Cylinder Maps and the Schwarzian

John Milnor

Stony Brook University (www.math.sunysb.edu)

Bremen - June 16, 2008

Cylinder Maps

—work with Araceli Bonifant-
Let \mathcal{C} denote the cylinder $(\mathbb{R} / \mathbb{Z}) \times I$.

We will study maps

$$
F(x, y)=\left(k x, f_{x}(y)\right)
$$

from \mathcal{C} to itself, where $k \geq 2$ is a fixed integer, where each $f_{x}: I \rightarrow I$ is a diffeomorphism with $f_{x}(0)=0$ and $f_{x}(1)=1$, and where the Schwarzian $\mathcal{S f _ { x }}(y)$ has constant sign for almost all $(x, y) \in \mathcal{C}$.

Schwarzian derivative

The Schwarzian derivative of a C^{3} interval diffeomorphism f is defined by the formula

$$
\begin{equation*}
\mathcal{S} f(y)=\frac{f^{\prime \prime \prime}(y)}{f^{\prime}(y)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(y)}{f^{\prime}(y)}\right)^{2} \tag{1}
\end{equation*}
$$

On the left: Graph of a function $q_{a}(y)=y+a y(1-y)$ ($a=0.82$), with $\mathcal{S} q_{a}<0$ everywhere.

Middle: Graph of $\quad y \mapsto 3 y /(1+2 y), \quad$ with $\mathcal{S} \equiv 0$.
Right: Graph of $q_{-a}^{-1}(y)$, with $\mathcal{S}>0$ everywhere.

Let $\mathcal{A}_{0}=(\mathbb{R} / \mathbb{Z}) \times 0$ and $\mathcal{A}_{1}=(\mathbb{R} / \mathbb{Z}) \times 1$ be the two boundaries of \mathcal{C}. The transverse Lyapunov exponent of the boundary circle \mathcal{A}_{ι} can be defined as the average

$$
\operatorname{Lyap}\left(\mathcal{A}_{\iota}\right)=\int_{\mathbb{R} / \mathbb{Z}} \log \left(\frac{d f_{x}}{d y}(x, \iota)\right) d x
$$

Let $\mathcal{B}_{\iota}=\mathcal{B}\left(\mathcal{A}_{\iota}\right)$ be the attracting basin: the union of all orbits which converge towards \mathcal{A}_{ι}.

Standard Theorem. If $\operatorname{Lyap}\left(\mathcal{A}_{\iota}\right)<0$ then \mathcal{B}_{ι} has strictly positive measure. In this case, the boundary circle \mathcal{A}_{ι} will be described as a "measure-theoretic attractor". However, if $\operatorname{Lyap}\left(\mathcal{A}_{\iota}\right)>0$ then \mathcal{B}_{ι} has measure zero.

Schwarzian and Dynamics

Lemma. Suppose that $\mathcal{S f}(y)$ has constant sign (positive, negative or, zero) for almost all (x, y) in \mathcal{C}.

If $\mathcal{S} f>0$ almost everywhere, then $f^{\prime}(0) f^{\prime}(1)>1$.
If $S f \equiv 0, \quad$ then $f^{\prime}(0) f^{\prime}(1)=1$.
If $\mathcal{S} f<0$ almost everywhere, then $f^{\prime}(0) f^{\prime}(1)<1$.

Corollary. If $\mathcal{S f _ { x }}(y)$ has constant sign for almost all (x, y), then $\operatorname{Lyap}\left(\mathcal{A}_{0}\right)+\operatorname{Lyap}\left(\mathcal{A}_{1}\right)$ has this same sign.

For example, if $\operatorname{Lyap}\left(\mathcal{A}_{0}\right)$ and $\operatorname{Lyap}\left(\mathcal{A}_{1}\right)$ have the same sign, and if $\mathcal{S f _ { x }}(y)<0$ almost everywhere, then it follows that both boundaries are measure-theoretic attractors.

