Non Locally-Connected Julia Sets constructed by iterated tuning

John Milnor

Stony Brook University
Revised May 26, 2006

Notations:

Every quadratic map

$$
f_{c}(z)=z^{2}+c
$$

has two fixed points, α and β, where

$$
\alpha+\beta=1, \quad \alpha \beta=c, \quad \mathfrak{R}(\alpha) \leq \mathfrak{R}(\beta) .
$$

The multiplier

$$
\mu=f_{c}^{\prime}(\alpha)=2 \alpha
$$

will be used as an alternative parameter for the quadratic family. Here c and μ determine each other:

$$
\begin{aligned}
& c=c(\mu)=\alpha(1-\alpha) \quad \text { with } \quad \alpha=\mu / 2, \\
& \mu=\mu(c)=1-\sqrt{1-4 c}, \quad \text { with } \mathfrak{R}(\mu) \leq 1 .
\end{aligned}
$$

The map $f_{c(\mu)}$ corresponding to μ will be denoted by

$$
\widehat{f}_{\mu}(z)=z^{2}+c(\mu) .
$$

The connectedness locus \widehat{M}, consisting of all μ in the half-plane $\mathfrak{R}(\mu) \leq 1$ with $K\left(\widehat{f}_{\mu}\right)$ connected, will be called the rounded Mandelbrot set.

Its period one hyperbolic component, the set of all $\mu \in \widehat{M}$ for which \widehat{f}_{μ} has an attracting fixed point, is the open unit disk \mathbb{D}.

There is a satellite hyperbolic component $H(n / p)$ of period p attached to \mathbb{D} at each p-th root of unity $e^{2 \pi i n / p}$.

Similarly, there are satellites $H(n / p) \triangleright H\left(n^{\prime} / p^{\prime}\right)$ of period $p p^{\prime}$ attached to $H(n / p)$ at corresponding boundary points; and so on.

Empirically, each iterated satellite $H\left(n_{1} / p_{1}\right) \triangleright \cdots \triangleright H\left(n_{k} / p_{k}\right)$ can be approximated by a round disk of radius $1 /\left(p_{1} \cdots p_{k}\right)^{2}$. Question: How can this be made precise?

Tuning (in parameter space).

The Douady-Hubbard tuning construction assigns to each hyperbolic component $H \subset \widehat{M}$ a homeomorphism

$$
H \triangleright: \widehat{M} \xrightarrow{\cong}(H \triangleright \widehat{M}) \subset \widehat{M}
$$

from \widehat{M} onto a "small copy" of \widehat{M}.

- Each $H \triangleright$ maps hyperbolic components to hyperbolic components, with $\operatorname{per}\left(H \triangleright H^{\prime}\right)=\operatorname{per}(H) \operatorname{per}\left(H^{\prime}\right)$.
- The set of all H forms a free non-commutative monoid, with \mathbb{D} as identity element.
- Each $H \triangleright: \overline{\mathbb{D}} \rightarrow \bar{H}$ is holomorphic, and yields the canonical Douady-Hubbard parametrization of H : For each $\mu \in \mathbb{D}$, the attracting periodic orbit for the map $\hat{f}_{H \triangleright \mu}$ has multiplier μ.
- The image $H \triangleright 1 \in \partial H$ is called the root point of H.

Tuning in the dynamic plane (intuitive picture).

To obtain the filled Julia set for $H_{1} \triangleright \mu_{2}$, choose $\mu_{1} \in H_{1}$, then replace every Fatou component of $K\left(\widehat{f}_{\mu_{1}}\right)$ by a copy of $K\left(\widehat{f}_{\mu_{2}}\right)$. (In the figure, $\widehat{f}_{\mu_{2}}$ is the Chebyshev map $z \mapsto z^{2}-2$, and $K\left(\widehat{f}_{\mu_{2}}\right)$ is the line segment $[-2,2]$.)

Constructing a non locally-connected $K\left(\widehat{f}_{\mu}\right)$

(Small disk sizes exaggerated.)
Choose any sequence of rational angles $t_{1}, t_{2}, \ldots \not \equiv 0$, and let r_{k} be the root point of

$$
H\left(t_{1}\right) \triangleright \cdots \triangleright H\left(t_{k}\right) .
$$

The Theorem.

