Cylinder Maps and the Schwarzian

John Milnor

Stony Brook University (www.math.sunysb.edu)

Bremen – June 16, 2008

Cylinder Maps

-work with Araceli Bonifant-

Let C denote the cylinder $(\mathbb{R}/\mathbb{Z}) \times I$.

We will study maps

$$F(x, y) = (kx, f_x(y))$$

from C to itself, where $k \ge 2$ is a fixed integer, where each $f_x : I \to I$ is a diffeomorphism with $f_x(0) = 0$ and $f_x(1) = 1$, and where the Schwarzian $Sf_x(y)$ has constant sign for almost all $(x, y) \in C$.

Schwarzian derivative

The **Schwarzian derivative** of a C^3 interval diffeomorphism *f* is defined by the formula

$$Sf(y) = \frac{f'''(y)}{f'(y)} - \frac{3}{2} \left(\frac{f''(y)}{f'(y)}\right)^2.$$
 (1)

0

On the left: Graph of a function $q_a(y) = y + ay(1 - y)$ (*a* = 0.82), with $Sq_a < 0$ everywhere.

Middle: Graph of $y \mapsto 3y/(1+2y)$, with $S \equiv 0$. Right: Graph of $q_{-a}^{-1}(y)$, with S > 0 everywhere.

The Transverse Lyapunov Exponent

Let $\mathcal{A}_0 = (\mathbb{R}/\mathbb{Z}) \times 0$ and $\mathcal{A}_1 = (\mathbb{R}/\mathbb{Z}) \times 1$ be the two boundaries of \mathcal{C} . The **transverse Lyapunov exponent** of the boundary circle \mathcal{A}_{ι} can be defined as the average

$$Lyap(\mathcal{A}_{\iota}) = \int_{\mathbb{R}/\mathbb{Z}} \log\left(\frac{df_x}{dy}(x, \iota)\right) dx.$$

Let $\mathcal{B}_{\iota} = \mathcal{B}(\mathcal{A}_{\iota})$ be the **attracting basin**: the union of all orbits which converge towards \mathcal{A}_{ι} .

Standard Theorem. If $Lyap(A_{\iota}) < 0$ then B_{ι} has strictly positive measure. In this case, the boundary circle A_{ι} will be described as a "**measure-theoretic attractor**". However, if $Lyap(A_{\iota}) > 0$ then B_{ι} has measure zero.

Schwarzian and Dynamics

Lemma. Suppose that Sf(y) has constant sign (positive, negative or, zero) for almost all (x, y) in C.

If Sf > 0 almost everywhere, then f'(0)f'(1) > 1. If $Sf \equiv 0$, then f'(0)f'(1) = 1. If Sf < 0 almost everywhere, then f'(0)f'(1) < 1.

Corollary. If $Sf_x(y)$ has constant sign for almost all (x, y), then $Lyap(A_0) + Lyap(A_1)$ has this same sign.

For example, if $Lyap(A_0)$ and $Lyap(A_1)$ have the same sign, and if $Sf_x(y) < 0$ almost everywhere, then it follows that **both** boundaries are measure-theoretic attractors.

Negative Schwarzian

Standing Hypothesis: Always assume that $Lyap(A_0)$ and $Lyap(A_1)$ have the same sign.

Theorem 1. Suppose also that $Sf_x(y) < 0$ almost everywhere. Then there is an almost everywhere defined measurable function $\sigma : \mathbb{R}/\mathbb{Z} \to I$ such that:

	$(x,y)\in\mathcal{B}_0$	whenever	$\mathbf{y} < \sigma(\mathbf{x}),$
and	$(x, y) \in \mathcal{B}_1$	whenever	$y > \sigma(x)$.

It follows that the union $\mathcal{B}_0 \cup \mathcal{B}_1$ has full measure.

More generally, the same statement is true if the *k*-tupling map on the circle is replaced by any continuous ergodic transformation g on a compact space with g-invariant probability measure.

