains to check the potential termg(r�1grV (t; ); �2) = �1�2V (t; )� (r�1�2)V (t; )= �2�1V (t; )� (r�2�1)V (t; )= g(r�2grV (t; ); �1) :



B.2. THE CLASSICAL ACTION FUNCTIONAL 185The second equality follows from the connection being torsion free, we alsoused g(grV (t; ); �) = dV (t; )� = �V (t; ) several times. In local coordi-nates the integrand isgir�l1� @@l (gij @V@j ) + �ilsgsj @V@j ��r2= � @2V@l@r � �jlr @V@j ��l1�r2 ;where we applied (95) as well as (114). The �rst factor is symmetric in land r.B.2.2. Morse index. We may de�ne a linear map A : �(�TM) !�(�TM) { called the perturbed Jacobi operator { by setting 8�1; �2 2�(�TM)d2IV () (�1; �2) = h�rtrt�1 �R(�1; _) _ �r�1grV (t; ); �2i0;2=: hA�1; �2i0;2 :(187)Symmetry of d2IV () implies symmetry of A with respect to the L2-innerproduct h�; �i0;2. Now we may take the closure of �(�TM) with respectto the L2-inner product (completion, cf. [RS1], thm I.3) and denote it byL2(�TM).As A is symmetric on �(�TM) and this is a dense subset of L2(�TM),A is closable ([RS1], section VIII.2). The closure is denoted by A and itis de�ned on D(A) � L2(�TM). One may think of A as the operatorwhose graph is the closure ofgraph A = f(�;A �) j � 2 �(�TM)g � L2(�TM)� L2(�TM)(188)with respect to the norm on L2(�TM)� L2(�TM) given byk(�1; �2)kL2(�TM)�L2(�TM) = k�1k2 + k�2k2 :(189)As k(�;A�)kL2(�TM)�L2(�TM) is equivalent to the W 2;2-norm of �, weobserve that A is a bounded operatorA : D(A) =W 2;2(�TM)! L2(�TM) :(190)As it su�ces to check properties of a closed operator on a dense subset, wesee that A is symmetric. Moreover, as the �rst term �rtrt of A is aLaplacian, which is known to be selfadjoint on L2(�TM) with dense do-main W 2;2(�TM), and the curvature and potential terms (being boundedoperators) are �rtrt-bounded with relative bound 0, the Kato-Rellich the-orem (cf. [RS2], theorem X.12) implies that A is selfadjoint. Hence Ahas real eigenvalues. In what follows we denote A for simplicity by A .Theorem B.2.8. ( Morse index theorem ) Let  2 Crit IV , thenthe dimension of the largest subspace of W 2;2(�TM) on which d2IV () (�; �)is negative de�nite is �nite. We call this number Ind () the Morse index



186 B. TWO VARIATIONAL PROBLEMS { BASIC FACTSof . The dimension of the largest subspace on which d2IV () (�; �) vanishesNull () is called nullity of  and is also �nite.Proof. The following beautyful and surprisingly direct proof may befound in [Jo95], Lemma 4.3.2. Assume by contradiction that there isan in�nite dimensional subspace W of the domain W 2;2(�TM) on whichd2IV ()(�; �) is negative semide�nite. Recall that our Hilbert space isL2(�TM) andW 2;2(�TM) is the dense domain on which d2IV ()(�; �) andA are well-de�ned. Now let fXigi2N be a set of elements of W such thathXi;Xji0;2 = �ij :Using our assumption we get0 � d2IV ()(Xn;Xn)= hrtXn;rtXni0;2+ h�R(Xn; _) _;Xni0;2 + h�rXngrV (t; );Xni0;2and hencekrtXnk0;2 �j hR(Xn; _) _;Xni0;2 j + j hrXngrV (t; );Xni0;2 j� kRk � k _k0;2 � kXnk0;2| {z }=1 +kDgrV (t; )k � kXnk20;2| {z }=1 = const :Here kRk is the norm of the linear operator R(Xn; _) : T(t)M ! T(t)Mintegrated over the compact manifold M , similar for kDgrV (t; )k. NowkXnk21;2 = kXnk20;2 + krtXnk20;2 � 1 + const ;hence by Rellich's theorem a subsequence converges in L2(�TM). On theother hand this is impossible as we started with an L2-orthonormal sequence.



APPENDIX CA version of Newton's iteration methodWe study a version of Newton's iteration method of �nding a zero of acontinuously di�erentiable map f given suitable a-priori data. The di�erenceto the original method (�gure C.1) is that we linearize f only once, at thestarting point x0 of the iteration process (�gure C.2).In section C.1 we begin with the case of real-valued functions in order toget familiar with the method in a simple setting. Section C.2 deals with thegeneral case of maps between Banach spaces. Here a new subtlety arises:Namely the condition on the linearization D of f at x0 to admit a rightinverse. This turns out to be equivalent to surjectivity ofD and the existenceof a topological complement of ker D, which is satis�ed for instance by anysurjective Fredholm operator. In section C.3 we apply theorem C.2.9 on theNewton method to prove the inverse function theorem C.3.2 as well as theimplicit function theorem C.3.4. The latter will, in the regular case, givethe manifold properties and the dimension formulae for the moduli spacesunder investigation M0(x�; x+) and M1(x�; x+) of parabolic respectivelyelliptic boundary value problems.
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Figure C.2. The modi�ed Newton method187



