Hyperbolic Component Boundaries*

John MiInor

Stony Brook University

Gyeongju, August 23, 2014
*Revised version. The conjectures on page 16 were problematic, and have been corrected.

The Problem

Hyperbolic components, in a reasonable space of polynomial or rational maps, are well understood.

But their topological boundaries can be very complicated. This talk will first describe a special case where the boundaries are very well behaved.

It will then speculate about the other cases.

Definitions. Let $\operatorname{Rat}_{n} \subset \mathbb{P}^{2 n+1}(\mathbb{C})$ be the space of all rational maps of degree $n \geq 2$:
$\left(f(z)=\frac{\sum_{0}^{n} a_{j} z^{j}}{\sum_{0}^{n} b_{j} z^{j}}\right) \longleftrightarrow\left[a_{0}: \cdots: a_{n}: b_{0}: \cdots: b_{n}\right] \in \mathbb{P}^{2 n+1}(\mathbb{C})$.
For any algebraic variety $V \subset \mathbb{P}^{2 n+1}(\mathbb{C})$, the intersection $\mathcal{F}=V \cap$ Rat $_{n}$ will be described as an
algebraic family of rational maps.

Hyperbolic Components.

Definitions: A rational map is hyperbolic if the orbit of every critical point converges towards an attracting cycle.
In any algebraic family \mathcal{F}, the hyperbolic maps form an open subset.

Any connected component of this open subset is called a hyperbolic component $\mathcal{H} \subset \mathcal{F}$.

Two critical points will be called Grand Orbit equivalent if their forward orbits intersect.

Theorem 1. Suppose that the maps in \mathcal{H} have the property that the basin of every attracting cycle contains exactly one GO-equivalence class of critical points. Then the closure $\overline{\mathcal{H}}$, the topological boundary $\partial \mathcal{H}$, and \mathcal{H} itself are all semi-algebraic sets.

Example: The family $f_{a}(z)=a+1 / z^{2}$

Each f_{a} has critical points 0 and ∞, with $f_{a}: 0 \mapsto \infty$. Thus each f_{a} has only one critical grand orbit.
\Longrightarrow every hyperbolic component is semi-algebraic.

A More Typical Example: The family $z \mapsto(z+a) / z^{2}$.

Critical points: $z=0$ and $z=-2 a$.
The periodic orbit $0 \leftrightarrow \infty$ is always superattractive.
In the Blue and Yellow Regions:
the other critical point is eventually attracted to this orbit.
In the Red Regions: there is a disjoint periodic orbit.
Only the red (Mandelbrot-like) regions are semi-algebraic.

Semi-Algebraic Sets: the Definition.

Consider subsets of \mathbb{R}^{n} of the form either

$$
\left\{x \in \mathbb{R}^{n} ; p(x) \geq 0\right\} \quad \text { or } \quad\left\{x \in \mathbb{R}^{n} ; p(x) \neq 0\right\} .
$$

Here $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be an arbitrary real polynomial.
Definition: Any finite intersection of such sets is called a basic semi-algebraic set.

Any finite union of basic semi-algebraic sets is called a semi-algebraic set.
[Note that we can obtain equalities by combining two inequalities:
If $p(x) \geq 0$ and $-p(x) \geq 0$, then $p(x)=0$.]

This definition is applied to subsets of \mathbb{C}^{n} by simply ignoring the complex structure, identifying \mathbb{C}^{n} with $\mathbb{R}^{2 n}$.

Semi-algebraic Sets: Basic Properties

(Reference:
Bochnak, Coste, and Roy, "Real Algebraic Geometry".)

- Any finite union or intersection of semi-algebraic sets is itself a semi-algebraic set.
- The complement $\mathbb{R}^{n} \backslash S$ of a semi-algebraic set is itself a semi-algebraic set.
- A semi-algebraic set has finitely many connected components, and each of them is semi-algebraic.
- The topological closure of a semi-algebraic set is semi-algebraic.
- (Tarski-Seidenberg Theorem.) The image of a semi-algebraic set under projection from \mathbb{R}^{n} to \mathbb{R}^{n-k} is semi-algebraic.
- Every semi-algebraic set can be triangulated, and hence is locally connected.

