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Cylinder Maps 1

—work with Araceli Bonifant—
Let C denote the cylinder (R/Z)× I.

(0, 0) fixed

(0, 1) fixed

(.5, 1) fixed

(x,y)

(3x, fx(y))

F

We will study maps

F (x , y) =
(
kx , fx(y)

)
from C to itself, where k ≥ 2 is a fixed integer, where each
fx : I → I is a diffeomorphism with fx(0) = 0 and fx(1) = 1,
and where the Schwarzian Sfx(y) has constant sign for almost
all (x , y) ∈ C.



Schwarzian derivative 2

The Schwarzian derivative of a C3 interval diffeomorphism f
is defined by the formula

Sf (y) =
f ′′′(y)

f ′(y)
− 3

2

(
f ′′(y)

f ′(y)

)2

. (1)

On the left: Graph of a function qa(y) = y + ay(1− y)
(a = 0.82), with Sqa < 0 everywhere.

Middle: Graph of y 7→ 3y/(1 + 2y), with S ≡ 0.

Right: Graph of q −1
−a (y), with S > 0 everywhere.



The Transverse Lyapunov Exponent 3

Let A0 = (R/Z)× 0 and A1 = (R/Z)× 1 be the two
boundaries of C. The transverse Lyapunov exponent of the
boundary circle Aι can be defined as the average

Lyap(Aι) =

∫
R/Z

log
(

dfx
dy

(x , ι)
)

dx .

Let Bι = B(Aι) be the attracting basin: the union of all
orbits which converge towards Aι.

Standard Theorem. If Lyap(Aι) < 0 then Bι has strictly
positive measure. In this case, the boundary circle Aι will be
described as a “measure-theoretic attractor”.
However, if Lyap(Aι) > 0 then Bι has measure zero.



Schwarzian and Dynamics 4

Lemma. Suppose that Sf (y) has constant sign ( positive,
negative or, zero) for almost all (x , y) in C.

If Sf > 0 almost everywhere, then f ′(0)f ′(1) > 1 .
If Sf ≡ 0 , then f ′(0)f ′(1) = 1 .
If Sf < 0 almost everywhere, then f ′(0)f ′(1) < 1 .

Corollary. If Sfx(y) has constant sign for almost all
(x , y), then Lyap(A0) + Lyap(A1) has this same sign.

For example, if Lyap(A0) and Lyap(A1) have the same sign,
and if Sfx(y) < 0 almost everywhere, then it follows that
both boundaries are measure-theoretic attractors.



Negative Schwarzian 5

Standing Hypothesis: Always assume that
Lyap(A0) and Lyap(A1) have the same sign.

Theorem 1. Suppose also that Sfx(y) < 0 almost
everywhere. Then there is an almost everywhere defined
measurable function σ : R/Z→ I such that:

(x , y) ∈ B0 whenever y < σ(x) ,
and (x , y) ∈ B1 whenever y > σ(x) .

It follows that the union B0 ∪ B1 has full measure.

More generally, the same statement is true if the
k-tupling map on the circle is replaced by any
continuous ergodic transformation g on a compact
space with g-invariant probability measure.



Schwarzian and Cross-Ratio 6

The proof will make use of the cross-ratio

ρ(y0, y1, y2, y3) =
(y2 − y0)(y3 − y1)

(y1 − y0)(y3 − y2)
.

We will take y0 < y1 < y2 < y3, and hence ρ > 1.

According to Allwright (1978):

Maps fx with S(fx) < 0 almost everywhere have the basic
property of increasing the cross-ratio ρ(y0, y1, y2, y3) for all
y0 < y1 < y2 < y3 in the interval.
Similarly, maps with S(fx) ≡ 0 will preserve all such
cross-ratios;
and maps with S(fx) > 0 will decrease these cross-ratios.



Proof of Theorem 1 7

Since each fx is an orientation preserving homeomorphism,
there are unique numbers

0 ≤ σ0(x) ≤ σ1(x) ≤ 1

such that the orbit of (x , y):

converges to A0 if y < σ0(x),
converges to A1 if y > σ1(x),

does not converge to either circle if σ0(x) < y < σ1(x) .

Thus, the area of B0 can be defined as
∫
σ0(x) dx . Since this is

known to be positive, it follows that the set of all x ∈ R/Z with
σ0(x) > 0 must have positive measure.
On the other hand, this set is fully invariant under the ergodic
map x 7→ kx , using the identity σ0(kx) = fx

(
σ0(x)

)
.