188 C. A VERSION OF NEWTON'S ITERATION METHODC.1. Real-valued functionsWe describe the Newton method of �nding a zero of a real-valued con-tinuously di�erentiable function f : Start with a point x0 such that f(x0) issu�ciently small, f 0(x0) 6= 0 and the �rst derivatives of f do not vary toomuch in a neighbourhood of x0. The idea is to �nd a zero of f nearby x0by solving the linear equation for �0t0(�0) = f(x0) + f 0(x0)�0 = 0and then de�ne the new starting point x1 = x0 + �0. Now iterate thisprocedure by solving the equation t�(��) = f(x�) + f 0(x�)�� = 0 for � =1; 2; 3; : : : , where x� = x��1 + ���1 (�gure C.1). The assumptions on fguarantee convergence of the sequence (x�)1�=0 to a point x1 with f(x1) =0. In order to use throughout the same estimate jf 0(x0)j�1 � c, we slightlymodify the method: We only use parallel translates of the tangent t0. After�nding the zero x1 of t0, we draw a line parallel to t0 through the point(x1; f (x1)) and determine its zero x2 and so on (�gure C.2).Theorem C.1.1. Let f 2 C1(R;R) and x0 2 R such that there existconstants �; c > 0 withjf(x0)j < �2c ; 1jf 0(x0)j � c ; jf 0(x)� f 0(x0)j < 12cwhenever jx� x0j < �. Then there exists a unique x̂ with jx̂� x0j � � andf(x̂) = 0.Proof. The equation for the tangent t0 in a new coordinate systemwith origin at x0 is given byt0(y) = my + b = f 0(x0)y + f(x0) , its zero by �0 = � f(x0)f 0(x0) :With respect to the coordinate system x the zero of t0 is given by x1 =x0 + �0. The assumptions implyj�0j = jf(x0)jjf 0(x0)j � cjf(x0)jj�0j < �2jf(x1)j = jf(x0 + �0) =0z }| {�f(x0)� f 0(x0)�0 j� Z �00 jf 0(x0 + t)� f 0(x0)j dt < j�0j 12c :Now proceed inductively by de�ning�� = � f(x�)f 0(x0) and x�+1 = x� + �� ; � = 1; 2; 3; : : : :(191)



C.1. REAL-VALUED FUNCTIONS 189We have to show that i) j�� j � cjf(x�)jii) j�� j < 12 j���1jiii) jf(x�+1)j < 12c j�� jimply the corresponding statements with � replaced by � + 1ad i) j��+1j (191)= jf(x�+1)jjf 0(x0)j � cjf(x�+1)jad ii) j��+1j � cjf(x�+1)j iii)< 12 j�� jad iii) jf(x�+2)j = jf(x�+1 + ��+1) (191)=0z }| {�f(x�+1)� f 0(x0)��+1 j� Z ��+10 jf 0(x�+1 + t)� f 0(x0)j dt < 12c j��+1j:Note that ii) implies jx� � x0j < �, 8� 2 N, and x̂ = lim�!1 x� = x0 +P1k=0 �k exists as we have absolute summability of the seriesNX�=0 �� � NX�=0 j�� j < �2 NX�=0 12� N!1�! �2 � 11� 1=2 = �:We get jx̂� x0j = lim�!1 jx� � x0j = lim�!1 ����� �Xk=0 �k����� � �and jf(x̂)j = lim�!1 jf(x�)j iii)� lim�!1 12c � j���1j � lim�!1 �4c � 12��1 = 0:This proves existence. Uniqueness follows from the mean value theorem andthe estimate jf 0(x)j � jf 0(x0)j � jf 0(x)� f 0(x0)j � 12c > 0for all x with jx�x0j � �: assume there was another point ~x with j~x�x0j � �and f(~x) = 0, then there is x0 between ~x and x̂ with f 0(x0) = 0 (mean valuetheorem), which contradicts the above estimate.



190 C. A VERSION OF NEWTON'S ITERATION METHODC.2. Banach space-valued mapsWe de�ne the topological complement of a closed subspace of a Banachspace and the right inverse of a bounded linear operator between Banachspaces. The existence of a right inverse T of a bounded linear operator Dis equivalent to the existence of a topological complement of ker D and sur-jectivity of D. It turns out that any surjective Fredholm operator admitsa right inverse. Next we state a replacement of the mean value theoremneeded in the uniqueness part of the proof of the main theorem. This the-orem asserts the existence of a unique zero of a continuously di�erentiablemap f between Banach spaces X and Y nearby an approximate zero x0under suitable conditions. A crucial condition is the existence of a rightinverse of df(x0).Definition C.2.1. Let W � X be a closed subspace of a Banach spaceX. A subspace L � X is called the topological complement of W , if L isclosed, W \ L = f0g and W � L = X.Lemma C.2.2. Any �nite dimensional subspace V of a Banach space Xadmits a topological complement L.Proof. (cf. [Br83], se. II.4) Let fe1; : : : ; eng be a basis of V andwrite v 2 V as v = Pni=1 viei. For i = 1; : : : ; n de�ne continuous linearfunctionals 'i(v) = vi and apply Hahn-Banach to extend 'i to a continuouslinear functional ~'i : X ! R. Now we setL = n\i=1( ~'i)�1(0):Clearly L is closed, L \ V = f0g and L � V � X. It remains to showX � L� V . Let x 2 X and write x = xL+ xV + z, where z =2 V and z =2 L.The latter implies there exists i with ( ~'i)�1(z) = c 6= 0, hence z = c �ei 2 V ,a contradiction.Definition C.2.3. Let D : X ! Y be a bounded linear operator be-tween Banach spaces. T : Y ! X is called right inverse of D, if DT = idYand T is a bounded linear operator.Proposition C.2.4. Let X;Y be Banach spaces. A bounded linear op-erator D : X ! Y admits a right inverse T , if and only if D is surjectiveand ker D admits a topological complement in X.Proof. "(" Let X1 denote the topological complement of ker D inX, then D1 = DjX1 : X1 ! Y is a bijective bounded linear operator. Itsinverse (D1)�1 : Y ! X1 is bounded by the open mapping theorem. Wede�ne T = i � (D1)�1, where i : X1 ! X is the inclusion.")" Let T 2 L(Y;X) be the right inverse of D. DT = idY implies D sur-jective and T injective. X1 := im T is the required topological complementof ker D in X:



