Homework 12 (due 5/9)

MAT 342: Applied Complex Analysis

Read Sections 82-84 from Chapter 6 and 85-94 from Chapter 7.

Problem 1. Find the isolated singular points of the function $f(z)=\frac{1}{\sin z}$. What is the type of singularities and what is the residue at each singular point?

Problem 2. Compute the integral

$$
\int_{C} \frac{d z}{\left(z^{2}-1\right)^{2}+3}
$$

where C is the positively oriented boundary of the rectangle whose sides lie along the lines $x= \pm 2, y=0$, and $y=1$. (Hint: Find the singular points of the function $f(z)=\frac{1}{\left(z^{2}-1\right)^{2}+3}$ that are enclosed by C. Then compute the corresponding residues and use the Residue Theorem.)

Problem 3. Compute the integral

$$
\int_{C} \tan z d z
$$

where C is the positively oriented circle $|z|=2$.
Problem 4. Use residues to show that

$$
\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{4}
$$

Problem 5. Use residues to show that

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{\pi}{6} .
$$

Problem 6. Use residues to show that

$$
\int_{0}^{\infty} \frac{1}{x^{3}+1} d x=\frac{2 \pi}{3 \sqrt{3}}
$$

Do this by integrating over the positively oriented closed contour C consisting of the line segment from 0 to $R>1$, the circular arc $R e^{i \theta}, 0 \leq \theta \leq 2 \pi / 3$, and the line segment from $R e^{i 2 \pi / 3}$ to 0 (draw the contour).

Problem 7. Use residues to show that

$$
\int_{0}^{\infty} \frac{\cos 3 x}{x^{2}+1} d x=\frac{\pi}{2} e^{-3} .
$$

Problem 8. Use residues to evaluate

$$
\int_{0}^{\infty} \frac{x \sin x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