Proof of Theorem 1.

Recall the statement:
If the maps $f \in \mathcal{H} \subset \mathcal{F}$ have only one grand-orbit-equivalence class of critical points in the basin of each attracting cycle, then $\mathcal{H}, \partial \mathcal{H}$, and $\overline{\mathcal{H}}$ are all semi-algebraic.
First Step:
Let $p_{1}, p_{2}, \ldots, p_{m}$ be the periods of the m attracting cycles.
Let $\mathcal{F}\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ be the set of all

$$
\left(f, z_{1}, z_{2}, \ldots, z_{m}\right) \in \mathcal{F} \times \mathbb{C}^{m}
$$

satisfying two conditions:

- Each z_{j} should have period exactly p_{j} under the map f;
- and the orbits of the z_{j} must be disjoint.

Lemma. This set $\mathcal{F}\left(p_{1}, p_{2}, \ldots, p_{m}\right) \subset \mathcal{F} \times \mathbb{C}^{m}$ is semi-algebraic.

The proof is an easy exercise.

Proof (Continued)

Let U be the open set consisting of all

$$
\left(f, z_{1}, \ldots, z_{m}\right) \in \mathcal{F}\left(p_{1}, p_{2}, \ldots, p_{m}\right)
$$

such that the multiplier of the orbit for each z_{j} satisfies

$$
\left|\mu_{j}\right|^{2}<1
$$

This set U is semi-algebraic.
Hence each component $\widetilde{\mathcal{H}} \subset U$ is semi-algebraic.
Hence the image of $\widetilde{\mathcal{H}}$ under the projection $\mathcal{F}\left(p_{1}, p_{2}, \ldots, p_{m}\right) \rightarrow \mathcal{F}$ is a semi-algebraic set \mathcal{H}, which is clearly a hyperbolic component in \mathcal{F}.

In fact any hyperbolic component $\mathcal{H} \subset \mathcal{F}$ having attracting cycles with periods $p_{1}, p_{2}, \ldots, p_{m}$ can be obtained in this way.

This proves that \mathcal{H}, its closure $\overline{\mathcal{H}}$, and its boundary $\partial \mathcal{H}=\overline{\mathcal{H}} \cap(\overline{\mathcal{F} \backslash \mathcal{H}}) \quad$ are all semi-algebraic sets. \square

Theorem 1 is not a best possible result.

 k-plane for the family of maps $f_{k}(z)=k\left(z+z^{-1}\right)$.

This is a different kind of example with all hyperbolic components semi-algebraic. Here the two critical points ± 1 are not GO-equivalent, but are bound together by the symmetry $f_{k}(-z)=-f_{k}(z)$.

More General Hyperbolic Components.

Suppose that the maps $f \in \mathcal{H}$ have an attracting cycle with two distinct free critical points in its attracting basin

Here "free" is to mean completely independent, so that there are at least two complex degrees of freedom.

Conjecture 1:

This implies that the boundary $\partial \mathcal{H}$ is not locally connected.
This is a question in two complex dimensions
\Longrightarrow four real dimensions.
It cannot be answered by a 2-dimensional picture.

> Added Remark (Generalized MLC Problem):
> I do not know any example of an \mathcal{H} in a complex one parameter family for which $\partial \mathcal{H}$ is not locally connected. Does such an example exist?

Example: The family $f(z)=z^{2}(z-a) /(1+b z)$.
Let $\mathcal{H} \subset \mathbb{C}^{2}$ be the hyperbolic component centered at

$$
a=b=0 \quad \Longleftrightarrow \quad f(z)=z^{3} .
$$

Consider the real plane $\mathcal{P} \cong \mathbb{R}^{2} \subset \mathbb{C}^{2}$ defined by $b=\bar{a}$.

The central white region is

$$
\mathcal{H}_{\mathcal{P}}=\mathcal{H} \cap \mathcal{P}
$$

Its complement is $\mathcal{P} \backslash \mathcal{H}_{\mathcal{P}}$.

Theorem (with Bonifant \& Buff): $\mathcal{H}_{\mathcal{P}}$ is simply connected, and contains infinitely many "fjords" leading out to infinity. These are separated by infinitely many connected components of the complement $X=\mathcal{P} \backslash \mathcal{H}_{\mathcal{P}}$.

