Practice Midterm

Spring 2019 MAT 342: Applied Complex Analysis

Instructions: Answer all questions below. You may not use books, notes, calculators, or cell phones. Write your name and student ID in each page that you hand in.

Problem 1.

- (i) What does it mean for a function $f: S \to \mathbb{C}$ to be differentiable at a point $z_0 \in S$, where S contains a neighborhood of z_0 ?
- (ii) Give the definition of an analytic function.
- (iii) What is the largest domain in which the function $f(z) = \frac{e^z}{z^2+2i}$ is analytic and why is it analytic there?

Solution: (i) A function f defined in a set $S \subset \mathbb{C}$ is differentiable at a point $z_0 \in S$ if the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists.

(ii) A function f is analytic in an open set S if it is differentiable at every point of S.

(iii) The function e^z is analytic in \mathbb{C} with $(e^z)' = e^z$ and the function $z^2 + 2i$ is analytic in \mathbb{C} , since it is a polynomial. By the quotient rule, the function $f(z) = \frac{e^z}{z^2+2i}$ is analytic everywhere except at the points where the denominator is zero. We have $z^2 + 2i = 0$ if $z^2 = -2i = 2e^{i3\pi/2}$, so $z = \sqrt{2}e^{i3\pi/4}$ or $z = \sqrt{2}e^{i(3\pi/4+\pi)} = -\sqrt{2}e^{i3\pi/4}$. Therefore, f is analytic everywhere in \mathbb{C} , except at the points $\sqrt{2}e^{i3\pi/4}$ and $-\sqrt{2}e^{i3\pi/4}$.

Problem 2.

- (i) State the Cauchy-Riemann equations for a function f(z) = u(z) + iv(z).
- (ii) Using the Cauchy-Riemann equations, examine whether the function $f(z) = \overline{z}^2$ is differentiable at any point z, in which case, compute f'(z). Is f analytic at any point of \mathbb{C} ?

Justify carefully all your claims.

Solution: (i) If z = (x, y), then the Cauchy-Riemann equations for f are:

$$u_x(x,y) = v_y(x,y)$$
$$u_y(x,y) = -v_x(x,y)$$

(ii) For z = x + iy we have $f(z) = \overline{z}^2 = (x - iy)^2 = x^2 - y^2 - 2ixy$. Therefore $u(x, y) = x^2 - y^2$ and v(x, y) = -2xy. We will find the points at which the Cauchy-Riemann equations hold. We have $u_x(x, y) = 2x$, $u_y(x, y) = -2y$, $v_x(x, y) = -2y$, and $v_y(x, y) = -2x$. If the Cauchy-Riemann equations hold, then we have 2x = -2x and -2y = 2y, so x = y = 0. Hence, the point z = 0 is the only point at which the Cauchy-Riemann equations hold. Since the partial derivatives of u and v exist and are continuous in a neighborhood of 0, we conclude that f'(0) exists, and $f'(0) = u_x(0,0) + iv_x(0,0) = 0$.

The function f is not analytic at 0 since it is only differentiable at 0 but it is not differentiable in a neighborhood of 0. Moreover, f is not analytic at any other point of \mathbb{C} , since it is not differentiable at these points.

Problem 3.

- (i) State the coincidence principle.
- (ii) Show that the only entire function $g: \mathbb{C} \to \mathbb{C}$ satisfying the equation

$$\sin^2 z + g(z) = 1$$

for all $z \in \mathbb{C}$ is the function $g(z) = \cos^2 z$.

Solution: (i) Let f, g be functions that are analytic in a domain D such that f(z) = g(z) for all points z lying in a line segment I contained in D. Then f(z) = g(z) for all $z \in D$.

(ii) Note that $\sin^2 x + \cos^2 x = 1$ for all $x \in \mathbb{R}$. Therefore, the analytic function $g(z) = 1 - \sin^2 z$ is equal to the analytic function $\cos^2 z$ when z = x is a real number. In particular, the two functions are equal to each other on the line segment $I = \{x + iy : y = 0, 0 \le x \le 1\}$. By the coincidence principle we conclude that $g(z) = \cos^2 z$ for all $z \in \mathbb{C}$.

Problem 4. Consider the branch of the logarithm defined by $\log z = \ln r + i\theta$, where $z = re^{i\theta}$, r > 0, and $7\pi/3 < \theta < 13\pi/3$. Using that branch, write the following numbers in (x, y)-coordinates:

(i)
$$(-2)^i$$
 (ii) i^i .

Is it true in general that $z^i \cdot w^i = (z \cdot w)^i$?

