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Parameter Space 1.

PROBLEM: To study cubic polynomial maps F with a marked
critical point which is periodic under F .

Normal form:
If F is monic and centered, then it is uniquely
determined by the marked critical point a
and the associated critical value v = F (a):

F (z) = (z − a)2(z + 2a) + v .

Thus the parameter space for the family of all such maps
F = Fa, v is the set of pairs (a, v) ∈ C2 ,

where F ′(a) = 0 and F (a) = v .



The Curve Sp
The period p curve Sp consists of those (a, v) ∈ C2 such
that the marked critical point a has period exactly p .

A caricature of Sp = C(Sp) ∪ E1 ∪ · · · ∪ ENp

The connectedness locus C(Sp) is compact.
Each escape region Eh is open, with Eh

∼= CrD .

More precisely, Eh is naturally a µh-fold covering of CrD,
where µh ≥ 1 is called the multiplicity of Eh.



Computation of the degree
The simplest invariant of Sp is the degree deg(Sp) .

Note that the disjoint union
⋃

n|p Sn is the zero set of a
polynomial function

(a, v) 7→ F ◦pa, v (a) − a

of degree 3p−1. Hence 3p−1 =
∑

n|p deg(Sn) .
It follows that deg(Sp) grows exponentially:

deg(Sp) ∼ 3p−1 as p →∞ .

The degree can also be described as the number of escape
regions counted with multiplicity:

deg(Sp) =

Np∑
h=1

µh .



The smooth compactification Sp

THEOREM: Sp is a smooth affine curve
(conjecturally always connected).

Adding an ideal “point at infinity” ∞h to each Eh, we obtain a
smooth compact complex 1-manifold

Sp = Sp ∪∞1 ∪ · · · ∪∞Np
.

We would like to compute the “genus” of this curve. But will
settle for computing the Euler characteristic, since we don’t
know that it is connected.



Computation of the Euler characteristic of SpThe computation will proceed in six steps:
Step 1. Sp is a translation surface. In other words, we can
construct a nowhere vanishing holomorphic 1-form dt on Sp.
Step 2. Some classical geometry. Considered as a 1-form
on Sp , dt is meromorphic, with zeros or poles only at the
ideal points. The Euler characteristic can then be expressed
as a sum, with one integer contribution from each ideal point.
Step 3. The Branner-Hubbard Puzzle for maps in Eh.
In order to understand asymptotic behavior near∞h , we must
first study the dynamics of maps F ∈ Eh.
Step 4. The Kiwi Puzzle: Non-Archimedian Dynamics.
This will convert the Branner-Hubbard dynamic information into
asymptotic information about the differences a− F ◦j(a) .
Step 5. Local Computation: The contribution of each∞h to
χ(Sp).
Step 6. A Global Identity. This will help piece the
complicated local information together into a relatively simple
formula.



Step 1. Sp is a translation surface
Define the Hamiltonian function Hp : C2 → C by

Hp(a, v) = F ◦p(a)− a , where F = Fa,v .

This vanishes everywhere on Sp, with dHp 6= 0 on Sp .

Let t 7→
(
a, v

)
be any solution to the Hamiltonian differential

equation
da
dt

=
∂Hp

∂v
,

dv
dt

= −
∂Hp

∂a
.

The local solutions t 7→ (a, v) =
(
a(t), v(t)

)
are

holomorphic, with dHp
dt =

∂Hp
∂a

da
dt +

∂Hp
∂v

dv
dt ≡ 0.

Hence they lie in curves Hp = constant .

Those solutions which lie in Sp provide a local holomorphic
parametrization, unique up to a translation, t 7→ t + constant.

Equivalently, the holomorphic 1-form dt on Sp is
well defined and non-zero everywhere.



A typical parameter space picture

This is a region in the t-plane for the period 4 curve S4.



Step 2. Some Classical Geometry

Consider dt as a meromorphic 1-form on the closed
manifold Sp. It has zeros or poles only at the ideal points ∞h.
We can compute

χ(Sp) = #(poles) − #(zeros) .

More precisely, if

ord(dt , ∞h) =

{
the multiplicity of the pole at ∞h ,

or minus the multiplicity of the zero ,

then

χ(Sp) =

Np∑
j=1

ord(dt , ∞h) .



The winding number
LEMMA. There exists a local parameter η for Sp around
∞h, and a local integral t of dt , so that

t = ηwh . (In particular
∮
∞h

dt = 0 .)

Here wh is a non-zero integer to be called the winding number
of Eh. Then

dt = wh η
wh−1 dη .

Therefore ord(dt , ∞h) = 1− wh .
Hence

χ(Sp) =

Np∑
j=1

(
1− wh) = Np −

∑
wh .

THEOREM:
∑

h wh = (p − 2) deg(Sp).



Euler characteristic of the period p curve Sp
I Period 1: χ = +2
I Period 2: χ = +2
I Period 3: χ = 0
I Period 4: χ = -28
I Period 5: χ = -184 (by Laura De Marco)
I Period 6: χ = -784
I Period 7: χ = -3236
I Period 8: χ = -11848
I Period 9: χ = -42744
I Period 10: χ = -147948
I Period 11: χ = -505876
I Period 12: χ = -1694848
I Period 13: χ = -5630092
I Period 14: χ = -18491088
I Period 15: χ = -60318292
I Period 16: χ = -195372312
I Period 17: χ = -629500300
I Period 18: χ = -2018178780



Step 3. The Branner-Hubbard Puzzle. Let aj = F ◦j(a)
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Step 4. The Kiwi Puzzle: Non-Archimedian Dynamics

Instead of working over the field of complex numbers, work with
a different algebraically closed field which is complete with a
well behaved norm:
Let S be the field of all formal infinite series

z = c0ξ
r0 + c1ξ

r1 + · · · .