Schwarzian and Cross-Ratio

The proof will make use of the cross-ratio

$$\rho(\mathbf{y}_0,\mathbf{y}_1,\mathbf{y}_2,\mathbf{y}_3) = \frac{(\mathbf{y}_2-\mathbf{y}_0)(\mathbf{y}_3-\mathbf{y}_1)}{(\mathbf{y}_1-\mathbf{y}_0)(\mathbf{y}_3-\mathbf{y}_2)}.$$

We will take $y_0 < y_1 < y_2 < y_3$, and hence $\rho > 1$. According to Allwright (1978):

Maps f_x with $S(f_x) < 0$ almost everywhere have the basic property of **increasing** the cross-ratio $\rho(y_0, y_1, y_2, y_3)$ for all $y_0 < y_1 < y_2 < y_3$ in the interval. Similarly, maps with $S(f_x) \equiv 0$ will **preserve** all such cross-ratios;

and maps with $S(f_x) > 0$ will **decrease** these cross-ratios.

Proof of Theorem 1

Since each f_x is an orientation preserving homeomorphism, there are unique numbers

 $0 \leq \sigma_0(x) \leq \sigma_1(x) \leq 1$

such that the orbit of (x, y):

converges to A_0 if $y < \sigma_0(x)$, converges to A_1 if $y > \sigma_1(x)$,

does not converge to either circle if $\sigma_0(x) < y < \sigma_1(x)$.

Thus, the area of \mathcal{B}_0 can be defined as $\int \sigma_0(x) dx$. Since this is known to be positive, it follows that the set of all $x \in \mathbb{R}/\mathbb{Z}$ with $\sigma_0(x) > 0$ must have positive measure. On the other hand, this set is fully invariant under the ergodic map $x \mapsto kx$, using the identity $\sigma_0(kx) = f_x(\sigma_0(x))$. Hence it must actually have full measure. Similarly, the set of x with $\sigma_1(x) < 1$ must have full measure.

Proof of Theorem 1(continued)

To finish the argument, we must show that $\sigma_0(x) = \sigma_1(x)$ for almost all $x \in \mathbb{R}/\mathbb{Z}$. Suppose otherwise that $\sigma_0(x) < \sigma_1(x)$ on a set of x of positive measure. Then a similar ergodic argument would show that

 $0 < \sigma_0(x) < \sigma_1(x) < 1$ for almost all x.

Hence the cross-ratio

$$r(x) = \rho(0, \sigma_0(x), \sigma_1(x), 1)$$

would be defined for almost all x, with $1 < r(x) < \infty$. Furthermore, since maps of negative Schwarzian increase cross-ratios, we would have r(kx) > r(x) almost everywhere. This is impossible!

Proof of Theorem 1 (conclusion)

The inequality 1 < r(x) < r(kx) would imply that

$$\int\limits_{\mathbb{R}/\mathbb{Z}}\frac{dx}{r(kx)} < \int\limits_{\mathbb{R}/\mathbb{Z}}\frac{dx}{r(x)}$$

But Lebesgue measure is invariant under push-forward by the map $x \mapsto kx$. It follows that

$$\int \phi(kx) \, dx = \int \phi(x) \, dx$$

for any bounded measurable function ϕ . This contradiction proves that we must have $\sigma_0(x) = \sigma_1(x)$ almost everywhere. Defining $\sigma(x)$ to be this common value, this proves Theorem 1.

Intermingled Basins

For any measurable set $S \subset C$, let $\mu_{\iota}(S)$ be the Lebesgue measure of the intersection $\mathcal{B}_{\iota} \cap S$. When Theorem 1 applies, μ_0 and μ_1 are non-zero measures on the cylinder, and have sum equal to Lebesgue measure.

Definition. The two basins \mathcal{B}_0 and \mathcal{B}_1 are **intermingled** if

 $\mu_0(U) > 0$ and $\mu_1(U) > 0$

for every non-empty open set U.

Equivalently, they are intermingled if both measures have support equal to the entire cylinder.

(Here the *support*, **supp**(μ_{ι}), is defined to be the smallest closed set which has full measure under μ_{ι} .)

Example (Ittai Kan 1994) Let

$$q_a(y)=y+ay(1-y),$$

11

and let $a = p(x) = \epsilon \cos(2\pi x)$, with $0 < \epsilon < 1$.

Theorem 2. If $k \ge 2$, then the basins \mathcal{B}_0 and \mathcal{B}_1 for the map

$$F(x,y) = (kx, q_{p(x)}(y))$$

are intermingled.

