Homework 4 (due 2/28)

MAT 342: Applied Complex Analysis

Read Sections 26-29 from Chapter 2 and Section 30 from Chapter 3.
Problems from the textbook:
§26: 1(b)(d), 2, 4, 7
§27: 1
§29: 2,4
Additional problems to hand in:
Problem 1. Consider the function $g(z)=\sqrt{r} e^{i \theta / 2}$, where $z=r e^{i \theta}, r>0$, $-\pi<\theta<\pi$. This function is a branch of the square root and is analytic in its domain of definition with $g^{\prime}(z)=\frac{1}{2 g(z)}$, as we proved in the lecture.
(i) Sketch the domain of definition of g.
(ii) Find the image of the open set $S=\{z: \operatorname{Re}(z)>1\}$ under the function $h(z)=2 z-2+i$.
(iii) Explain why the composition $g \circ h(z)=g(h(z))$ is defined in the open set S.
(iv) Calculate the derivative of $g \circ h$, using the chain rule.

Problem 2. Consider the function $g(z)=\ln r+i \theta$, where $z=r e^{i \theta}, r>0$, $-\pi<\theta<\pi$. Using the polar expression of the Cauchy-Riemann equations, show that the function g is analytic in its domain of definition, and show that $g^{\prime}(z)=1 / z$. The function g is called a branch of the complex logarithm.
(i) Find the image of the first quadrant $S=\{z=x+i y: x>0, y>0\}$ under the map $h(z)=z^{2}+1$.
(ii) Explain why the composition $g \circ h(z)=g(h(z))$ is defined in the open set S.
(iii) Calculate the derivative of $g \circ h$.

Problem 3. Consider the unit circle $S=\{z \in \mathbb{C}:|z|=1\}=\left\{e^{i \theta}: 0 \leq \theta<\right.$ $2 \pi\}$ and write $z=r e^{i \theta}$.
(i) What is the image of the circle S under the function $f(z)=\theta+i \cos \theta=$ $(\theta, \cos \theta) ?$
(ii) What is the image of the circle S under the function $g(z)=\cos \theta+i 0=$ $(\cos \theta, 0)$?
(iii) What is the image of the circle S under the function $h(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)$?