Hence it must actually have full measure.
Similarly, the set of x with σ1(x) < 1 must have full measure.



Proof of Theorem 1(continued) 8

To finish the argument, we must show that σ0(x) = σ1(x) for
almost all x ∈ R/Z. Suppose otherwise that σ0(x) < σ1(x) on
a set of x of positive measure. Then a similar ergodic
argument would show that

0 < σ0(x) < σ1(x) < 1 for almost all x .

Hence the cross-ratio

r(x) = ρ(0, σ0(x), σ1(x), 1)

would be defined for almost all x , with 1 < r(x) <∞.
Furthermore, since maps of negative Schwarzian increase
cross-ratios, we would have r(kx) > r(x) almost everywhere.

This is impossible!



Proof of Theorem 1 (conclusion) 9

The inequality 1 < r(x) < r(kx) would imply that∫
R/Z

dx
r(kx)

<

∫
R/Z

dx
r(x)

.

But Lebesgue measure is invariant under push-forward by the
map x 7→ kx . It follows that∫

φ(kx) dx =

∫
φ(x) dx

for any bounded measurable function φ. This contradiction
proves that we must have σ0(x) = σ1(x) almost
everywhere. Defining σ(x) to be this common value,
this proves Theorem 1.



Intermingled Basins 10

For any measurable set S ⊂ C, let µι(S) be the Lebesgue
measure of the intersection Bι ∩ S. When Theorem 1
applies, µ0 and µ1 are non-zero measures on the
cylinder, and have sum equal to Lebesgue measure.

Definition. The two basins B0 and B1 are intermingled if

µ0(U) > 0 and µ1(U) > 0

for every non-empty open set U.

Equivalently, they are intermingled if both measures have
support equal to the entire cylinder.

(Here the support , supp(µι), is defined to be the smallest
closed set which has full measure under µι.)



Example (Ittai Kan 1994) 11
Let

qa(y) = y + ay(1− y) ,

and let a = p(x) = ε cos(2πx), with 0 < ε < 1.

Theorem 2. If k ≥ 2, then the basins B0 and
B1 for the map

F (x , y) =
(

kx , qp(x)(y)
)

are intermingled.



Proof of Theorem 2 12
Lemma. Suppose that there exist:
• an angle x− ∈ R/Z, fixed under multiplication by k , and a
neighborhood U(x−) such that

fx(y) < y for all x ∈ U(x−) and all 0 < y < 1, and
• an angle x+ ∈ R/Z, fixed under multiplication by k , and a
neighborhood U(x+) such that

fx(y) > y for all x ∈ U(x+) and all 0 < y < 1.
If Sfx < 0 almost everywhere, and if Lyap(Aι) < 0 for both
Aι, then the basins B0 and B1 are intermingled.

Kan’s example F (x , y) =
(

kx , qε cos(2πx)(y)
)

satisfies
this hypothesis for k > 2, since the angle k-tupling
map has fixed points with cos(2πx) > 0, and also
fixed points with cos(2πx) < 0.
For the case k = 2, we can replace F by F ◦ F in
order to obtain a fixed point with cos(2πx) < 0.
Thus this Lemma will imply Theorem 2.



Proof of Lemma 13

Note that the support supp(µι)
• is a closed subset of C,
• is fully F -invariant, and
• has positive area.

We must prove that this support is equal to the entire cylinder.

To begin, choose any point (x0, y0) ∈ supp(µ0) with
0 < y0 < 1. Construct a backward orbit

· · · 7→ (x−2, y−2) 7→ (x−1, y−1) 7→ (x0, y0)

under F by induction, letting each x−(k+1) be that preimage
of x−k which is closest to x−. Then this backwards
sequence converges to the point (x−, 1).



Proof (conclusion) 14
(x , 1)-

Since supp(µ0) is closed and F -invariant, it follows that
(x−, 1) ∈ supp(µ0). Since the iterated pre-images of (x−, 1)
are everywhere dense in the upper boundary circle A1, it
follows that A1 is contained in supp(µ0).
But if (x , y) belongs to supp(µ0), then clearly the entire line
segment x × [0, y ] is contained in supp(µ0).

Therefore supp(µ0) is the entire cylinder.
The proof for µ1 is completely analogous.

This proves the Lemma, and proves Theorem 2.



§2. Postive Schwarzian: Asymptotic Measure 15

Now suppose that Sfx > 0 almost everywhere.
We will see that almost all orbits for the map

F (x , y) = (kx , fx(y))

have the same asymptotic distribution.