C.2. BANACH SPACE-VALUED MAPS 191i) im T closed: Let (x�)�2N � X1 = im T be a Cauchy sequence in X, thenx� = Ty� for a unique element y� . Now (y�)�2N is a Cauchy sequence in Y :ky� � y�kY DT=idY= kDT (y� � y�)kY � kDk � kx� � x�kX :Therefore y� �!1�! y and Ty� �!1�! Ty as T is continuous. On the other handTy� = x� �!1�! x, so x = Ty.ii) KerD\ imT = f0g: Let x 2 kerD\ imT , then x = Ty and y = DTy =Dx = 0, hence x = 0.iii) ker D � im T = X: Let D̂ : X=ker D ! Y denote the bijective linearoperator induced by D. The composition TD̂ : X=kerD ! imT is bijective.An immediate consequence isCorollary C.2.5. Any surjective Fredholm operator has a right in-verse.Definition C.2.6. Let X;Y be Banach spaces and U � X open. Afunction f : X � U ! Y is called di�erentiable at x 2 U , if there is anelement f 0(x) 2 L(X;Y ) such thatkf(x+ h)� f(x)� f 0(x)hk = o(khk) as khk ! 0:The latter symbol means thatkf(x+ h)� f(x)� f 0(x)hkkhk ! 0 as khk ! 0:If the LHS is only bounded we write O(khk). o and O are called Landausymbols.Let now I � R be an open interval and  : I ! X be a curve in theBanach space X. The following Lemma is a generalization of the mean valuetheorem for real-valued functions.Lemma C.2.7. i) If  : I ! X is di�erentiable at every point in I, thenk(s)� (t)k � js� tj � sup�2[0;1] k0(t+ � (s� t))k ; 8s; t 2 I:ii) If  : I ! X is continuous in [t; s], di�erentiable in (t; s) and v 2 X,then k(s) � (t)� v(s� t)k � js� tj � sup�2(0;1) k0(t+ � (s� t))� vk:Proof. ([H�oI], thm. 1.1.1.) i) Fix s, t 2 I and let � > 0, M� =� + sup�2[0;1] k0(t+ � (s� t))k and setE� = f� 2 [0; 1] j k(t+ � (s� t))� (t)k �M� � � � jt� sjg: continuous implies E� closed and therefore compact. As 0 2 E�, E� isnonempty and so has a largest element �max (take the maximum of the



192 C. A VERSION OF NEWTON'S ITERATION METHODcontinuous function [0; 1] � E� ! R : � 7! �). If � > �max and � � �max issu�ciently small, we havek(t+ � (s� t))� (t)k� k(t+ � (s� t))� (t+ �max(s� t))k+ k(t+ �max(s� t))� (t)k�M� � j(� � �max)(s� t)j+M� � �max � js� tj =M� � � js� tj:The second inequality follows from the di�erentiability of  and the factthat �max 2 E�. Hence � 2 E�, so �max = 1. As this holds for any � > 0 theresult follows.ii) We obtain the estimate in i) with supremum for � 2 (0; 1) as a limitof i) applied to smaller closed intervals. If v 2 X, application of i) to�(t) = (t)� tv gives the result.Corollary C.2.8. Let f : X ! Y be a map between Banach spaces,di�erentiable on the line segment [x; y] = fx + �(y � x) j � 2 [0; 1]g. Thenfor any S 2 L(X;Y ) it holdskf(y)� f(x)� S(y � x)k � ky � xk � sup�2(0;1) kf 0(x+ � (y � x))� Sk:Proof. The curve (�) = f(x+ � (y � x)) � S�(y � x) is di�erentiablein � on [0; 1] with derivative0(�) = f 0(x+ � (y � x)) (y � x)� S(y � x):Now apply Lemma C.2.7 ii) with s = 1, t = 0 and v = S(y � x). Then useboundedness of S and f 0 on [x; y].Theorem C.2.9. (Newton method) Let f : X ! Y be a continuouslydi�erentiable map between Banach spaces. Suppose D = df(x0) is onto withright inverse T and there exist constants �; c > 0 such thatkf(x0)k � �2c ; kTk � c ; kdf(x)�Dk � 12c(192)whenever kx � x0k � �. Then there exists a unique ~x 2 X with f(~x) = 0,k~x� x0k � � and ~x� x0 2 im T .Proof. The �rst step of Newton's iteration is to de�ne�0 = �Tf(x0) ; x1 = x0 + �0:(193)Using the assumptions we estimatek�0k = kTf(x0)k � c kf(x0)kk�0k (192)� �2kf(x1)k = kf(x0 + �0)�f(x0)�D�0| {z }(192)= 0 k � 12c k�0k:



C.2. BANACH SPACE-VALUED MAPS 193To get the last estimate we applied Corollary C.2.8 with S = D, y = x0+ �0and x = x0:kf(x0 + �0)� f(x0)�D�0k � k�0k sup�2(0;1) kdf(x0 + ��0)�Dk(192)� 12c k�0k:For � = 1; 2; 3; : : : we de�ne inductively�� = �Tf(x�) ; x�+1 = x� + �� :(194)Assuming that for any � 2 Ni) k��k � c kf(x�)kii) k��k � 12 k���1kiii) kf(x�+1)k � 12c k��kwe have to show that this implies the corresponding statement with � re-placed by � + 1:ad i) k��+1k (194)= kTf(x�+1)k � c kf(x�+1)kad ii) k��+1k iii)� 12 k��kad iii) kf(x�+2)k = kf(x�+1 + ��+1)�f(x�+1)�D��+1| {z }(194)=0 k � 12c k��+1k:In the last step we again applied Corollary C.2.8 with S = D, y = x�+1+��+1and x = x�+1. Note that in estimating the supremum term by 1=2c we usethe fact kx�+1 + ��+1 � x0k =  �+1Xk=0 �k � �+1Xk=0 k�kk � �2 �+1Xk=0 12k < �:This estimate also shows the absolute summability of the seriesP1k=0 �k andso the following limit exists~x = lim�!1x� = x0 + lim�!1 �Xk=0 �k:Clearly k~x� x0k � � andkf(~x)k = lim�!1 kf(x�+1)k iii)� lim�!1 12c k��k ii)� �4c lim�!1 12� = 0;hence f(~x) = 0. As �� 2 im T and im T is closed, it follows ~x� x0 2 im T .This proves existence.