A large disk $|a| \leq r$ intersects infinitely many of these components.
Corollary 1: $\partial \mathcal{H}_{\mathcal{P}}$ is not locally connected.

Proof of Corollary 1: non local-connectivity

Recall that any large disk \mathbb{D}_{r} intersects infinitely many connected components of the closed set $X=\mathcal{P} \backslash \mathcal{H}_{\mathcal{P}}$.

Let $x_{0} \in X \cap \mathbb{D}_{r}$ be any accumulation point for this collection of components.

Then X is not locally connected at x_{0}.

It follows that $\partial X=\partial \mathcal{H}_{\mathcal{P}}$ is not locally connected.

The full hyperbolic component $\mathcal{H} \subset \mathbb{C}^{2}$

Corollary 2: The boundary $\partial \mathcal{H} \subset \mathbb{C}^{2}$

 is not locally contractible.Note that the real plane $\mathcal{P} \subset \mathbb{C}^{2}$ is the fixed point set of an involution $\quad \mathscr{I}:(a, b) \leftrightarrow(\bar{b}, \bar{a}) \quad$ of \mathbb{C}^{2}.

The region $\mathcal{H} \cap \mathcal{P}$ contains arbitrarily thin "fjords":

Choose two points x and y which are arbitrarily close to each other, but lie on opposite banks of such a fjord.

Suppose that $\partial \mathcal{H}$ is locally contractible.
A short path from x to y within $\partial \mathcal{H}$ together with its image under \mathscr{I}, would form a small \mathscr{I}-invariant loop L.
Then L bounds a small disk D in $\partial \mathcal{H}$, and $D \cup \mathscr{I}(D)$ is a small \mathscr{I}-invariant singular 2-sphere.

Non Local-Contractibility: outline proof continued.

We must show that this singular 2-sphere $S^{2} \mapsto \partial \mathcal{H}$ links a central curve within the fjord, and hence is not contractible within $\mathbb{C}^{2} \backslash \mathcal{H}$.

This can be proved using the following.
Topological Lemma. If a map from S^{2} to itself fixes both poles, and commutes with the 180° rotation about the poles, then it has odd degree.

Proved by approximating f by a smooth map \widehat{f} satisfying the same conditions, which has the pole p_{0} as a regular value.

Then the number of preimages $\widehat{f}(x)=p_{0}$ is odd, and is congruent to the degree mod two.

Further Conjectures (corrected page)

It is not hard to see that for any hyperbolic component $\mathcal{H} \subset \mathcal{F}$ and for any $f \in \partial \mathcal{H}$ either

- there is a critical point in the Julia set $J(f)$, or else
- f has an indifferent cycle, that is a periodic orbit with multiplier satisfying $|\mu|=1$.

Conjecture 2:
(a) If every $f \in \partial \mathcal{H}$ has an indifferent cycle, then $\partial \mathcal{H}$
is semi-algebraic.
(b) On the other hand, if some $f \in \partial \mathcal{H}$ has no indifferent cycle, then $\partial \mathcal{H}$ is a fractal set, in the sense that its Hausdorff dimension is greater than its topological dimension.
(c) Now suppose that f has a post-critical parabolic cycle, which can be perturbed, within the family \mathcal{F}, to a parabolic cycle which is not post-critical. Then $\partial \mathcal{H}$
is not locally connected.

Example: the family of maps $f(z)=z^{3}+a z^{2}+\mu z$. Let $\mathcal{H} \subset \mathbb{C}^{2}$ be the hyperbolic component centered at

$$
a=\mu=0 \Longleftrightarrow f(z)=z^{3} .
$$

Julia set for the map $f(z)=z^{3}+2 z^{2}+z \quad$ in $\partial \mathcal{H}$.
Satisfies the conditions of Conjecture 2(c). In particular, the critical point $z=-1$ maps to the parabolic point $z=0$.

A small perturbation.

Now change the multiplier from $\mu=1$ to $\mu=e^{.01 i} \approx 1$.

Magnified image near $z=0$ for $f(z)=z^{3}+2 z^{2}+e^{.01 i} z$.

