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Iterated Maps of the Projective Plane:

P2 will denote either the complex projective plane P2(C),
or the real projective plane P2(R).

f : P2 → P2 will be a rational map of algebraic degree d ≥ 2,
everywhere defined (unless otherwise specified).

TWO BASIC QUESTIONS:

What kinds of attractor A = f (A) ⊂ P2 can such a map have?

What kinds of f -invariant curve S = f (S) ⊂ P2 can exist?



Trapped Attractors:

DEFINITION. A compact f -invariant set A = f (A) ⊂ P2 is called
a trapped attracting set if it has a neighborhood N in P2

such that ⋂
k

f ◦k (N) = A .

If this condition is satisfied, then we can always choose this
neighborhood N more carefully so that

f (N) ⊂ interior(N) .

N is then called a trapping neighborhood .

If A also contains a dense orbit, then it is called a trapped
attractor .

Note that a trapped attractor may be a fractal set.



Measure Attractors

Again let A = f (A) ⊂ P2 be a compact f -invariant set.

The attracting basin B(A) is defined to be the union of all
orbits which converge to A.

Note that B(A) need not be an open set !

DEFINITION: A will be called a measure attractor if:

1. The attracting basin B(A) has positive Lebesgue
measure.

2. Minimality: No strictly smaller compact f -invariant set
A′ ⊂ A has a basin of positive measure.

(Reference: www.scholarpedia.org/article/Attractor)



A fractal example in P2(R)
Hénon [1976] described a polynomial automorphism of R2:

(x , y) 7→ (y , y2 − 1.4 + .3x) .

He showed, at least empirically, that it has a fractal trapped
attractor. This map extends to a quadratic rational map of
P2(R)

(x : y : z) 7→ (yz : y2 − 1.4z2 + .3xz : z2) .

This extension is not everywhere defined — It has a point of
indeterminacy at (1 : 0 : 0). However, if we perturb so that

(x : y : z) 7→ (yz : y2 − 1.4z2 + .3xz : z2+ε x2) ,

then we get an everywhere defined rational map.
The corresponding map of R2 is:

(x , y) 7→
(

y
1 + ε x2 ,

y2 − 1.4 + .3x
1 + ε x2

)
.



The modified Hénon attractor in P2(R)



A fractal example in P2(C)
Jonsson and Weickert [2000] constructed an
everywhere defined complex rational map which has a
non-algebraic trapped attractor. Here is a related example.
Start with a quadratic rational map of P1(C) which has a
dense orbit:

(x : y) 7→
(

f (x , y) : g(x , y)
)

.

Extend to a map of P2(C) of the form

(x : y : z) 7→
(

f (x , y) : g(x , y) : ε z2
)

.

If ε is small, then the locus {z = 0} will be a trapped attractor,
with some trapping neighborhood N. Now perturb, so that

(x : y : z) 7→
(

f (x , y) : g(x , y) : ε z2+h(x , y)
)

.

If h is small, then A =
⋂

f ◦k (N) will still be an attractor.

For generic h , this new attractor will be fractal.



The real slice of this fractal attractor in P2(C)



Maps with an Invariant Curve

The rest of this talk will be a report on the paper

“Elliptic Curves as Attractors in P2”

Bonifant, Dabija & Milnor, Experimental Math., to appear.

(also in Stony Brook IMS Preprint series;

or arXiv:math/0601015)



Invariant curves: the complex case
Let S = f (S) ⊂ P2 = P2(C) be an f -invariant Riemann
surface. Two cases will be of special interest:

Case 1. S is conformally isomorphic to the annulus

A = {z ∈ C : 1 < |z| < constant} .

Then S will be called a Herman ring .

In this case, the restriction map f |S from S to itself
necessarily corresponds to an irrational rotation

z 7→ e2πi ρ z .

Case 2. S is conformally isomorphic to a torus

T = C/Λ , with Λ ∼= Z⊕ Z .
Then S will be called an elliptic curve .

In this case (choosing base point correctly), f |S corresponds to
an expanding linear map z 7→ αz (modΛ).
Here the multiplier α is an algebraic integer with αΛ ⊂ Λ.
and with |α|2 = d > 1 .



Two Theorems

Let f : P2(C) → P2(C) be an everywhere defined rational map
with an f -invariant elliptic curve.

THEOREM 1. A complex elliptic curve E can never be a
trapped attractor .

THEOREM 2. However, there exist many examples with an
invariant elliptic curve as measure attractor .

To construct examples, I will start more than 160 years ago.



O. Hesse [1844]:
described a (singular) foliation of P2 by curves(

x3 + y3 + z3 : xyz
)

= constant

which includes a representative for every elliptic curve.