Negative Schwarzian

Standing Hypothesis: Always assume that $\operatorname{Lyap}\left(\mathcal{A}_{0}\right)$ and $\operatorname{Lyap}\left(\mathcal{A}_{1}\right)$ have the same sign.

Theorem 1. Suppose also that $\mathcal{S} f_{x}(y)<0$ almost everywhere. Then there is an almost everywhere defined measurable function $\sigma: \mathbb{R} / \mathbb{Z} \rightarrow I$ such that:

$$
\begin{array}{rll}
(x, y) \in \mathcal{B}_{0} & \text { whenever } & y<\sigma(x), \\
\text { and }(x, y) \in \mathcal{B}_{1} & \text { whenever } & y>\sigma(x) .
\end{array}
$$

It follows that the union $\mathcal{B}_{0} \cup \mathcal{B}_{1}$ has full measure.
More generally, the same statement is true if the k-tupling map on the circle is replaced by any continuous ergodic transformation g on a compact space with g-invariant probability measure.

Schwarzian and Cross-Ratio

The proof will make use of the cross-ratio

$$
\rho\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=\frac{\left(y_{2}-y_{0}\right)\left(y_{3}-y_{1}\right)}{\left(y_{1}-y_{0}\right)\left(y_{3}-y_{2}\right)}
$$

We will take $y_{0}<y_{1}<y_{2}<y_{3}$, and hence $\rho>1$.
According to Allwright (1978):
Maps f_{x} with $\mathcal{S}\left(f_{x}\right)<0$ almost everywhere have the basic property of increasing the cross-ratio $\rho\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ for all $y_{0}<y_{1}<y_{2}<y_{3}$ in the interval.
Similarly, maps with $\mathcal{S}\left(f_{x}\right) \equiv 0$ will preserve all such
cross-ratios;
and maps with $\mathcal{S}\left(f_{x}\right)>0$ will decrease these cross-ratios.

Proof of Theorem 1

Since each f_{x} is an orientation preserving homeomorphism, there are unique numbers

$$
0 \leq \sigma_{0}(x) \leq \sigma_{1}(x) \leq 1
$$

such that the orbit of (x, y) :

$$
\begin{array}{rll}
\text { converges to } \mathcal{A}_{0} & \text { if } y<\sigma_{0}(x), \\
\text { converges to } \mathcal{A}_{1} & \text { if } & y>\sigma_{1}(x), \\
\text { does not converge to either circle } & \text { if } & \sigma_{0}(x)<y<\sigma_{1}(x) .
\end{array}
$$

Thus, the area of \mathcal{B}_{0} can be defined as $\int \sigma_{0}(x) d x$. Since this is known to be positive, it follows that the set of all $x \in \mathbb{R} / \mathbb{Z}$ with $\sigma_{0}(x)>0$ must have positive measure.
On the other hand, this set is fully invariant under the ergodic map $x \mapsto k x$, using the identity $\sigma_{0}(k x)=f_{x}\left(\sigma_{0}(x)\right)$. Hence it must actually have full measure.
Similarly, the set of x with $\sigma_{1}(x)<1$ must have full measure.

Proof of Theorem 1 (continued)

To finish the argument, we must show that $\sigma_{0}(x)=\sigma_{1}(x)$ for almost all $x \in \mathbb{R} / \mathbb{Z}$. Suppose otherwise that $\sigma_{0}(x)<\sigma_{1}(x)$ on a set of x of positive measure. Then a similar ergodic argument would show that

$$
0<\sigma_{0}(x)<\sigma_{1}(x)<1 \quad \text { for almost all } \quad x
$$

Hence the cross-ratio

$$
r(x)=\rho\left(0, \sigma_{0}(x), \sigma_{1}(x), 1\right)
$$

would be defined for almost all x, with $1<r(x)<\infty$.
Furthermore, since maps of negative Schwarzian increase cross-ratios, we would have $r(k x)>r(x)$ almost everywhere.

This is impossible!