Simpler Example: the "universal capture component".

Let $\mathbb{C}_{(z)} \sqcup \mathbb{C}_{(w)}$ be the disjoint union of two copies of \mathbb{C}, with coordinates z and w respectively.
Let $f_{v}: \mathbb{C}_{(z)} \rightarrow \mathbb{C}_{(w)}$ be the quadratic map $f_{v}(z)=z^{2}+v$ with critical value $v \in \mathbb{C}_{(w)}$, and let $g_{\mu}: \mathbb{C}_{(w)} \rightarrow \mathbb{C}_{(w)}$ be the quadratic map

$$
g_{\mu}(w)=w^{2}+\mu w
$$

with a fixed point of multiplier μ at $w=0$.
Thus we obtain a two parameter family of maps $\left(f_{v}, g_{\mu}\right)$

$$
\mathbb{C}_{(z)} \xrightarrow{f_{v}} \mathbb{C}_{(w)} \leftrightarrows g_{\mu},
$$

from $\mathbb{C}_{(z)} \sqcup \mathbb{C}_{(w)}$ to itself.
Let $\mathcal{H} \subset \mathbb{C}^{2}$ be the hyperbolic component consisting of all pairs $(v, \mu) \in \mathbb{C}^{2}$ such that both critical orbits converge to $w=0$

$$
\Longleftrightarrow \quad|\mu|<1 \quad \text { and } \quad \lim _{n \rightarrow \infty} g_{\mu}^{\circ n}(v)=0
$$

Theorem 2. $\overline{\mathcal{H}}$ is not locally connected.

The closure of \mathcal{H}

The closure $\overline{\mathcal{H}}$ consists of all $(v, \mu) \in \mathbb{C}^{2}$ such that $|\mu| \leq 1$, and such that v belongs to the filled Julia set $K\left(g_{\mu}\right)$
$=$ the union of all bounded orbits for g_{μ}.

Typical example of $K\left(g_{\mu}\right)$ for the case $|\mu|<1$.
(This is fractal-Compare Conjecture 2(b).)

The Case $|\mu|=1$

As μ varies around the unit circle, the filled Julia set $K\left(g_{\mu}\right)$ jumps around wildly:

Root of unity case

$$
\mu=e^{-2 \pi i / 5}
$$

For almost every μ

Siegel disk

For generic μ (the Cremer case): $K\left(g_{\mu}\right)$ is not locally connected, and has no interior.

Parabolic Implosion: the fundamental discontinuity.

$$
\begin{gathered}
\mu=1 \\
z \mapsto z^{2}+z
\end{gathered}
$$

$$
\begin{gathered}
\mu=e^{.01 i} \\
z \mapsto z^{2}+e^{.01 i} z
\end{gathered}
$$

Under an arbitrarily small perturbation of a parabolic map, the basin of infinity and the Julia set may explode inwards.

Magnified Julia set for $\mu=e^{.04 i}$

Foundational Paper:

Pierre Lavaurs, Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques,
Thèse, Université, Paris-Sud, Orsay 1989.
(Widely studied, but never published.)
Consider the family of maps $F_{\eta}(z)=z^{2}+z+\eta^{2}$, where η is close to zero and $\mathfrak{R}(\eta)>0$.

Thus F_{η} has fixed points $\pm i \eta$,

$$
\text { with multipliers } \mu=1 \pm 2 i \eta \text {. }
$$

Now pass to the limit as η tends to zero.

The Limit as $\quad \eta \rightarrow 0, \quad \eta \neq 0$.

Let \mathcal{B} be the interior of the cauliflower, or in other words the parabolic basin for the map $z \mapsto z^{2}+z$.

Define the phase function $\quad \sigma(\eta)=-\frac{\pi}{\eta}$.
Theorem of Lavaurs. Suppose that a sequence of parameters η_{j} converges to zero in such a way that the phase $\sigma\left(\eta_{j}\right)$ converges to a limit σ_{0} modulo \mathbb{Z}. In other words, suppose that there are integers k_{j} so that

$$
\lim _{j \rightarrow \infty}\left(\sigma\left(\eta_{j}\right)+k_{j}\right)=\sigma_{0} .
$$

Then the sequence of functions $F_{\eta_{j}}^{\circ k_{j}}$ converges locally uniformly on \mathcal{B} to a function $\mathcal{L}_{\sigma_{0}}: \mathcal{B} \rightarrow \mathbb{C}$ which is holomorphic and effectively computable.