194 C. A VERSION OF NEWTON'S ITERATION METHODTo prove uniqueness assume there exists another x̂ 2 X with kx0� x̂k ��, f(x̂) = 0 and x0 � x̂ 2 im T , i.e. there exist ~y, ŷ 2 Y such that thefollowing hold x0 � ~x = T ~y ; x0 � x̂ = T ŷ:Now use the assumptions and apply corollary C.2.8 with S = D, y = ~x andx = x̂ to get k~y � ŷk = kf(~x)� f(x̂)�D(~x� x̂)k� k~x� x̂k sup�2(0;1) kdf jx̂+�(~x�x̂) �Dk� kT (ŷ � ~y)k 12c� 12 kŷ � ~y)k:Therefore k~y � ŷk = 0, i.e. ~y = ŷ, and so 0 = T ~y � T ŷ = x̂� ~x.Remark C.2.10. The uniqueness part in the above proof may also bedemonstrated by using basic quadratic estimates as in lemma 5.0.9 in chapter5 instead of corollary C.2.8. Assume there are elements ~x, x̂ 2 X withkx0 � ~xk+ kx0 � x̂k � �f(~x) = 0 = f(x̂)and x0 � ~x = T ~y ; x0 � x̂ = T ŷfor some ~y, ŷ 2 Y , thenk~x� x̂k = kT (ŷ � ~y)k � c kŷ � ~yk = c kD(~x� x̂)k= c kf(x̂)� f(~x)�D(x̂� ~x)k� c kf(~x+ (x̂� ~x))� f(~x)� df j~x (x̂� ~x)k+ c k(df j~x �D) (x̂� ~x)k� c � c(x̂� ~x) kx̂� ~xk2 + c 12c kx̂� ~xk= (c � c(x̂� ~x) 2� + 1=2) kx̂� ~xk:Here c(x̂� ~x) is the continuous function appearing in lemma 5.0.9 in chapter5, hence for � > 0 su�ciently small it follows kx̂� ~xk = 0.



C.3. INVERSE AND IMPLICIT FUNCTION THEOREM 195C.3. Inverse and implicit function theoremAs an application of the Newton method we prove the inverse functiontheorem and as a consequence the implicit function theorem. The latterstates that the preimage of a regular value of a smooth map between Banachspaces is a smooth manifold. Indeed it can be locally represented as thegraph of a smooth function (�gure C.4).Definition C.3.1. We say that a bounded linear operator D betweenBanach spacesX and Y is invertible, if there exists a bounded linear operatorT : Y ! X such that D � T = idY and T �D = idX . In this case we denoteT by D�1. D invertible is equivalent to D bijective.Theorem C.3.2. (Inverse function theorem) Let f 2 Ck(X;Y ),k � 1, X;Y Banach spaces, and assume that df(x0) is invertible at a pointx0 2 X. Then there exists a constant � > 0 such that for any y 2 Y withky � f(x0)k < � there exists a unique x 2 X near x0 for which f(x) = y.Moreover, f maps an open neighbourhood U of x0 bijectively onto V =f(U) = fy 2 Y j ky � f(x0)k < �g. The inverse f�1 is in Ck(V;U) anddf�1(y) = df(x)�1for y 2 V and x 2 U with f(x) = y.Proof. We assume without loss of generality x0 = 0 and f(x0) = y0 = 0(otherwise pick the function ~f(x + x0) � y0). As D = df(0) 2 L(X;Y ) isinvertible, it has a bounded inverse T . Let c0 > 0 be such that kTk � c0.Continuity of df(x) implies that there exists � > 0 such thatkdf(x)�Dk � 12c0 for kxk � �:As invertibility is an open condition we may pick � > 0 su�ciently small inorder to guarantee invertibility of df(x) whenever kxk � �.Now we show that f is a bijection between an open neighbourhood ofzero U � BX� (0) and V = BY�=2c0(0), i.e. we set � = �=2c0. Pick y 2 V andde�ne Fy : BX� (0) ! Yx 7! f(x)� y:We would like to apply the Newton method (Theorem C.2.9) to get a uniquezero of Fy. Fy has the following properties1. Fy(0) = �y ) kFy(0)k = kyk < �=2c02. dFy(0) = df(0) = D ) kdFy(0) � dFy(x)k � 1=2c0 for kxk � �3. T is a right inverse of dFy(0) with kTk � c0.Theorem C.2.9 gives now the unique zero x of Fy in BX� (0). As f is con-tinuous, U = f�1(V ) � BX� (0) is an open neighbourhood of 0 2 X. Hencef jU : U ! V is bijective (cf. �gure C.3).
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Figure C.3. Inverse function theoremIt remains to show that f�1 is continuously di�erentiable in V : pick anyy 2 V and x 2 U with f(x) = y. Let Tx be the inverse of Dx = df(x) with0 < kTxk � c1 = c1(x). Continuity of df(�) implies that there exists �1 =�1(x) > 0 such that kdf(x)� df(x+ �)k � 1=2c1 for all � 2 BX�1(0). Choose�1 > 0 su�ciently small such that BY�1=2c1(y) � V . Let f(x+ �) = y + � for� 2 V1 := BY�1=2c1(0), � 2 U1 := f�1(V1 + y)� x. Our claim is to establishkf�1(y + �)� f�1(y)� df(x)�1�k = o(k�k) for k�k ! 0:(195)We analyze the Newton iteration for the functionGy : BX�1 (0) ! Y� 7! f(x+ �)� (y + �):We have1. Gy(0) = �� ) kGy(0)k = k�k � �1=2c12. dGy(0) = df(x) ) kdGy(0)� dGy(�)k � 1=2c1 for k�k < �13. Tx is a right inverse of dGy(0) with kTxk � c1.The iteration starts with setting x0 = 0 and�0 = �TxGy(0) = Tx�(196)then x1 = x0 + �0 = �0�1 = �TxGy(x1) = �Tx(f (x+ �0)� (y + �)):Note that k�1k � c1kf (x+ �0)� (y + �)k = o(k�k) for k�k ! 0;(197)becausef(x+ �0) = f(x+ Tx�) = =yz}|{f(x)+ =�z }| {df(x) Tx�+o(kTx�k) for kTx�k ! 0and 1c1 kTx�k � k�k � kDk � kTx�k:



C.3. INVERSE AND IMPLICIT FUNCTION THEOREM 197The last estimate ensures that if a function is of class o(kTx�k) for kTx�k !0, then it is also of class o(k�k) for k�k ! 0. Recall from the proof ofTheorem C.2.9 that the zero � of Gy is given by� = x0 + 1Xk=0 �k ; where k�kk � 12 k�k�1k ; k 2 N;hence the LHS of equation (195) is given bykx+ � � x� Tx�k (196)= k� � �0k � 1Xk=1 k�kk� k�1k 1Xk=1 12k�1 = 2 k�1k (197)= o(k�k) as k�k ! 0:This proves the theorem for k = 1. The case k > 1 follows inductively.Definition C.3.3. i) A Fredholm operator is a bounded linear map D :X ! Y between Banach spaces with the following properties: dimKerD <1, Ran D is closed and dim coker D < 1. The Fredholm index of D isde�ned by Ind D = dim ker D � dim coker D.ii) A map f 2 Ck(X;Y ), k � 1, between Banach spaces is called a Fredholmmap, if its linearization D = df(x) : X ! Y is a Fredholm operator for everyx 2 X. Ind D is invariant under small perturbations, hence Ind df(x) isindependent of the choice of x. We denote it by Ind f .iii) For any map f as in ii) (Fredholm or not) an element y 2 Y is calleda regular value of f , if df(x) : X ! Y admits a right inverse for everyx 2 f�1(y). Note that by de�nition an element y 2 Y with f�1(y) = ; is aregular value.Theorem C.3.4. (Implicit function theorem) Let f 2 Ck(X;Y ),k � 1, where X and Y are Banach spaces. If y is a regular value of f , thenM = f�1(y) � Xis a Ck-Banach manifold. If f is a Fredholm map, then M is �nite dimen-sional dimM = Ind f:Proof. Assume without loss of generality y = 0 and x0 = 0 2 f�1(0)(otherwise pick the function ~f(x+ x0)� y). As zero is a regular value of f ,D = df(0) : X ! Y is surjective and admits a right inverse T 2 L(Y;X).Hence we have X = ker D � im T . We de�ne the functionF : ker D � im T ! ker D � Y(�; �) 7! (�; f (�; �))and observe thatdF (�; �) = � 1lker D 0@�f(�; �) @�f(�; �)� : ker D�im T ! ker D�Y
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Figure C.4. Implicit function theoremis surjective at (�; �) = (0; 0): the second row is precisely df (0). It is alsoinjective at (0; 0): 1lker D and @�f(0; 0) = df(0)jim T are isomorphisms and@�f(0; 0) = df(0)jker D = 0. Therefore we may apply the inverse functiontheorem C.3.2 and conclude that F is locally at (0; 0) a di�eomorphism, i.e.there exist neighbourhoods U(0; 0) � kerD� imT and V (0; 0) � kerD�Ysuch that ~F = F jU(0;0) : U(0; 0) ! V (0; 0) is a di�eomorphism. Restricting~F�1 to (ker D � 0) \ V (0; 0) gives another di�eomorphism' : (ker D � 0) \ V (0; 0) ! M\ U(0; 0)(�; 0) 7! ~F�1(�; 0):This proves the theorem.Another interpretation of ' is as follows: setting ~F�1(�; 0) = (�; g(�))de�nes a smooth function g : ker D � U(0) ! im T , where U(0) is theneighbourhood of 0 2 ker D de�ned by projecting U(0; 0) to its �rst com-ponent. We get M locally around x0 = (0; 0) as the graph of g. We haveg(0) = 0 and dg(0) = 0. The last statement follows from�1lker D 0dg(0) 0� = dF�1(0; 0) = dF jF�1(0;0)=(0;0) = � 1lker D 0@�f(0; 0) @�f(0; 0)�and @�f(0; 0) = 0 as shown above (�gure C.4).



APPENDIX DTopology of Sp(2; R) and the Conley-ZehnderindexThe symplectic linear group arises naturally in the study of linear Hamil-tonian equations (cf. [Ar88])_�(t) = �J0S�(t) ; J0 = �0 �1l1l 0 �where S is the Hessian of the Hamiltonian H : R2n ! R. The solution �with initial condition �(0) = �0 is given by�(t) = e�tJ0S�0 def= A(t)�0and A(t) is in Sp(2n;R) = fA 2 Mat(2n;R) j ATJ0A = J0g for any t. Forn = 1 the symplectic linear group coincides with the special linear groupSl(2;R), whose elements have determinant 1 and so are area-preserving.In 1984 Conley and Zehnder introduced an index for continuous paths inSp(2n;R) which start at the identity and end at a matrix whose spectrumdoes not contain 1. This index became an important ingredient in theconstruction of Floer homology for symplectic manifolds [F89b], [RS95],which lead to a proof of the Arnold conjecture in considerable generality(the number of �xed points of an exact symplectic di�eomorphism on asymplectic manifold can be estimated below by the sum of its Betti numbersprovided that the �xed points are nondegenerate, [Ar65]).In section D.1 our �rst claim is to show that Sp(2;R) is homeomorphicto the interior of the full 2-torus S1 �D2, where D2 denotes the open unitdisc. The explicit homeomorphism was taken from an article of Gelfand andLidskii [GL58], 1958. Visualizing particular subsets of Sp(2;R) in �gure 6we discuss the notion of an eigenvalue of the �rst and second kind.In section D.2 we recall the de�nition of the Conley-Zehnder index. Weinterpret this index in the case n = 1 as intersection number of a path withthe Maslov cycle C+, which is a codimension one algebraic subvariety (�gure8). We then introduce a generalized Conley-Zehnder index, where we dropthe condition on the endpoint of the path. A simple example is discussed(�gure D.5). Finally we visualize and discuss another Maslov-type index, theRobbin-Salamon index, which may be interpreted as intersection number ofan arbitrary path with the Maslov cycle Sp1 (�gure 7), where endpoints onlycontribute half. This appendix has been previously published in preprintform [We98]. 199



