Homework 1 (due 2/7)

MAT 342: Applied Complex Analysis

Read all of Chapter 1 (Sections 1-12).
Problems from the textbook:
§2: 1, 4
§3: 1, 2, 4
§5: 1, 5, 8
§6: 1, 2, 14
$\S 9: 1,4,5 \mathrm{ac}$
Additional problems to hand in:
Problem 1. For each part of the problem justify all of your steps.
(a) If $z=x+i y$, write the following complex numbers in the form $u+i v$, where u and v are written in terms of x and y :
(i) $\frac{1}{z}$
(ii) $\operatorname{Re}\left(\frac{1}{z}\right)$
(iii) $\operatorname{Im}\left(\frac{1}{z}\right)$
(b) If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, write $\frac{z_{1}}{z_{2}}$ in the form $u+i v$, where u and v are written in terms of $x_{1}, y_{1}, x_{2}, y_{2}$.

Problem 2. Using the properties of the modulus $|z|$ and of the conjugate \bar{z} that we discussed in the lecture show that

$$
\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

for any complex numbers z_{1}, z_{2}. Hint: Follow our proof of the equality $\left|z_{1} \cdot z_{2}\right|=$ $\left|z_{1}\right| \cdot\left|z_{2}\right|$.

