Homework 9 (due 4/18)

MAT 342: Applied Complex Analysis

Read Sections 60-68 from Chapter 5.

Problem 1. Using the definition of the limit of a sequence, show that

$$
\lim _{n \rightarrow \infty}\left(-1+i+\frac{e^{i \pi n / 4}}{\sqrt{n}}\right)=-1+i
$$

Problem 2. Suppose that f is continuous in a closed bounded region R and it is analytic, non-constant and non-zero in the interior of R. Then prove that the minimum value of $|f(z)|$ in R occurs somewhere on the boundary of R and never in the interior. Hint: Apply the Maximum Principle to the function $g(z)=1 / f(z)$ (why can it be applied?)

Problem 3. Find the Taylor expansion of $f(z)=e^{z}$ around the point $z_{0}=2$ in two ways:
(i) Using Taylor's Theorem and computing $f^{(n)}(2), n=0,1, \ldots$
(ii) Observing that $e^{z}=e^{2} \cdot e^{z-2}$, and then using the Maclaurin expansion of e^{z}, with z replaced by $z-2$.

Problem 4. Show that for $0<|z|<4$ we have

$$
\frac{1}{4 z-z^{2}}=\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}} .
$$

Hint: Use the geometric series.
Problem 5. Consider the function

$$
f(z)=\frac{1}{(z-1)(z-3)}
$$

(i) Find numbers A, B such that

$$
\frac{1}{(z-1)(z-3)}=\frac{A}{z-1}+\frac{B}{z-3} .
$$

(ii) Write the Laurent series for $f(z)$ when $1<|z|<3$.

Hint: Write $\frac{1}{z-1}$ in terms of $\frac{1}{1-1 / z}$ and write $\frac{1}{z-3}$ in terms of $\frac{1}{1-z / 3}$. Then use the geometric series.
(iii) Write the Laurent series for $f(z)$ when $0<|z-1|<2$.

Problem 6. Give one Taylor series expansion and two Laurent series expansions of the function $f(z)=1 / z$ (a total of three distinct expansions). Specify the regions where the expansions are valid.