200 D. TOPOLOGY OF Sp(2;R) AND THE CONLEY-ZEHNDER INDEXD.1. Topology of Sp(2;R)Proposition D.1.1. (Polar decomposition) Let Y 2 Sp(2;R), thenthere exists a unique R 2 Sp(2;R) \ SO(2;R) and a unique S 2 Sp(2;R),positive de�nite and symmetric, such that Y = SR.Proof. Y Y T is clearly positive de�nite, symmetric and symplectic.The �rst two properties also hold for S := (Y Y T )1=2 (functional calculus). Sis symplectic by Lemma 2:19 in [MS95] which says that any real power of apositive de�nite, symmetric and symplectic matrix is itself symplectic. Nowwe de�ne R = S�1Y ; R is symplectic and also orthogonal: Let x; y 2 R2anddenote by < �; � > the euclidean inner product on R2 , then< Rx;Ry >=< S�1Y x; S�1Y y >=< x; Y TS�1TS�1Y y >=< x; y > :The last equation holds, because S�1T = S�1, soS�1TS�1 = S�1S�1 = (Y Y T )�1=2(Y Y T )�1=2 = (Y Y T )�1 :Finally det R = (det S)�1 � det Y = +1 as S; Y 2 Sp(2;R) = Sl(2;R).Hence we may write any Y 2 Sp(2;R) in the formY = �s11 s12s12 s22��cos � sin sin cos � ;(198)where  2 R=2�Z and s11s22 � s122 = 1 :(199)Lemma D.1.2. s11; s22 > 0 and s11 � s22 � 1.Proof. The last statement is a simple consequence of (199). (199) alsoimplies that either s11 > 0 and s22 > 0 or s11 < 0 and s22 < 0. Assumethe second case, then the positive de�niteness of S leads to a contradiction:Tr S = s11 + s22 > 0.Now (199) implies that s22 is uniquely determined once (s11; s12) 2 R+ � Rhas been chosen: s22(s11; s12) = 1 + (s12)2s11 :Hence the set of possible parameters is given byM = R+ � R;which is di�eomorphic to the open unit disc in R2 . Recall the hyperbolictrigonometric functionssinhx = 12 (ex � e�x) ; coshx = 12 (ex + e�x) ; tanhx = ex � e�xex + e�xwhose qualitative behaviour is shown in �gure D.1. They satisfy the relationcosh2 x� sinh2 x = 1 :(200)
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cosh x sinh x

tanh x

x

Figure D.1. Hyperbolic trigonometric functionsWe reparametrize M in the following way ([GL58], x9)S : (0;1) � R=2�Z t (0; 0) !M(�; �) 7! (s11(�; �); s12(�; �)) ;where i) s11(�; �) = cosh � + sinh � cos �ii) s12(�; �) = sinh � sin� :(201)The parameter s22(�; �) is then given byiii) s22(�; �) = 1 + (s12)2s11 = 1 + sinh2 � sin2 � + sinh2 � � sinh2 �cosh � + sinh � cos �= cosh2 � � sinh2 �(1� sin2 �)cosh � � sinh � cos� = cosh � � sinh � cos �:Proposition D.1.3. The map S is a homeomorphism. On (0;1) �R=2�Z it is a di�eomorphism onto Mn (1; 0).Proof. Smoothness of S follows from the one of the hyperbolic trigono-metric functions. S is injective: Assume S(�; �) = S(� 0; �0) , then(201i) + iii)) 2 cosh � 0 = 2 cosh � ) � 0 = � ;(201i) � iii)) 2 sinh � cos �0 � 0=�= 2 sinh � cos � ) cos�0 = cos � ;(201ii) ) sin�0 = sin� ;hence �0 = � :S is surjective: Addition and subtraction of s11, s22(s11; s12) leads to asmooth inverse on R+ � R n (0; 1)S�1(s11; s12) = (� (s11; s12); �(s11; s12)) ;where �(s11; s12) = arc cosh s11 + s22(s11; s12)2= arc cosh (s11)2 + 1 + (s12)22s11 ;



202 D. TOPOLOGY OF Sp(2;R) AND THE CONLEY-ZEHNDER INDEX�(s11; s12) = (sign s12) arccos s11 � s22(s11; s12)2 sinh �arc cosh s11+s22(s11;s12)2 != (sign s12) arccos0@ (s11)2 � 1� (s12)2q�(s11)2 � 1� (s12)2�2�4(s11)21A :
(202)
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sFigure D.2. The argument of arccos in (202)Note that we used the identity arc cosh x = arc sinhpx2 � 1 for x � 1and the convention sign 0 = +1. The argument of arccos in (202) is asmooth function on R+ � R n (1; 0) which is not continuous at (1; 0). Anumerical Mathematica�-plot of it is shown in �gure D.2. It is identically+1 on (0; 1) � 0 and identically �1 on (1;1) � 0. This corresponds to� = � and � = 0, respectively. Therefore multiplication by sign s12 is well-de�ned and the full range [��; �]=f�;��g of � is covered. Finally we de�neS�1(1; 0) = (0; 0).Rescale � by setting r(�) = tanh2 � ; � 2 [0;1), i.e. r 2 [0; 1). Weinterpret the parameters( ; r; �) 2 R=2�Z � [(0; 1) � R=2�Z t (0; 0)]as coordinates of the open solid 2-torus (�gure D.3).In this coordinates the matricesE = �1 00 1� ; ��1 00 �1� ; W� = �2 00 12� ; �J0 = ��0 �11 0 �correspond to (0; 0; 0) ; (�; 0; 0) ; (0; 35 ; 0) ; ((3)�2 ; 0; 0)�Mathematica is a registered trademark of Wolfram Research, Inc.
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Figure D.3. Coordinates on the full 2-torusas follows from their polar decompositions�1 00 1��1 00 1� ; �1 00 1���1 00 �1� ;�2 00 12��1 00 1� ; �1 00 1�� 0 �1�1 0 � :The condition for Y 2 Sp(2;R) = Sl(2;R) to have non-real eigenvalues isequivalent to jTr Y j < 2 as0 = det(Y � �E) = det�a� � bc d� �� = �2 � � � Tr Y + 1, �1;2 = Tr Y �p(Tr Y )2 � 42 :Using the polar decomposition (198) of Y we getjTr Y j = j(s11 + s22) cos j = 2j cos j cosh �= 2j cos j cosh �arc tanhpr :Lemma D.1.4. Let Y be as in (198), then jTr Y j = 2 is equivalent tor = sin2  .Proof. jTr Y j = 2 implies  =2 f�2 ; 3�2 g and is equivalent to�arc cosh 1j cos j = arc tanhpr , tanh2 � � arc cosh 1j cos j = r, cosh2 � � arc cosh 1j cos j � 1cos�2  = r , 1� cos2  = r , sin2  = r:In the third equivalence we used tanhx = sinhx= cosh x and (200).As the eigenvalues of Y 2 Sp(2;R) come as pairs (�; ��1),we observethat Spec Y = f+1g , Tr Y = 2, sin2  = r ;  2 (��=2; �=2) ;Spec Y = f�1g , Tr Y = �2, sin2  = r ;  2 (�=2; 3�=2) :