Plot of $\mathcal{L}_{\sigma}: \mathcal{B} \rightarrow \mathbb{C}$, for fixed $\sigma_{0}=i \pi$.

The color indicates the value of the escape function $\operatorname{esc}(\sigma, z)=\min \left\{n ; \mathcal{L}_{\sigma}^{\circ}(z) \neq \mathcal{B}\right\} \quad$ (reduced modulo 5).

0

1

2

3

4 ...

∞

From the σ-plane to the μ-plane
Lavaurs phase parameter $\sigma(\eta) \quad$ multiplier μ_{η}

Here $\quad \sigma=-\pi / \eta \quad$ and $\quad \mu_{\eta}=1+2 i \eta$.

Thus the half-plane $\Im(\sigma) \geq \pi$ maps conformally onto $\overline{\mathbb{D}} \backslash\{1\}$.

Plot of $\sigma \mapsto \operatorname{esc}\left(\sigma, z_{0}\right)$ for fixed z_{0}.

This shows the escape function $\operatorname{esc}\left(\sigma, z_{0}\right)$ for fixed $z_{0}=-.141 i$ as the Lavaurs parameter σ varies over the cylinder $[0,1] \times[3,9]$.

Detail showing the cylinder $\mathcal{R}=[-.1, .9] \times[3.05,3.3]$.
The analog of the hyperbolic component \mathcal{H} in these coordinates is the set $\mathcal{H}_{\text {Lav }}$ consisting of all $(\sigma, z) \in(\mathbb{C} / \mathbb{Z}) \times \mathbb{C}$ with $\Im(\sigma)>\pi$ and $\operatorname{esc}(\boldsymbol{\sigma}, z)=\infty, \quad$ colored near-white.
LEMMA. For $\sigma \in \partial \mathcal{R}$ and for z close to z_{0}, the pair (σ, z) does NOT belong to $\overline{\mathcal{H}}_{\text {Lav }}$.

This shows the escape function $\operatorname{esc}\left(\sigma, z_{0}\right)$ for fixed

$$
z_{0}=-.141 i,
$$

with σ in the rectangle $[-.1,3.9] \times[3.05,3.3]$.
Choose σ_{0} in the white region, and consider the sequence

$$
\sigma_{0}, \quad \sigma_{0}-1, \quad \sigma_{0}-2, \quad \ldots \text { tending to }-\infty .
$$

Solving the equation

$$
\sigma\left(\eta_{k}\right)=-\pi / \eta_{k}=\sigma_{0}-k
$$

we obtain

$$
\eta_{k}=\pi /\left(k-\sigma_{0}\right) \quad \rightarrow \quad 0
$$

Thus the corresponding quadratic functions

$$
f_{k}(z)=z^{2}+z+\eta_{k}
$$

converge to the Lavaurs map $\mathcal{L}_{\sigma_{0}}$ on \mathcal{B}.
For every $\quad \sigma \in \partial[-.1, .9] \times[3.05,3.3-]$, for every η close to zero with $\sigma(\eta) \equiv \sigma(\bmod \mathbb{Z})$, and for every z close to z_{0}, it follows that $\quad\left(z, \mu_{\eta}\right) \notin \overline{\mathcal{H}}$.

Conclusion:

We have a sequence of pairs $\left(z_{0}, \mu_{\eta_{k}}\right) \rightarrow\left(z_{0}, 1\right)$, with $\left(z_{0}, \mu_{\eta_{k}}\right) \in \mathcal{H}$ for large k.
But $\left(z_{0}, \mu_{\eta_{k}}\right)$ cannot be connected to $\left(z_{0}, 1\right)$ within $\overline{\mathcal{H}}$ without changing z_{0} by some fixed $\epsilon>0$, which is independent of k.
$\Longrightarrow \quad \overline{\mathcal{H}}$ is not locally connected.