Proof of Theorem 2

Lemma. Suppose that there exist:

• an angle $x^- \in \mathbb{R}/\mathbb{Z}$, fixed under multiplication by k, and a neighborhood $U(x^-)$ such that

 $f_x(y) < y$ for all $x \in U(x^-)$ and all 0 < y < 1, and

• an angle $x^+ \in \mathbb{R}/\mathbb{Z}$, fixed under multiplication by k, and a neighborhood $U(x^+)$ such that

 $f_x(y) > y$ for all $x \in U(x^+)$ and all 0 < y < 1.

If $Sf_x < 0$ almost everywhere, and if $Lyap(A_\iota) < 0$ for both A_ι , then the basins B_0 and B_1 are intermingled.

Kan's example $F(x, y) = (kx, q_{e \cos(2\pi x)}(y))$ satisfies this hypothesis for k > 2, since the angle k-tupling map has fixed points with $\cos(2\pi x) > 0$, and also fixed points with $\cos(2\pi x) < 0$.

For the case k = 2, we can replace F by $F \circ F$ in order to obtain a fixed point with $\cos(2\pi x) < 0$. Thus this Lemma will imply Theorem 2.

Proof of Lemma

Note that the support $supp(\mu_{\iota})$

- is a closed subset of C,
- is fully F-invariant, and
- has positive area.

We must prove that this support is equal to the entire cylinder.

To begin, choose any point $(x_0, y_0) \in \text{supp}(\mu_0)$ with $0 < y_0 < 1$. Construct a backward orbit

$$\cdots \mapsto (x_{-2}, y_{-2}) \mapsto (x_{-1}, y_{-1}) \mapsto (x_0, y_0)$$

under *F* by induction, letting each $x_{-(k+1)}$ be that preimage of x_{-k} which is closest to x^- . Then this backwards sequence converges to the point $(x^-, 1)$.

Proof (conclusion)

Since $\operatorname{supp}(\mu_0)$ is closed and *F*-invariant, it follows that $(x^-, 1) \in \operatorname{supp}(\mu_0)$. Since the iterated pre-images of $(x^-, 1)$ are everywhere dense in the upper boundary circle \mathcal{A}_1 , it follows that \mathcal{A}_1 is contained in $\operatorname{supp}(\mu_0)$. But if (x, y) belongs to $\operatorname{supp}(\mu_0)$, then clearly the entire line segment $x \times [0, y]$ is contained in $\operatorname{supp}(\mu_0)$. Therefore $\operatorname{supp}(\mu_0)$ is the entire cylinder. The proof for μ_1 is completely analogous. This proves the Lemma, and proves Theorem 2.

14

§2. Postive Schwarzian: Asymptotic Measure

Now suppose that $Sf_x > 0$ almost everywhere. We will see that almost all orbits for the map

 $F(x, y) = (kx, f_x(y))$

have the same asymptotic distribution.

Definition. An **asymptotic measure** ν for *F* is a probability measure on the cylinder *C* such that, for Lebesgue almost every orbit $(x_0, y_0) \mapsto (x_1, y_1) \mapsto \cdots$, and for every continuous test function $\psi : C \to \mathbb{R}$, the time average

$$\frac{1}{n}\Big(\sum_{i=0}^{n-1}\psi(x_i,\,y_i)\Big)$$

converges to the space average $\int_{\mathcal{C}} \psi(x, y) \, d\nu(x, y)$ as $n \to \infty$.

Briefly: Almost every orbit is **uniformly distributed** with respect to the measure ν .

Positive Schwarzian: Proof Outline

Theorem 3. If $Sf_x(y) > 0$ almost everywhere, and if $Lyap(A_i) > 0$ for both A_i , then *F* has a (necessarily unique) asymptotic measure.

Proof Outline. Let \mathfrak{S}_k be the **solenoid** consisting of all **full orbits**

$$\cdots \mapsto x_{-2} \mapsto x_{-1} \mapsto x_0 \mapsto x_1 \mapsto x_2 \mapsto \cdots$$

under the *k*-tupling map.

Then *F* lifts to a homeomorphism \tilde{F} of $\mathfrak{S}_k \times I$.