204 D. TOPOLOGY OF Sp(2;R) AND THE CONLEY-ZEHNDER INDEXWe de�ne C� = fY 2 Sp(2;R)jSpec Y = f� 1gg :Remark D.1.5. Our results so far are visualized in �gure 6 , which hasbeen created using Mathematica1 and Geomviewy. Note that �gure 6 is nota sketch and it is not obtained by numerical approximation, but representsexactly the set jTr Y j = 2 in the coordinates ( ; r; �). The same holds for�gure 8 in the case Tr Y = 2.The sets C+ n fEg resp. C� n f�Eg are smooth 2-dimensional surfaces;they are indicated in �gure 6 red (dark) resp. green (light). The regionenclosed by them consists of two connected components { corresponding tothe matrices with non-real eigenvalues. The outside region consists also oftwo connected components. The one having E in its closure corresponds tothe matrices with positive real pairs of eigenvalues (�; ��1), � 2 R+ n f1g,the other corresponds to the ones having negative real pairs. Note that theset of all possible eigenvalues of elements of Sp(2;R) is the union of S1 � Cwith the real line minus zero (�gure D.4).
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o

Figure D.4. Spectrum of Sp(2;R)At �rst sight one might be tempted to relate the two parts of S1 lyingin the upper resp. lower half plane H� � C with the two connected com-ponents corresponding to matrices with non-real eigenvalues. This intuitionpoints the right direction; the relation, however, is more subtle.Definition D.1.6. Let Y 2 Sp(2;R) with eigenvalues (�; ��1 = ��) inS1 n f�1g and eigenvectors ��; ���. We call � an eigenvalue of the �rst kind,if Im !0( ���; ��) > 0 ;and an eigenvalue of the second kind otherwise.ywritten at the Geometry Center, University of Minnesota



D.1. TOPOLOGY OF Sp(2;R) 205This de�nition does not depend on the choice of the eigenvector nor onthe choice which eigenvalue was called � resp. ��. !0 denotes the standardsymplectic form on R2 ; in coordinates (x; y) it is given by !0 = dx ^ dy, interms of the euclidean inner product < �; � > we have!0(�; �) =< �;�J0� > ; where J0 = �0 �11 0 � :As ��� is eigenvector of ��, �� and ��� are linearly independent, hence in viewof the nondegeneracy of !0 we have !0( ���; ��) 6= 0. Moreover this value ispurely imaginary:!0( ���; ��) =< ����;�J0 ��� >=< J0��; ��� >= �!0( ���; ��) :We used the fact that J0T = �J0. Now the eigenvalues of J0 are � = i and�� = �i with corresponding eigenvectors �� = (i; 1) and ��� = (�i; 1). As!0( ���; ��) = �2i, we conclude that i is eigenvalue of the second kind andhence �i of the �rst kind. A continuity argument allows us to conclude thatthe matrices with non-real eigenvalues which are in the same connected com-ponent as J0, have their eigenvalues of the �rst kind in S1\H�. Analogouslyfor the connected component containing �J0.The notion of eigenvalues of the �rst and the second kind will becomemore important in the case of Sp(2n;R), n � 2, where the eigenvalues comein quadrupels (�; ��1; ��; ���1). Two pairs of eigenvalues on S1 can meet andleave S1, if and only if eigenvalues of di�erent kind meet.



206 D. TOPOLOGY OF Sp(2;R) AND THE CONLEY-ZEHNDER INDEXD.2. The Conley-Zehnder indexIn this section we recall the de�nition of the Conley-Zehnder index �CZfor paths in Sp(2n;R) starting at the identity and ending at a matrix withouteigenvalue 1. This index was introduced by Conley and Zehnder in 1984[CZ84]. We state the results about the topology of Sp(2n;R) needed to showits well-de�nedness. We are not going to prove these results in full generality;instead we restrict to Sp(2;R) and use the explicit homeomorphism fromsection D.1 to visualize them in this case. We shall see that �CZ may beequivalently de�ned as intersection number of the path with the Maslovcycle C+. De�neSp�� = fA 2 Sp(2n;R) j det(A�E) >< 0g ; Sp� = Sp�+ [ Sp�� ;P = f : [0; 1]! Sp(2n;R) j  continuous ; (0) = E ; (1) 2 Sp�g :Lemma D.2.1. ([CZ84], Lemma 1.7) Sp�+ and Sp�� are connected andany loop in them is contractible in Sp(2n;R). Moreover, W+ = �E lies inSp�+ and W� = diag (2;�1; : : : ;�1; 12 ;�1; : : : ;�1) in Sp��.The Conley-Zehnder index�CZ : P ! Zis de�ned as follows: Pick  2 P and associate to it a path u = F2 � F1() :[0; 1]! U(n; C ), whereF1 : C0 ([0; 1]; Sp(2n;R)) ! C0 ([0; 1]; Sp(2n;R) \O(2n;R)) 7! (T )�1=2 = �X �YY X �F2 : C0 ([0; 1]; Sp(2n;R) \O(2n;R)) !C0 ([0; 1]; U(n; C ))�X �YY X � 7! X + iY =: u :Now choose � 2 C0([0; 1];R) such thatdetu(t) = ei�(t) :Of course � is only determined modulo 2�. However,�() := �(1) � �(0)�is well-de�ned. Note that � is additive: �(1 � 2) = �(1) + �(2),�(�1) = ��(). As by assumption (1) 2 Sp�, we can choose a continuousextension ~ : [0; 1] ! Sp� such that ~(0) = (1) and ~(1) equals either W+or W�, depending on whether ~(0) is in Sp�+ or in Sp��. Then de�ne�CZ() = �(~ � ) ;



