Snapshots of Topology in the 50's

John Milnor

Stony Brook University

ETH, April 12, 2007

Zum 90. Geburtstag von Beno Eckmann

Beno Eckmann and Heinz Hopf in 1953

(from the Oberwolfach collection)

Paul Alexandroff and Heinz Hopf in 1931

in Zürich
(from the Oberwolfach collection)

A Big Family

Hopf had many students.

According to the Mathematics Genealogy Project, he has

2212 mathematical descendants

More than one third of these are descended from Hopf
via Beno Eckmann.

Genealogy

The J-homomorphism of George Whitehead

$$
J: \pi_{n}(\mathrm{SO}(q)) \rightarrow \pi_{n+q}\left(S^{q}\right)
$$

Consider a tubular neighborhood N of a great n-sphere in S^{n+q}. A framing of its normal bundle, described by an element of $\pi_{n}(\mathrm{SO}(q))$, gives rise to a map from N to the unit disk D^{q}.

The J-homomorphism (continued)

Now collapse the boundary of D^{q} to a point p_{1}, yielding a sphere S^{q}, so that

$$
(N, \partial N) \xrightarrow{f}\left(D^{q}, \partial D^{q}\right) \rightarrow\left(S^{q}, p_{1}\right),
$$

and map all of $S^{n+q} \backslash N$ to p_{1}. The resulting map $g: S^{n+q} \rightarrow S^{q}$ represents the required element of $\pi_{n+q}\left(S^{q}\right)$.

Some References

George Whitehead, 1950: A generalization of the Hopf invariant, Ann. of Math. 51.

Based on:

Heinz Hopf, 1931: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Ann. 104.

Heinz Hopf, 1935: Über die Abbildungen von Sphären auf Sphären niedriger Dimension, Fundamenta Math. 25.
and also:

References (continued)

Hans Freudenthal, 1937: Über die Klassen der Sphärenabbildungen, Compositio Math 5.
Beno Eckmann, 1942: Über die Homotopiegruppen von Gruppenräumen, Comment. Math. Helv. 14).
Beno Eckmann, 1943: Stetige Lösungen linearer Gleichungssysteme, Comment. Math. Helv. 15.
Beno Eckmann, 1943: Systeme von Richtungsfeldern in Sphären und stetige Lösungen komplexer linearer Gleichungen, Comment. Math. Helv. 15.

More General Construction:
Lev Pontrjagin, 1955: Smooth Manifolds and their Applications in Homotopy Theory (Russian); AMS Translation 1959.

The Pontrjagin Construction

In place of the sphere $S^{n} \subset S^{n+q}$, consider any closed submanifold $M^{n} \subset S^{n+q}$ which has trivial normal bundle. Choosing some normal framing, the analogous construction yields a map $g: S^{n+q} \rightarrow S^{q}$, with $g^{-1}\left(p_{0}\right)=M^{n}$.

Theorem (Pontrjagin)

This g extends to a map $\hat{g}: D^{n+q+1} \rightarrow S^{q}$ if and only if the framed manifold $M^{n} \subset S^{n+q}$ is the boundary of a framed manifold $W^{n+1} \subset D^{n+q+1}$.

A Parallelizable Manifold with Boundary 10

Work with Michel Kervaire.

We construct a manifold $W^{4 k}$ having the homotopy type of a bouquet $S^{2 k} \vee \cdots \vee S^{2 k}$ of eight copies of the $2 k$-sphere.

The homology group $H_{2 k}\left(W^{4 k}\right)$ is free abelian with one basis element for each dot in this " E_{8} diagram," with intersection pairing:

$$
e_{i} \cdot e_{j}= \begin{cases}+2 & \text { if } i=j \\ +1 & \text { if the dots are joined by a line } \\ 0 & \text { otherwise }\end{cases}
$$

A Parallelizable Manifold (Continued)

This intersection pairing $H_{2 k} \otimes H_{2 k} \rightarrow \mathbb{Z}$ is positive definite, with determinant +1 .

It follows that $M^{4 k-1}=\partial W^{4 k}$ has the homology of $S^{4 k-1}$.
In fact, if $k>1$, then $M^{4 k-1}$ has the homotopy type of a sphere, and hence, by Smale, is a topological sphere.

But $M^{4 k-1}$ is not diffeomorphic to $S^{4 k-1}$.

Work of Jean-Pierre Serre, 1951

Spectral sequences of fibrations provide a powerful tool for studying homotopy groups.

Theorem
The homotopy groups $\pi_{n+q}\left(S^{q}\right)$ with $n>0$ are finite, except in the cases studied by Hopf:

$$
\pi_{4 k-1}\left(S^{2 k}\right) \cong \mathbb{Z} \oplus(\text { finite })
$$

The set Ω_{n} of cobordism classes of closed oriented n-manifolds forms a finitely generated abelian group.

Theorem
The class of a $4 k$-manifold, modulo torsion, is determined by its Pontrjagin numbers $p_{i_{1}} \cdots p_{i_{r}}\left[M^{4 k}\right] \in \mathbb{Z}$.

Theorem
The signature $\operatorname{sgn}\left(M^{4 k}\right)$ of the intersection number pairing

$$
\alpha, \beta \in H_{2 k}\left(M^{4 k}\right) \mapsto \alpha \cdot \beta \in \mathbb{Z}
$$

is a cobordism invariant; and hence is determined by Pontrjagin numbers.