Proof of Theorem 1 (conclusion)

The inequality $1<r(x)<r(k x)$ would imply that

$$
\int_{\mathbb{R} / \mathbb{Z}} \frac{d x}{r(k x)}<\int_{\mathbb{R} / \mathbb{Z}} \frac{d x}{r(x)}
$$

But Lebesgue measure is invariant under push-forward by the map $x \mapsto k x$. It follows that

$$
\int \phi(k x) d x=\int \phi(x) d x
$$

for any bounded measurable function ϕ. This contradiction proves that we must have $\sigma_{0}(x)=\sigma_{1}(x)$ almost everywhere. Defining $\sigma(x)$ to be this common value, this proves Theorem 1.

Intermingled Basins

For any measurable set $S \subset \mathcal{C}$, let $\mu_{\iota}(S)$ be the Lebesgue measure of the intersection $\mathcal{B}_{\iota} \cap S$. When Theorem 1 applies, μ_{0} and μ_{1} are non-zero measures on the cylinder, and have sum equal to Lebesgue measure.

Definition. The two basins \mathcal{B}_{0} and \mathcal{B}_{1} are intermingled if

$$
\mu_{0}(U)>0 \quad \text { and } \quad \mu_{1}(U)>0
$$

for every non-empty open set U.
Equivalently, they are intermingled if both measures have support equal to the entire cylinder.
(Here the support, $\operatorname{supp}\left(\mu_{\iota}\right)$, is defined to be the smallest closed set which has full measure under μ_{ι}.)

Example (Ittai Kan 1994)

Let

$$
q_{a}(y)=y+a y(1-y),
$$

and let

$$
a=p(x)=\epsilon \cos (2 \pi x), \quad \text { with } 0<\epsilon<1
$$

Theorem 2. If $k \geq 2$, then the basins \mathcal{B}_{0} and \mathcal{B}_{1} for the map

$$
F(x, y)=\left(k x, q_{p(x)}(y)\right)
$$

are intermingled.

Proof of Theorem 2

Lemma. Suppose that there exist:

- an angle $x^{-} \in \mathbb{R} / \mathbb{Z}$, fixed under multiplication by k, and a neighborhood $U\left(x^{-}\right)$such that

$$
f_{x}(y)<y \text { for all } x \in U\left(x^{-}\right) \text {and all } 0<y<1 \text {, and }
$$

- an angle $x^{+} \in \mathbb{R} / \mathbb{Z}$, fixed under multiplication by k, and a neighborhood $U\left(x^{+}\right)$such that

$$
f_{x}(y)>y \text { for all } x \in U\left(x^{+}\right) \text {and all } 0<y<1
$$

If $\mathcal{S}_{X}<0$ almost everywhere, and if $\operatorname{Lyap}\left(\mathcal{A}_{\iota}\right)<0$ for both
\mathcal{A}_{ι}, then the basins \mathcal{B}_{0} and \mathcal{B}_{1} are intermingled.
Kan's example $F(x, y)=\left(k x, q_{\epsilon \cos (2 \pi x)}(y)\right)$ satisfies this hypothesis for $k>2$, since the angle k-tupling map has fixed points with $\cos (2 \pi x)>0$, and also fixed points with $\cos (2 \pi x)<0$.
For the case $k=2$, we can replace F by $F \circ F$ in order to obtain a fixed point with $\cos (2 \pi x)<0$.
Thus this Lemma will imply Theorem 2.

Note that the support $\operatorname{supp}\left(\mu_{\iota}\right)$

- is a closed subset of \mathcal{C},
- is fully F-invariant, and
- has positive area.