Solution: (i) Note that $-2 = 2e^{i\pi} = 2e^{i3\pi}$. Since $7\pi/3 < 3\pi < 13\pi/3$, we have $\log(-2) = \ln 2 + 3\pi i$, so

$$(-2)^{i} = e^{i\log(-2)} = e^{i(\ln 2 + 3\pi i)} = e^{i\ln 2}e^{-3\pi} = e^{-3\pi}\cos(\ln 2) + ie^{-3\pi}\sin(\ln 2).$$

(ii) We have $i = e^{i\pi/2} = e^{i5\pi/2}$. Since $7\pi/3 < 5\pi/2 < 13\pi/3$, we have $\log(i) = i5\pi/2$. Hence,

$$i^{i} = e^{i \log i} = e^{i \cdot i 5\pi/2} = e^{-5\pi/2}$$

Note, however, that $(-2i)^i \neq (-2)^i \cdot i^i$. Indeed, we have $-2i = 2e^{i3\pi/2} = 2e^{i7\pi/2}$, so $\log(-2i) = \ln 2 + i7\pi/2$. We have

$$(-2i)^i = e^{i\log(-2i)} = e^{i\ln 2}e^{-7\pi/2}$$
 and
 $(-2)^i \cdot i^i = e^{i\ln 2}e^{-11\pi/2},$

which are not equal to each other.

Problem 5.

- (i) Give the domain and the formula (in polar coordinates) of the principal branch of z^{-1-2i} .
- (ii) Let f(z) be the function in part (i) and C be the contour $z = e^{i\theta}$, $-\pi \le \theta \le \pi$. Compute

$$\int_C f(z) dz.$$

Solution: (i) $z^{-1-2i} = e^{(-1-2i)\log z}$, where $\log z = \ln r + i\theta$ and $z = re^{i\theta}$, $r > 0, -\pi < \theta < \pi$.

(ii) We have $z(t) = e^{it}$ and $z'(t) = ie^{it}$, $-\pi \le t \le \pi$. For $-\pi < t < \pi$ we have $f(e^{it}) = e^{(-1-2i)\cdot it}$, so

$$\begin{split} \int_C f(z)dz &= \int_{-\pi}^{\pi} f(z(t))z'(t)dt = \int_{-\pi}^{\pi} f(e^{it})ie^{it}dt = \int_{-\pi}^{\pi} e^{(-1-2i)\cdot it} \cdot ie^{it}dt \\ &= i\int_{-\pi}^{\pi} e^{2t}dt = i\frac{e^{2t}}{2}\Big|_{-\pi}^{\pi} = i\frac{e^{2\pi} - e^{-2\pi}}{2}. \end{split}$$

Problem 6. Consider the set $S = \{z : \operatorname{Re}(z^2) < 0\}$.

- (i) Is the set S open, closed, or neither?
- (ii) Is S connected? Justify your answer.
- (iii) Find the image of the set S under the principal branch of the logarithm.

Solution: (i) Note that S is the set of points (x, y) such that -y < x < y. The boundary of the set S is the union of the lines y = x and y = -x. No point of these lines is contained in S. Since S does not contain any of its boundary points, it is open and not closed.

(ii) The set S is not connected. The reason is that any polygonal path that connects a point $z_1 \in S$ with $\text{Im}(z_1) > 0$ to a point $z_2 \in S$ with $\text{Im}(z_2) < 0$ has to intersect the boundary of S and cannot be entirely contained in S.

(iii) Note that S consists of rays of the form $re^{i\theta}$, r > 0, $\pi/4 < \theta < 3\pi/4$, or $-3\pi/4 < \theta < -\pi/4$. The principal branch of the logarithm is defined by $\text{Log } z = \ln r + i\theta$, where r > 0 and $-\pi < \theta < \pi$. For fixed θ , each ray $re^{i\theta}$, r > 0, is mapped to $\ln r + i\theta$, which represents a horizontal line passing through $i\theta = (0, \theta)$. Taking into account all admissible angles θ , we see that the image of S is the union of two infinite horizontal strips: $\mathbb{R} \times (-3\pi/4, -\pi/4)$ and $\mathbb{R} \times (\pi/4, 3\pi/4)$.

Problem 7.

- (i) Show that the function $\operatorname{Re}(e^{z^2+1})$ is harmonic on \mathbb{C} .
- (ii) If f(z) is analytic in a domain D, is it true that $\overline{f(z)}$ is also analytic in that domain? If yes, then provide a proof. If no, then give an example that justifies your claim.

Solution: (i) The function e^{z^2+1} is analytic in \mathbb{C} , since it is the composition of two analytic functions. The function $\operatorname{Re}(e^{z^2+1})$ is the real part of an analytic function, so it is harmonic.

(ii) The statement is false. The function $f(z) = z^2$ is analytic in \mathbb{C} . However, the function $f(z) = \overline{z}^2$ is not analytic anywhere; see problem 2 for the justification.