D.2. THE CONLEY-ZEHNDER INDEX 207where ~ �  means: follow �rst  then ~. Of course one has to showi) independence of the choice of the extension ~ ;ii) �(~ � ) 2 Z :(203)Now we restrict to the case n = 2 and represent the results of section D.1via �gure 8 (cf. remark D.1.5).C+ = Sp(2;R) n Sp� is called Maslov cycle. After removing the pointE, it is a smooth 2-manifold. In our case u(t) 2 U(1; C ) ' SO(2;R) ' S1corresponds to the matrix R(t) in the polar-decomposition of Lemma D.1.1,hence det u(t) = ei (t) ;where  (t) is one of our torus coordinates (cf. �gure D.3). As (0) = E, wehave  (0) = 2k�, for k 2 Z. If ~(1) = �E it follows  (1) = (2l + 1)� withl 2 Z, hence �(~ � ) = 2l + 1 � 2k 2 Z; if ~(1) = E then  (1) = 2l� withl 2 Z, hence �(~ � ) = 2l � 2k 2 Z. This proves (203ii). Independence ofthe choice of the extension ~, follows from the fact that another extension ~~is homotopic to ~ (by Lemma D.2.1 or �gure 8 ),hence ~ �~~�1 is contractibleand we have 0 = �(~ � ~~�1) = �(~)��(~~). The �rst equality follows fromthe fact that if  is a loop, �() is the degree of the map det � F2 � F1 �  :S1 ! S1, and therefore is a homotopy invariant. So if the loop is contractiblethe degree is zero.Similarly it follows that �CZ descends to the equivalence classes P̂�̂CZ : P̂ = P= � ! Z ;where 0 � 1 , 9F : [0; 1] � [0; 1] ! Sp(2;R) continuous, such thatF (0; t) = 0(t), F (1; t) = 1(t), F (s; 0) = E, F (s; 1) 2 Sp�.If we assign appropriate orientations to the two connected componentsof C+ n fEg, we can interpret �CZ as intersection number of  with C+.We have to be careful, however, in which direction our path starts o� at(0) = E:1. If 9� > 0 such that ((0; �)) � Sp�+, then assign to (0) the intersec-tion number +1 if the angle  (t) increases and �1 if it decreases.2. If 9� > 0 such that ((0; �)) � Sp��, then assign to (0) the intersec-tion number 0.3. If 9� > 0 such that ((0; �)) � C+, then perturb  slightly (with �xedend points) to end up in one of the former cases.For a general continuous path  : [0; 1] ! Sp(2;R) with (0) = E wemay de�ne a generalized Conley-Zehnder index�gCZ : C0 (([0; 1]; 0); (Sp(2;R); E)) ! 12 � Zby setting �gCZ() = �CZ(), if  2 P. If (1) 2 C+nfEg, then let �gCZ() bethe intersection number of  with C+, where the endpoint (1) contributeshalf (i.e. � 12). If (1) = E, then assign to the endpoint one of the integers�1; 0;+1 as above ((0; �) must be replaced by (1� �; 1)).



208 D. TOPOLOGY OF Sp(2;R) AND THE CONLEY-ZEHNDER INDEXExampleConsider the path A : [0; 1]! Sp(2;R)A(t) = �1 t4�20 1 �which arises from linearizing the hamiltonian ow along a 1-periodic solu-tion x of _x(t) = XH(x(t)), where XH is the hamiltonian vector �eld on thesymplectic manifold T �S1 �= (R=2�Z)�R equipped with its canonical sym-plectic structure dq ^ dp. H = p2=4�2 is the Hamiltonian of a free particleon S1, cf. [We96] section 4. As Spec A(t) = f+1g for any t 2 [0; 1], weobserve that A(t) 2 C+ 8t 2 [0; 1]. A numerical Mathematica1-plot of thepath A is shown in �gure D.5. Here we extended the domain for t to [0; 200]in order to scale the image of A to a viewable size.

Figure D.5. The path A(�)To compute the generalized Conley-Zehnder index of A we have to per-turb A keeping the endpoints �xed. Two particularly simple perturbationsof A are given by paths A� with the same endpoints and A�((0; 1)) � SP ��.It turns out �gCZ(A) = �gCZ(A�) = �1=2:To see this note that in case of A� the initial point contributes 0 and theendpoint 1=2 � intersection number = �1=2. In case of A+ the initial pointcontributes �1 and the endpoint 1=2 � intersection number = 1=2.



D.2. THE CONLEY-ZEHNDER INDEX 209RemarkAs is pointed out by Robbin and Salamon in ([RS93], se.4) there isanother way of constructing a Maslov-type index for arbitrary paths 	 :[a; b] ! Sp(2n;R), the Robbin-Salamon index �RS(	). For n = 1 it isconstructed as follows: Let V = 0� R and de�neSpk = fM 2 Sp(2;R) j dim(MV \ V ) = kg ; k = 0; 1:Setting M = �a bc d�we get M 2 Sp1 i� b = 0 and M 2 Sp0 i� b 6= 0. Sp1 is a submanifoldof Sp(2;R) of codimension one and �RS(	) may be viewed as intersectionnumber of the path with the Maslov cycle Sp1. Sp1 is sketched in �gure 7via numerical approximation using Mathematica1. We see that Sp1 has 2connected components. In �gure 7 the path of the former example is indi-cated. After suitably orienting Sp1 and counting intersections at endpointsonly half, we observe that this path has Robbin-Salamon index �1=2. Al-ternatively we compute the index via the intersection form as introduced in[RS93] and get �(A; t = 0)y = �y2=4�2 ; y 2 R:The intersection form � has signature �1, hence the index is �1=2.
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Figure D.6. C�, C+ Figure D.7. Sp1, C+

Figure D.8. Maslov cycle C+ and path of Conley-Zehnderindex +1
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