We must prove that this support is equal to the entire cylinder.
To begin, choose any point $\left(x_{0}, y_{0}\right) \in \boldsymbol{\operatorname { s u p p }}\left(\mu_{0}\right)$ with
$0<y_{0}<1$. Construct a backward orbit

$$
\cdots \mapsto\left(x_{-2}, y_{-2}\right) \mapsto\left(x_{-1}, y_{-1}\right) \mapsto\left(x_{0}, y_{0}\right)
$$

under F by induction, letting each $x_{-(k+1)}$ be that preimage of x_{-k} which is closest to x^{-}. Then this backwards sequence converges to the point $\left(x^{-}, 1\right)$.

Since $\operatorname{supp}\left(\mu_{0}\right)$ is closed and F-invariant, it follows that $\left(x^{-}, 1\right) \in \boldsymbol{\operatorname { s u p p }}\left(\mu_{0}\right)$. Since the iterated pre-images of $\left(x^{-}, 1\right)$ are everywhere dense in the upper boundary circle \mathcal{A}_{1}, it follows that \mathcal{A}_{1} is contained in $\operatorname{supp}\left(\mu_{0}\right)$.
But if (x, y) belongs to $\operatorname{supp}\left(\mu_{0}\right)$, then clearly the entire line segment $x \times[0, y]$ is contained in $\operatorname{supp}\left(\mu_{0}\right)$.

Therefore $\operatorname{supp}\left(\mu_{0}\right)$ is the entire cylinder.
The proof for μ_{1} is completely analogous.
This proves the Lemma, and proves Theorem 2.

§2. Postive Schwarzian: Asymptotic Measure

Now suppose that $\mathcal{S f _ { X }}>0$ almost everywhere.
We will see that almost all orbits for the map

$$
F(x, y)=\left(k x, f_{x}(y)\right)
$$

have the same asymptotic distribution.
Definition. An asymptotic measure ν for F is a probability measure on the cylinder \mathcal{C} such that, for Lebesgue almost every orbit $\left(x_{0}, y_{0}\right) \mapsto\left(x_{1}, y_{1}\right) \mapsto \cdots$, and for every continuous test function $\psi: \mathcal{C} \rightarrow \mathbb{R}$, the time average

$$
\frac{1}{n}\left(\sum_{i=0}^{n-1} \psi\left(x_{i}, y_{i}\right)\right)
$$

converges to the space average $\int_{\mathcal{C}} \psi(x, y) d \nu(x, y)$ as $n \rightarrow \infty$.
Briefly: Almost every orbit is uniformly distributed with respect to the measure ν.

Positive Schwarzian: Proof Outline

Theorem 3. If $\mathcal{S} f_{x}(y)>0$ almost everywhere, and if $\operatorname{Lyap}\left(\mathcal{A}_{\iota}\right)>0$ for both \mathcal{A}_{ι}, then F has a (necessarily unique) asymptotic measure.

Proof Outline. Let \mathfrak{S}_{k} be the solenoid consisting of all full orbits

$$
\cdots \mapsto x_{-2} \mapsto x_{-1} \mapsto x_{0} \mapsto x_{1} \mapsto x_{2} \mapsto \cdots
$$

under the k-tupling map.
Then F lifts to a homeomorphism \tilde{F} of $\mathfrak{S}_{k} \times I$.
Here \tilde{F} maps fibers to fibers with $\mathcal{S}>0$.
Therefore \widetilde{F}^{-1} maps fibers to fibers with $\mathcal{S}<0$.
Hence we can apply the argument of Theorem 1 to \tilde{F}^{-1}.

Outline Proof (conclusion)

In particular, there is an almost everywhere defined measurable section

$$
\sigma: \mathfrak{S}_{k} \rightarrow \mathfrak{S}_{k} \times I
$$

which separates the basins of $\mathfrak{S}_{k} \times 0$ and $\mathfrak{S}_{k} \times 1$ under \widetilde{F}^{-1}.
Let $\widetilde{\nu}$ be the push-forward under σ of the standard shift-invariant probability measure on \mathfrak{S}_{k}. Thus $\widetilde{\nu}$ is an \widetilde{F}-invariant probability measure on $\mathfrak{S}_{k} \times I$.