Here each cj is to be an algebraic number, cj ∈ Q,
while r0 < r1 < · · · are rational numbers tending to +∞,
and ξ is a formal indeterminate.

If c0 6= 0, then the norm is defined by ‖z‖ = exp(−r0) > 0
(or log ‖z‖ = −r0); while ‖0‖ = 0.
This norm is multiplicative ‖z1z2‖ = ‖z1‖ ‖z2},
and non-archimedian:

‖z1 + z2‖ ≤ max
{
‖z1‖, ‖z2‖

∥∥ .



Application to an escape region Eh.
Replace the marked critical point a ∈ C by a constant element
a = ξ−1 ∈ S, with log ‖a‖ = +1.
Define Fv : S→ S by

F(z) = (z− a)2 (z + 2a) + v .

Here v ∈ S must be chosen so that the orbit

F : a = a0 7→ a1 7→ a2 7→ · · ·

has period p. (For each such choice the series are locally
convergent, and determine a parametrization of a
neighborhood of some ∞j ∈ Sp.)
Define the Green’s function G : S→ [0, ∞) by

G(z) = lim
n→∞

1
3n log+

∥∥F◦n(z)
∥∥ .

Then, as usual, G
(
F(z)

)
= 3 G(z).



Construction of the puzzle

For the “escaping” critical point −a, it is easy to check that
G(−a) = +1.)

The locus {z ∈ S ; G(z) < 1/3n−1} is a union of finitely
many round balls, which are called puzzle pieces of level n.

The region G(z) > 1/3n in each such puzzle piece is a round
annulus A of the form

A =
{

z ; R1 < ‖z− ẑ‖ < R2
}
, with modulus log(R2/R1) .

Such an annulus of level n surrounding the point ẑ = aj will be
denoted by An j .

There is an associated marked grid, where the grid at level n for
aj is marked if and only if An j = An 0 .



Kiwi’s Theorem
Let F : S→ S be the formal map corresponding to an escape
region Eh ⊂ Sp.

THEOREM: The Kiwi marked grid for F is identical to the
Branner-Hubbard marked grid for any classical map F ∈ Eh.

Furthermore, this marked grid determines and is
determined by the sequence of norms ‖a− aj‖.

In particular,

log ‖a− aj‖ = 3 −
∑

An j=An 0

mod(An 0) ≤ 1 .

Here log ‖a− aj‖ = r if and only if, for F = Fa, v ∈ Eh,

a − aj ∼ c ar as |a| → ∞ ,

where c 6= 0 is some constant in Q ⊂ C.



Step 5. Local Computation

We must compute the winding number wh in terms of the
asymptotic behavior of the critical orbit {aj}.
The key step in the proof is to estimate the derivative da

dt which
relates the 1-form dt to the critical orbit.
Passing to formal power series, a non-trivial computation
shows that ∥∥∥∥da

dt

∥∥∥∥ =

p−1∏
j=1

∥∥a(a− aj)
∥∥ .

The rest of the argument is just elementary calculus, using the
fact that

‖t‖ = ‖local uniformizing parameter‖wj = ‖a‖−wj/µj .



The local formula:
LEMMA. For each escape region Eh, with multiplicity µh, the
winding number can be expressed as a sum

wh = (p − 2)µh +

p−1∑
j=1

µh log ‖a− aj‖ .

Hence
Np∑

h=1

wh = (p − 2)deg(Sp) +
∑

h

∑
j

(
µh log ‖a− aj‖

)
.

LEMMA:
∑

h
(
µh log ‖a− aj‖

)
= 0 for each j .

This will complete the proof that∑
wh = (p − 2)deg(Sp) .



Step 6. The Global Identity

For any complex number a0, consider the intersection of the
line {(a, v) ; a = a0} with the affine curve Sp.
Generically, the number of intersection points is equal to
deg(Sp). Number them as (a0, vk ) with 1 ≤ k ≤ deg(Sp).
Each such pair determines a map Fa0, vk : C→ C.
Let a0 7→ a1 k 7→ a2 k 7→ · · · be the period p critical orbit
under Fa0, vk .
LEMMA. For each fixed 0 < j < p, the product∏

k

(a0 − aj k )

is a non-zero complex constant, independent of a0.
Proof. This product is holomorphic as a function of a0, with no
zeros or poles.

(Perhaps this product always equals +1 ??)



Now assume that |a0| is large.
Then the line {(a, v) ; a = a0} intersects each escape
region Eh exactly µh times.
Number the intersection points as (a0, vh,`) with
1 ≤ ` ≤ µh, and number the corresponding orbit points as
aj h `. Then

Np∏
h=1

µh∏
`=1

(
a− aj h `

)
= constant 6= 0 .

Now pass to formal power series.The norm ‖a− aj h `‖ is
independent of `, so we can write simply∏

h

‖a− aj h‖µh = 1 .

Hence ∑
h

µh log ‖a− aj h‖ = 0 for each j .

This completes the proof!
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