Let $\omega \in \widehat{M}$ be any limit point for the sequence of root points

$$
r_{k} \in \partial\left(H\left(t_{1}\right) \triangleright \cdots \triangleright H\left(t_{k}\right)\right) \quad \text { as } \quad k \rightarrow \infty
$$

Theorem (Douady, Hubbard, Sørensen). If the sequence $\left\{\left|t_{j}\right|\right\}$ converges to zero sufficiently rapidly, then the filled Julia set $K\left(\widehat{f}_{\omega}\right)$ is not locally-connected.

The proof will be based on external rays and separating periodic orbits.

Two nested wakes $W_{[1 / 7,2 / 7]} \supset W_{[1 / 5,4 / 15]}$.
Every root point $H \triangleright 1 \in \widehat{M}$ is the landing point of exactly two external rays, with angles $0 \leq a<b \leq 1$. These rays cut the parameter plane into two halves.
Definition. The half containing $H=H_{[a, b]}$ is called the wake $W_{[a, b]}$, and $[a, b]$ is called its characteristic interval.

In the Dynamic Plane:

For every hyperbolic component $H=H_{[a, b]}$ of period $p>1$ and every $\mu \in H$, the external rays of angle a and b for $K\left(\widehat{f}_{\mu}\right)$ land at a common repelling periodic point. I will write

$$
\begin{equation*}
z^{1}=z^{1}([a, b], \mu)=\ell_{a}(\mu)=\ell_{b}(\mu) \in \partial K\left(\widehat{f}_{\mu}\right) \tag{10}
\end{equation*}
$$

Number the periodic Fatou components of \widehat{f}_{μ} as $0 \in U_{0} \mapsto U_{1} \mapsto \cdots$. Then the orbit of z^{1} consists of points

$$
z^{\iota}=z^{\iota}([a, b], \mu)=\ell_{2^{\iota-1}} a(\mu)=\ell_{2^{\iota-1} b}(\mu) \in \partial U_{\iota}
$$

called dynamic root points, indexed by,$\iota_{\square} \in \mathbb{Z} / p$.

The $a / 2$ and $b / 2$ rays land on opposite sides of U_{0} :

$$
\begin{equation*}
\ell_{a / 2}(\mu)= \pm z^{0}([a, b], \mu) \quad \text { and } \quad \ell_{b / 2}(\mu)=\mp z^{0}([a, b], \mu) . \tag{12}
\end{equation*}
$$

More generally, these periodic points $\quad z^{\iota}([a, b], \mu) \in \partial K\left(\widehat{f}_{\mu}\right)$ are defined, and vary holomorphically with μ, for all μ in the wake $W_{[a, b]}$, even when $\mu \notin \widehat{M}$.

Given any infinite sequence of hyperbolic components H_{k} of period $p_{k}>1$, any point in the nested intersection,

$$
\omega \in \bigcap_{k}\left(H_{1} \triangleright \cdots \triangleright H_{k} \triangleright \widehat{M}\right)
$$

is said to be infinitely renormalizable. Let $\left[a_{k}, b_{k}\right]$ be the characteristic interval for the k-fold tuning product

$$
H_{k}^{\text {米 }}=H_{1} \triangleright \cdots \triangleright H_{k} .
$$

> I will consider only the case where the nested intersection $\bigcap\left[a_{k}, b_{k}\right]$ consists of a single angle θ. (An equivalent condition would be that $H_{k} \cap \mathbb{R}=\emptyset$ for infinitely many k.)

Note that the points

$$
\mathbf{z}_{k}(\omega)=z^{0}\left(\left[a_{k}, b_{k}\right], \omega\right)
$$

and their negatives cut the filled Julia set $K\left(\widehat{f}_{\omega}\right)$ into countably many pieces.

In this schematic diagram, externals rays are orange, equipotentials are blue, and the Julia set is black.

Let X be the connected component of zero in the set

$$
K\left(\hat{f}_{\omega}\right) \backslash\left\{ \pm \mathbf{z}_{k}(\omega)\right\} .
$$

Lemma 1. X is compact, connected, and cellular. Every limit point of $\left\{ \pm \mathbf{z}_{k}(\omega)\right\}$, and every limit point of the $\theta / 2$ and $(1+\theta) / 2$ rays, belongs to X. But every other ray is bounded away from X. If $K\left(\widehat{f}_{\omega}\right)$ is locally connected then $X=\{0\}$.
Conjecture. Conversely, if $X=\{0\}$, then $K\left(\widehat{f}_{\omega}\right)$ is locally connected.