Definition. An asymptotic measure ν for F is a probability
measure on the cylinder C such that, for Lebesgue almost
every orbit (x0, y0) 7→ (x1, y1) 7→ · · · , and for every continuous
test function ψ : C → R, the time average

1
n

( n−1∑
i=0

ψ(xi , yi)
)

converges to the space average
∫
C ψ(x , y) dν(x , y) as n→∞.

Briefly: Almost every orbit is uniformly distributed with
respect to the measure ν.



Positive Schwarzian: Proof Outline 16

Theorem 3. If Sfx(y) > 0 almost everywhere,
and if Lyap(Aι) > 0 for both Aι,
then F has a (necessarily unique) asymptotic measure.

Proof Outline. Let Sk be the solenoid consisting of all
full orbits

· · · 7→ x−2 7→ x−1 7→ x0 7→ x1 7→ x2 7→ · · ·

under the k -tupling map.
Then F lifts to a homeomorphism F̃ of Sk × I.

Here F̃ maps fibers to fibers with S > 0.
Therefore F̃−1 maps fibers to fibers with S < 0.

Hence we can apply the argument of Theorem 1 to F̃−1.



Outline Proof (conclusion) 17

In particular, there is an almost everywhere defined measurable
section

σ : Sk → Sk × I

which separates the basins of Sk × 0 and Sk × 1 under F̃−1.

Let ν̃ be the push-forward under σ of the standard
shift-invariant probability measure on Sk . Thus ν̃ is
an F̃ -invariant probability measure on Sk × I.

Assertion: ν̃ is an asymptotic measure for F̃ .

Since almost all points are pushed away from the
graph of σ by the inverse map F̃−1, it follows that they
are pushed towards this graph by the map F̃ .

Now push ν̃ forward under the projection from Sk × I to
C = (R/Z)× I,
This yields the required asymptotic measure for F .



Example 18

Let F (x , y) =
(

kx , q −1
ε cos(2πx)(y)

)
.

50000 points of a randomly chosen orbit for F .



§3. The Hard Case: Zero Schwarzian 19
Suppose that each orientation preserving diffeomorphism
fx : I → I has Schwarzian Sfx identically zero.
Such a map is necessarily fractional linear, and can be written
as

y 7→ ay
1 + (a− 1)y

with a > 0 . (2)

Here a = a(x) = f ′x(0) is the derivative with respect to y at
y = 0. Note that each fx preserves the Poincaré distance

d(y1, y2) =
∣∣ log ρ(0, y1, y2, 1)

∣∣ .
Hence, by a change of variable, we can transform this fractional
linear transformation of the open interval into a translation of the
real line: Replace y by the Poincaré arclength coordinate

t(y) = log ρ(0, 1/2, y , 1) = log
y

1− y
.

The map (2) then corresponds to the translation

t 7→ t + log a . (3)



A Pseudo-Random Walk. 20
Using this change of coordinate, the skew product map
(x , y) 7→

(
kx , fx(y)

)
on (R/Z)× I takes the form

(x , t) 7→
(

kx , t + log a(x)
)
,

mapping (R/Z)× R to itself.

Think of the k -tupling map as generating a sequence of
pseudo-random numbers

log a(x), log a(kx), log a(k2x), . . . .

Then the resulting sequence of t values can be described as a
“pseudo-random walk” on the real line. The condition that

Lyap(A0) =

∫
R/Z

log
(
a(x)

)
dx = 0

means that this pseudo-random walk is unbiased.



Conjectured Behavior 21

Suppose that Sfy ≡ 0,
with Lyap(A0) = Lyap(A1) = 0,
and with fx(y) 6≡ y,
then we conjecture that almost every orbit comes
within any neighborhood of A0 infinitely often,
but also within any neighborhood of A1 infinitely
often, on such an irregular schedule that there can
be no asymptotic measure!

More precisely, for almost every orbit

(x1, y1) 7→ (x2, y2) 7→ (x3, y3) 7→ · · · ,

we have

lim inf
y1 + · · ·+ yn

n
= 0 and lim sup

y1 + · · ·+ yn

n
= 1 .



Intuitive Argument 22

The corresponding statement is known to be true for an honest
random walk on R, where the successive steps sizes are
independent random variables with mean zero.

Conjecturally, our pseudo-random walk must behave enough
like an actual random walk so that this behavior will persist.

THE END