Friedrich Hirzebruch, 1954

worked out the precise formula for signature as a function of Pontrjagin numbers.

In particular, for a manifold with $p_{1}=p_{2}=\cdots=p_{k-1}=0$ we have

$$
\operatorname{sgn}\left(M^{4 k}\right)=s_{k} p_{k}\left[M^{4 k}\right], \quad s_{k}=\frac{2^{2 k}\left(2^{2 k-1}-1\right) B_{k}}{(2 k)!},
$$

where

$$
B_{1}=1 / 3, \quad B_{2}=1 / 30, \quad B_{3}=1 / 42, \ldots
$$

are Bernoulli numbers.
$M^{4 k-1}$ is not diffeomorphic to $S^{4 k-1}$
Proof (for small k). Recall that $M^{4 k-1}$ was constructed as the boundary of a parallelizable manifold $W^{4 k}$ whose intersection pairing is positive definite, of signature +8 .

If $M^{4 k-1}$ were diffeomorphic to $S^{4 k-1}$, then we could paste on a $4 k$-disk to obtain a smooth manifold

$$
M^{4 k}=W^{4 k} \cup_{S^{4 k-1}} D^{4 k}
$$

with $p_{1}=\cdots p_{k-1}=0$, and with signature +8 .
Then, according to Hirzebruch

$$
p_{k}\left[M^{4 k}\right]=\operatorname{sgn}\left(M^{4 k}\right) / s_{k}=8 / s_{k} .
$$

But (at least for small $k>1$), this is not an integer:

$$
8 / s_{2}=2^{3} \cdot 3^{2} \cdot 5 / 7, \quad 8 / s_{3}=2^{2} \cdot 3^{3} \cdot 5 \cdot 7 / 31, \ldots
$$

\square

The Stable J-homomorphism

Definition

A smooth closed manifold M is almost parallelizable if $M^{n} \backslash$ (point) is parallelizable.

Then we can write $M^{n}=M_{0}^{n} \cup_{S^{n-1}} D^{n}$, where M_{0}^{n} is parallelizable.

Embedding (M_{0}^{n}, S^{n-1}) in (D^{n+q}, S^{n+q-1}), we can frame M_{0}^{n}.
Using Pontrjagin's Theorem, the induced framing of S^{n-1} represents an element of the kernel of the J-homomorphism

$$
J: \pi_{n-1}\left(\mathrm{SO}_{q}\right) \rightarrow \pi_{n+q-1}\left(S^{q}\right) .
$$

Conversely, every element in the kernel of J arises in this way, from some almost parallelizable manifold.

Work of Raoul Bott, 1958

Morse Theory can be used to compute the stable homotopy groups of rotation groups. In particular: $\pi_{4 k-1}(\mathrm{SO}) \cong \mathbb{Z}$.

Theorem
A generator of $\pi_{4 k-1}(\mathrm{SO})$ corresponds to an SO-bundle ξ over $S^{4 k}$ with Pontrjagin class

$$
p_{k}(\xi) \in H^{4 k}\left(S^{4 k}\right) \cong \mathbb{Z}
$$

equal to $(2 k-1)!\epsilon_{k}$ where $\epsilon_{k}=\operatorname{GCD}(2, k+1)$.
According to Serre, the stable homotopy groups of spheres are finite. Thus the stable J-homorphism

$$
J: \pi_{4 k-1}(\mathrm{SO}) \rightarrow \Pi_{4 k-1}
$$

maps a free cyclic group to a finite group.

The Cyclic Group $J\left(\pi_{4 k-1}(\mathrm{SO})\right)$

Let $M_{0}^{4 k}$ be an almost parallelizable manifold with the smallest possible positive signature $\operatorname{sgn}\left(M^{4 k}\right)>0$.
It follows that:

$$
\left|J\left(\pi_{4 k-1}(\mathrm{SO})\right)\right|=\frac{p_{k}\left[M_{0}^{4 k}\right]}{(2 k-1)!\epsilon_{k}}
$$

where $\epsilon_{k}=\operatorname{GCD}(2, k+1)$.

The following sharp estimate was obtained around this time:
Theorem (Hirzebruch)
For any $M^{4 k}$ with $w_{2}=0$, the \widehat{A}-genus

$$
\widehat{A}\left(M^{4 k}\right)=-B_{k} p_{k}\left[M^{4 k}\right] / 2(2 k)!+\cdots
$$

is an integer, divisible by ϵ_{k}.

Combining these two results, Kervaire and I obtained:
Theorem (1958)

$$
\left|J\left(\pi_{4 k-1}(S O)\right)\right| \equiv 0 \quad\left(\bmod \text { denominator }\left(B_{k} / 4 k\right)\right) .
$$

Here:

$$
\begin{array}{cccccccc}
k= & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
\frac{B_{k}}{4 k}= & \frac{1}{2^{3} \cdot 3} & \frac{1}{2^{4} \cdot 3 \cdot 5} & \frac{1}{2^{2} \cdot 3^{2} \cdot 7} & \frac{1}{2^{5} \cdot 3 \cdot 5} & \frac{1}{2^{3} \cdot 1 \cdot 11} & \frac{69}{2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 7 \cdot 13} & \cdots
\end{array}
$$

Later, Frank Adams obtained the precise result:

Theorem (1966)
In fact the order is precisely equal to the denominator of $B_{k} / 4 k$.

The End

 HAPPY BIRTHDAY BENO!!