Choosing the Angles.

Now assume that the H_{k} are satellite hyperbolic components $H\left(n_{k} / p_{k}\right)$. Again let $H_{k}^{\text {娄 }}=H_{1} \triangleright H_{2} \triangleright \cdots \triangleright H_{k}$, with characteristic interval $\left[a_{k}, b_{k}\right.$], and let r_{k} be the root point of $H_{k}^{\text {类. Then the periodic point }}$

$$
\mathbf{z}_{j}\left(r_{k}\right)=z^{0}\left(\left[a_{j}, b_{j}\right], r_{k}\right) \in \partial K\left(\widehat{f}_{r_{k}}\right)
$$

is defined for all $j \leq k$. (This point has period $p_{1} \cdots p_{j-1}$. It is parabolic for $j=k$, and repelling for $j<k$.)

Lemma 2. We can choose the angles $t_{j}=n_{j} / p_{j} \not \equiv 0$ inductively so that these points $\mathbf{z}_{j}\left(r_{k}\right)$ are within some specified neighborhood of $\mathbf{z}_{1}\left(r_{1}\right)$ for all $j \leq k$.

Start Proof. Suppose H_{1}, \ldots, H_{k} have already been chosen. We must show that each $\mathbf{z}_{j}\left(r_{k+1}\right)$ with $j \leq k+1$ depends continuously on the choice of r_{k+1}, and hence can be placed arbitrarily close to $\mathbf{z}_{j}\left(r_{k}\right)$ by choosing r_{k+1} close to r_{k}.

Since r_{1}, \ldots, r_{k} have been chosen, $\mathbf{z}_{k}\left(r_{k}\right)$ is a well defined parabolic point of period $p_{1} \cdots p_{k-1}$ and multiplier $e^{2 \pi i i_{k} / p_{k}}$.
For μ in a small neighborhood of r_{k}, the orbit of $\mathbf{z}_{k}\left(r_{k}\right)$ splits into an orbit of the same period $p_{1} \cdots p_{k-1}$ with multiplier $\approx e^{2 \pi i n_{k} / p_{k}}$, and a nearby orbit of period $p_{1} \cdots p_{k}$ with multiplier $\approx+1$.
Take $\mu=r_{k+1}$ to be a point at rational angle along the boundary of $H_{k}^{\text {类. Then this new orbit will again be parabolic, }}$ and the orbit point $\mathbf{z}_{k+1}\left(r_{k+1}\right)$ will converge to $\mathbf{z}_{k}\left(r_{k}\right)$ as r_{k+1} converges to r_{k}.
Since the points $\mathbf{z}_{j}\left(r_{k+1}\right)$ with $j \leq k$ clearly vary continuously with r_{k+1}, this proves Lemma 2. \square

Proof of the Theorem.

Recall that:

- The sequence $\left\{r_{k}\right\}$ of root points has ω as limit point.
- The function $\mu \mapsto \mathbf{z}_{j}(\mu)$ is continuous for $\mu \in W_{\left[a_{j}, b_{j}\right]}$.

Therefore, for each fixed j, the sequence of points $\mathbf{z}_{j}\left(r_{k}\right)$ has $\mathbf{z}_{j}(\omega)$ as a limit point.

By Lemma 2, we can choose the H_{k} so that the $\mathbf{z}_{j}\left(r_{k}\right)$ are uniformly bounded away from 0.

Hence the points $\mathbf{z}_{j}(\omega)$ are also bounded away from 0 .
Therefore, by Lemma 1, $K\left(\widehat{f}_{\omega}\right)$ cannot be locally connected. \square

If $t_{k}>0$ for all angles t_{k}, then the $\theta / 2$ and $(\theta+1) / 2$ rays spiral around each other without landing, in a "paper clip" pattern as sketched above, with the Julia set spiraling between them.

Here is a schematic picture close to the ($\theta / 2$)-ray, which has been straightened out. All the points $\mathbf{z}_{j}(\omega)$ are assumed to lie in the region \mathcal{Z}, while their negatives lie in $-\mathcal{Z}$.

The $\sin (1 / x)$ model.

On the hand, if the signs of the t_{k} alternate, then the Julia set (indicated here in black) contains a $\sin (1 / x)$-like curve.
Compare Sørensen.

