Homework 6 (due 3/14)

MAT 342: Applied Complex Analysis

Read Sections 41-47 from Chapter 4.

Problem 1. Evaluate the following integrals:
(i) $\int_{0}^{1}(2-3 i t)^{2} d t$
(ii) $\int_{0}^{\sqrt{\pi / 3}} t e^{i t^{2}} d t$

Show all steps in your calculations.
Problem 2. For each $k \in \mathbb{Z}$ consider the function $f_{k}(z)=z^{k}$. Let C be the unit circle, parametrized by $z(t)=e^{i t}, 0 \leq t \leq 2 \pi$. Evaluate

$$
\int_{C} f_{k}(z) d z
$$

Note that for different values of $k \in \mathbb{Z}$ the answers will differ.
Problem 3. Evaluate each of the following expressions (that is, write them in (x, y)-coordinates) by selecting an appropriate branch of the logarithm each time and using that branch for your evaluation:
(i) $(-5)^{1-i}$
(ii) $i^{e^{i}}$

Explain carefully which branch of the logarithm you are using each time, by writing the domain of definition and the formula of the logarithm in polar coordinates.

For the functions f and the contours C given in Problems 4-6 draw the contour C and evaluate

$$
\int_{C} f(z) d z .
$$

Problem 4. $f(z)=z^{2}+1$ and C consists of the segment $z_{1}(t)=t, 0 \leq t \leq 1$, and the semicircle $z_{2}(t)=\frac{1}{2}+\frac{1}{2} e^{i t}, 0 \leq t \leq \pi$.

Problem 5. $f(z)=2 e^{i \bar{z}}$ and C is the boundary of the rectangle with vertices at the points $-1,1,1+2 i,-1+2 i$, oriented in the counterclockwise direction.

Problem 6. $f(z)=z^{2 i}$ (defined using the principal branch of the logarithm) and C is the arc $z(t)=e^{i t}, 0 \leq t \leq \pi / 2$.

Problem 7. Let C be the arc $z(t)=4 e^{i t}, 0 \leq t \leq \pi / 2$. Without evaluating the integral show that

$$
\left|\int_{C} \frac{i z-10}{2 z^{2}-1-i} d z\right| \leq \frac{28 \pi}{32-\sqrt{2}} .
$$