A. Desboves [1886]:
constructed a 4-th degree rational map

f0(x : y : z) =
(

x(y3 − z3) : y(z3 − x3) : z(x3 − y3)
)

which carries each elliptic curve in the Hesse foliation into itself,
with multiplier α = −2. This map is not everywhere defined,
and is not very interesting dynamically.

Bonifant and Dabija [2002] embedded f0 in a family:

fa,b,c(x : y : z) =
(

x(y3−z3+aΦ) : y(z3−x3+bΦ) : z(x3−y3+cΦ)
)

where Φ = Φ(x , y , z) = x3 + y3 + z3 .

Note that the Fermat curve F , defined by the equation

Φ(x , y , z) = 0 ,

is invariant under fa,b,c for every choice of a, b, c.



Example with a = 1/3, b = 0, c = −1/3



Example with a = −1, b = 1/3, c = 1



Example with a = −1/5, b = 7/15, c = 17/15



From Circle in P2(R) to Ring in P2(C)

We conjecture that the two small white circles in the last figure
form the real part of a cycle of two Herman rings in P2(C).

Arguments of Herman and Yoccoz imply the following:

THEOREM. If Γ ⊂ P2(R) is an f -invariant real analytic circle
with Diophantine rotation number, then Γ is contained in an
f -invariant Herman ring S ⊂ P2(C).

Furthermore, if Γ is a trapped attractor in P2(R), then a
neighborhood of Γ in S is “locally attracting” in P2(C).



Studying a Typical Orbit in P2(C)
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The plot suggests that this particular orbit converges to a
Herman ring after some 4000 iterations.



The rotation number as a function of c.

This suggests that invariant circles, with varying rotation
number, persist for a substantial region in real parameter space.



The Cassini Quartic: A singular real example.

The real slice of an immersed torus in P2(C) with equation

x2y2 − (x2 + y2)z2 + kz4 = 0 where k = 1/8 .

The outer black curve is a trapped attractor under a 4-th degree
rational map.



The Transverse Lyapunov Exponent
Let S = f (S) ⊂ P2(C) be an f -invariant Riemann surface.

Form the “normal” complex line bundle with fibers

Tp(P2)/Tp(S) for p ∈ S .

Then f induces a holomorphic bundle map f∗ from this line
bundle to itself.

Let µ be an ergodic f -invariant probability measure on S.
Choose a norm on the line bundle, and hence on f∗.

DEFINITION. The average

Lyap(f , µ) =

∫
S

log ‖f∗‖dµ

is called the transverse Lyapunov exponent .

If Lyap < 0, then we can expect attraction !
While if Lyap > 0, we expect repulsion ??



The Siegel disk case
First suppose that S is conformally isomorphic to the unit disk
D, and that f |S corresponds to an irrational rotation

z 7→ e2πiρ z .

Then each concentric circle |z| = r > 0 has a unique ergodic
probability measure µr .

THEOREM (Jensen [1899]). If we use log(r) as variable, then
the function

log(r) 7→ Lyap(f , µr )

is convex and piecewise linear. Its slope
d Lyap(f , µr )/d log(r) is equal to the number of zeros of f∗ in
the disk {z : |z| < r}.

(Jensen considered a holomorphic map g : D → C and
studied the average of log |g| on a family of concentric circles.

But the proof is much the same.)



The Herman ring case
is completely analogous; but with an extra free constant.

If S is isomorphic to A = {z : 1 < |z| < constant}, then the
map log r 7→ Lyap(f , µr ) is convex and piecewise linear.
The derivative d Lyap(f , µr )/d log r is equal to the number
of zeros of f∗ with 1 < |z| < r plus a constant.

If there is a non-empty subset of S where Lyap < 0, then it will
be called the attracting region in S.

In both the Siegel and Hermann ring cases, this attracting
region is connected, and nearby orbits are attracted to it.

But there is no trapping neighborhood!

The attracting region can evaporate
under the smallest perturbation.



Elliptic Curves
An f -invariant elliptic curve E has a canonical smooth ergodic
measure. Hence it has a uniquely defined transverse Lyapunov
exponent Lyap(f , E) ∈ R.

This transverse exponent can be effectively computed,
using the theory of elliptic functions.

For specified E , it is only necessary to know the d2 + d + 1
zeros of f∗ on E , and to know the norm ‖f∗(p)‖ at one fixed
point which is not a zero of f∗.

Whenever Lyap(f , E) < 0,
it follows that E is a measure attractor.



First Example (with E equal to the Fermat curve F).

LyapR = −1.456 · · · , LyapC = −.549 · · · .



Second Example (with E = F).

LyapR(F) = −.5700 · · · , LyapC(F) = −.1315 · · · ,

LyapR(P1) = −.0251 · · · , LyapC(P1) = −.0092 · · · .



Third Example (with E = F).

LyapR(F) = −.509 · · · , LyapC(F) = +.402 · · · .



THE END

HAPPY BIRTHDAY BILL !