How rapidly must $t_{k} \rightarrow 0$?

What rate of convergence is needed to guarantee that the $\mathbf{z}_{k}(\omega)$ do not converge to zero? Here is a wild guess.
Perhaps there are order of magnitude estimates something like the following

$$
\log \frac{\mathbf{z}_{k}(\omega)}{\mathbf{z}_{k+1}(\omega)} \approx \log \frac{\mathbf{z}_{k}\left(r_{k}\right)}{\mathbf{z}_{k+1}\left(r_{k+1}\right)} \approx t_{k+1}^{1 / p_{k}}
$$

so that $\left\{\mathbf{z}_{k}(\omega)\right\}$ converges to zero if and only if

$$
\begin{equation*}
\sum_{k} t_{k+1}^{1 / p_{k}}=\infty . \tag{??}
\end{equation*}
$$

For example, if $t_{k}=1 / p_{k}$ with $p_{k+1}=(k+1)^{p_{k}}$, then

$$
p_{1}=1, p_{2}=2, \quad p_{3}=9, \quad p_{4}=262144, \quad p_{5} \approx 1.2 \times 10^{27}
$$

tending rapidly to infinity. Yet $t_{k+1}^{1 / p_{k}}=1 /(k+1)$ with sum $+\infty$.
Conjecturally, this $\left\{p_{k}\right\}$ does not increase fast enough!

To conclude: Four Pictures

It is probably impossible to make any real picture of one of these non locally-connected Julia sets. However, we may get some intuitive idea by looking at relatively modest iterated satellite tunings.

In the first two pictures, the separating periodic points \mathbf{z}_{1} and z_{2} are circled. The rays of angle $a_{1} / 2=1 / 14$ and $b_{1} / 2=1 / 7$ are shown, but those of angle $a_{2} / 2 \approx b_{2} / 2$ are too close to distinguish from $1 / 14$ respectively $1 / 7$.
In the last two pictures, $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{z}_{3} are defined and circled. (As the angles t_{2}, t_{3} tend to zero, these circled points would converge towards each other.) In these cases, the rays of angle $a_{1} / 2=1 / 14<a_{2} / 2<b_{2} / 2<b_{1} / 2=1 / 7$ can be distinguished.
(Assuming only that $p_{k} \geq 3$ for all k, it follows that the differences $b_{k}-a_{k} \approx 2^{-p_{1} \cdots p_{k}}$ tend faster than exponentially to zero as $k \rightarrow \infty$.)

$H(1 / 3) \triangleright H(1 / 20) \triangleright 0$
23

$H(1 / 3) \triangleright H(-1 / 20) \triangleright 0$

$$
H(1 / 3) \triangleright H(1 / 7) \triangleright H(1 / 13) \triangleright 0
$$

$$
H(1 / 3) \triangleright H(-1 / 7) \triangleright H(1 / 13) \triangleright 0
$$

References

A. Douady, Algorithms for computing angles in the Mandelbrot set, pp. 155-168 of "Chaotic Dynamics and Fractals", ed. Barnsley \& Demko, Acad. Press, 1986
目 A. Douady, Chirurgie sur les applications holomorphes, Proc. Int. Cong. Math. Berkeley, A.M.S. 1987, 724-738.
© A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ec. Norm. Sup. (Paris) 18 (1985) 287-343.
© C. McMullen, "Complex Dynamics and Renormalization," Princeton U. Press, 1994.

击 J.Milnor, Self-similarity and hairiness in the Mandelbrot set, in "Computers in Geometry and Topology," (M.C. Tangora, ed.), Marcel Dekker, New York, Basel, 1989, pp 211-257.

围 J.Milnor, Local connectivity of Julia sets: expository lectures, pp. 67-116 of "The Mandelbrot set, Theme and Variations" edit: Tan Lei, LMS Lecture Note Series 274, Cambridge U. Press, 2000.

- J.Milnor, Periodic orbits, external rays and the Mandelbrot set: An expository account, Asterisque 261 (2000) "Geometrie Complexe et Systemes Dynamiques", pp. 277-333.
\& J. Milnor, "Dynamics in One Complex Variable," (3rd ed.) Princeton U. Press, 2006.

囯 D. E. K. Sørensen, Infinitely renormalizable quadratic polynomials, with non-locally connected Julia set, J. Geom. Anal. 10 (2000), 169-206