Assertion: $\widetilde{\nu}$ is an asymptotic measure for \widetilde{F}.

> Since almost all points are pushed away from the graph of σ by the inverse map \widetilde{F}^{-1}, it follows that they are pushed towards this graph by the map \widetilde{F}.

Now push $\widetilde{\nu}$ forward under the projection from $\mathfrak{S}_{k} \times I$ to $\mathcal{C}=(\mathbb{R} / \mathbb{Z}) \times I$,
This yields the required asymptotic measure for F.

Example

Let $F(x, y)=\left(k x, q_{\epsilon \cos (2 \pi x)}^{-1}(y)\right)$.

50000 points of a randomly chosen orbit for F.

§3. The Hard Case: Zero Schwarzian

Suppose that each orientation preserving diffeomorphism $f_{x}: I \rightarrow I$ has Schwarzian $\mathcal{S} f_{x}$ identically zero.
Such a map is necessarily fractional linear, and can be written as

$$
\begin{equation*}
y \mapsto \frac{a y}{1+(a-1) y} \quad \text { with } \quad a>0 \tag{2}
\end{equation*}
$$

Here $a=a(x)=f_{x}^{\prime}(0)$ is the derivative with respect to y at $y=0$. Note that each f_{x} preserves the Poincaré distance

$$
\mathbf{d}\left(y_{1}, y_{2}\right)=\left|\log \rho\left(0, y_{1}, y_{2}, 1\right)\right| .
$$

Hence, by a change of variable, we can transform this fractional linear transformation of the open interval into a translation of the real line: Replace y by the Poincaré arclength coordinate

$$
t(y)=\log \rho(0,1 / 2, y, 1)=\log \frac{y}{1-y}
$$

The map (2) then corresponds to the translation

$$
\begin{equation*}
t \mapsto t+\log a \tag{3}
\end{equation*}
$$

A Pseudo-Random Walk.

Using this change of coordinate, the skew product map $(x, y) \mapsto\left(k x, f_{x}(y)\right)$ on $(\mathbb{R} / \mathbb{Z}) \times I$ takes the form

$$
(x, t) \mapsto(k x, t+\log a(x))
$$

mapping $(\mathbb{R} / \mathbb{Z}) \times \mathbb{R}$ to itself.
Think of the k-tupling map as generating a sequence of pseudo-random numbers

$$
\log a(x), \quad \log a(k x), \quad \log a\left(k^{2} x\right), \ldots
$$

Then the resulting sequence of t values can be described as a "pseudo-random walk" on the real line. The condition that

$$
\operatorname{Lyap}\left(\mathcal{A}_{0}\right)=\int_{\mathbb{R} / \mathbb{Z}} \log (a(x)) d x=0
$$

means that this pseudo-random walk is unbiased.

Conjectured Behavior

> Suppose that $\mathcal{S f _ { y } \equiv 0 ,}$ with $\operatorname{Lyap}\left(\mathcal{A}_{0}\right)=\operatorname{Lyap}\left(\mathcal{A}_{1}\right)=0$, and with $f_{x}(y) \not \equiv y$ then we conjecture that almost every orbit comes within any neighborhood of \mathcal{A}_{0} infinitely often, but also within any neighborhood of \mathcal{A}_{1} infinitely often, on such an irregular schedule that there can be no asymptotic measure!

More precisely, for almost every orbit

$$
\left(x_{1}, y_{1}\right) \mapsto\left(x_{2}, y_{2}\right) \mapsto\left(x_{3}, y_{3}\right) \mapsto \cdots,
$$

we have

$$
\liminf \frac{y_{1}+\cdots+y_{n}}{n}=0 \text { and } \quad \limsup \frac{y_{1}+\cdots+y_{n}}{n}=1
$$

The corresponding statement is known to be true for an honest random walk on \mathbb{R}, where the successive steps sizes are independent random variables with mean zero.

Conjecturally, our pseudo-random walk must behave enough like an actual random walk so that this behavior will persist.