Here \tilde{F} maps fibers to fibers with S > 0. Therefore \tilde{F}^{-1} maps fibers to fibers with S < 0.

Hence we can apply the argument of Theorem 1 to \tilde{F}^{-1} .

Outline Proof (conclusion)

In particular, there is an almost everywhere defined measurable section

$$\sigma:\mathfrak{S}_k\to\mathfrak{S}_k\times I$$

which separates the basins of $\mathfrak{S}_k \times 0$ and $\mathfrak{S}_k \times 1$ under \widetilde{F}^{-1} .

Let $\tilde{\nu}$ be the push-forward under σ of the standard shift-invariant probability measure on \mathfrak{S}_k . Thus $\tilde{\nu}$ is an \tilde{F} -invariant probability measure on $\mathfrak{S}_k \times I$.

Assertion: $\tilde{\nu}$ is an asymptotic measure for \tilde{F} .

Since almost all points are pushed away from the graph of σ by the inverse map \tilde{F}^{-1} , it follows that they are pushed **towards** this graph by the map \tilde{F} .

Now push $\tilde{\nu}$ forward under the projection from $\mathfrak{S}_k \times I$ to $\mathcal{C} = (\mathbb{R}/\mathbb{Z}) \times I$, This yields the required asymptotic measure for F. Example

Let $F(x,y) = \left(kx, q_{\epsilon \cos(2\pi x)}^{-1}(y)\right).$

18

50000 points of a randomly chosen orbit for F.

§3. The Hard Case: Zero Schwarzian

Suppose that each orientation preserving diffeomorphism $f_x : I \rightarrow I$ has Schwarzian Sf_x identically zero. Such a map is necessarily fractional linear, and can be written as

$$y \mapsto \frac{ay}{1+(a-1)y}$$
 with $a > 0$. (2)

Here $a = a(x) = f'_x(0)$ is the derivative with respect to y at y = 0. Note that each f_x preserves the **Poincaré distance**

$$\mathbf{d}(y_1, y_2) = |\log \rho(0, y_1, y_2, 1)|.$$

Hence, by a change of variable, we can transform this fractional linear transformation of the open interval into a translation of the real line: Replace y by the **Poincaré arclength coordinate**

$$t(y) = \log \rho(0, 1/2, y, 1) = \log \frac{y}{1-y}.$$

The map (2) then corresponds to the translation

$$t \mapsto t + \log a. \tag{3}$$

A Pseudo-Random Walk.

Using this change of coordinate, the skew product map $(x, y) \mapsto (kx, f_x(y))$ on $(\mathbb{R}/\mathbb{Z}) \times I$ takes the form

 $(x,t) \mapsto (kx, t + \log a(x)),$

mapping $(\mathbb{R}/\mathbb{Z}) \times \mathbb{R}$ to itself.

Think of the *k*-tupling map as generating a sequence of pseudo-random numbers

 $\log a(x)$, $\log a(kx)$, $\log a(k^2x)$,

Then the resulting sequence of t values can be described as a "**pseudo-random walk**" on the real line. The condition that

$$Lyap(\mathcal{A}_0) = \int_{\mathbb{R}/\mathbb{Z}} \log (a(x)) dx = 0$$

means that this pseudo-random walk is **unbiased**.

Conjectured Behavior

Suppose that $Sf_y \equiv 0$, with $Lyap(A_0) = Lyap(A_1) = 0$, and with $f_x(y) \neq y$, then we conjecture that almost every orbit comes within any neighborhood of A_0 infinitely often, but also within any neighborhood of A_1 infinitely often, on such an irregular schedule that there can be no asymptotic measure!

More precisely, for almost every orbit

$$(x_1, y_1) \mapsto (x_2, y_2) \mapsto (x_3, y_3) \mapsto \cdots,$$

we have

$$\liminf \frac{y_1 + \dots + y_n}{n} = 0 \quad \text{and} \quad \limsup \frac{y_1 + \dots + y_n}{n} = 1.$$

The corresponding statement is known to be true for an honest random walk on \mathbb{R} , where the successive steps sizes are independent random variables with mean zero.

Conjecturally, our pseudo-random walk must behave enough like an actual random walk so that this behavior will persist.

THE END