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Abstract

Let (M,J) be a compact complex manifold, and let E ⊂ H1,1(M,R)
be the set of all cohomology classes which can be represented by Kähler
forms of extremal Kähler metrics, in the sense of Calabi [3]. Then E
is an open subset.
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1 Introduction

Let (M,J) be a compact complex manifold, let [ω] ∈ H1,1(M,R) ⊂ H2(M,R)

be the deRham class of a Kähler form, and let [ω]+ denote the set of all

Kähler forms in this fixed cohomology class. In an attempt to represent the

given class by a canonical metric, Calabi [3, 4] proposed that one should seek

critical points of the functional

[ω]+
C−→ R

ω 7→
∫

M
s2
ωdµω

, (1.1)

where the metric associated with the form ω has scalar curvature sω and

volume form dµω. He dubbed the critical points of this functional extremal

Kähler metrics, and then observed that a Kähler metric is extremal iff the

gradient of its scalar curvature s is a real-holomorphic vector field. In partic-

ular, a Kähler metric of constant scalar curvature is automatically extremal;

and if M supports no non-trivial holomorphic vector fields, every extremal

Kähler metric must conversely have constant scalar curvature. However,

Calabi also produced examples [3] of compact extremal Kähler manifolds of

non-constant scalar curvature; and an entire menagerie of such manifolds

[6, 9] is now known.

In a previous paper [9], the authors investigated the existence of extremal

Kähler metrics near a metric of constant scalar curvature. Our present aim is

the generalization of those results to a strictly extremal setting. The upshot

is the following:

Theorem A Let (M,J) be a compact complex manifold, and let H1,1(M,R)

denote the kernel of the natural homomorphism H2(M,R) → H2(M,O). Let

E be the set of deRham classes swept out by the Kähler forms of extremal

Kähler metrics. Then E is an open subset of H1,1(M,R).

It is tempting to ask whether E is always either the Kähler cone or the empty

set. For the present, unfortunately, we must leave this question unanswered.
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2 Notation and Conventions

A Riemannian 2n-manifold (M, g) is said to be Kähler with respect to an

almost-complex structure J on M if g is J-invariant and J is invariant with

respect to the Levi-Cività parallel transport of g. These conditions are equiv-

alent to saying that (M,J) is a complex n-manifold and that ω(ξ, η) :=

g(Jξ, η) defines a closed 2-form, called the Kähler form of (M, g, J).

Under the action of J , the complexified tangent C ⊗ T ∗M splits into

a direct sum T 1,0 ⊕ T 0,1 of n-dimensional eigenspaces, and this induces a

decomposition of each bundle of complex-valued tensors on M . In particular,

the r-forms on M decompose as sums of forms of type (p, q):

Er =
⊕

p+q=r

Ep,q .

(For example, any Kähler form has type (1, 1) by virtue of its J-invariance.)

Because J is integrable, the exterior derivative d simply breaks up as d =

∂+ ∂̄, where ∂ : Ep,q → Ep+1,q, ∂̄ : Ep,q → Ep,q+1, ∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂.

The metric g may be extended as a complex-bilinear inner product on any

bundle of complex tensors over M . In addition to this bilinear extension (·, ·)
of g, however, we shall also need the sesqui-linear inner product 〈ϕ, ψ〉 :=

(ϕ, ψ̄). The associated inner products of global sections will be denoted by

〈ϕ, ψ〉L2 :=
∫

M
(ϕ, ψ̄) dµ .

An important geometric invariant of (M, g, J) is its Ricci form ρ, which

may be expressed as

ρ(ξ, η) = r(Jξ, η)

in terms of the Ricci tensor r of g. A remarkable feature of Kähler geometry

is the fact that iρ is the curvature of the canonical line bundle κ := Λn,0.

This has many implications for the scalar curvature s, which is defined to be

the trace of the Ricci tensor, and so can conveniently be calculated by the

formula

s ω∧n = 2n ρ ∧ ω∧(n−1).
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3 Holomorphic Vector Fields

If (M,J, g) be a Kähler manifold, any complex-valued smooth function gives

rise to a smooth vector field of type (1, 0) by the rule f 7→ ∂#f = ∂#
g f ,

where ∂#f := (∂f)# is the type (1, 0) piece of the gradient of f with respect

to g. This is, of course, not generally a holomorphic vector field— for that,

we’d need to impose the equation ∂∂#f = 0. This condition, however, is

equivalent to the fourth-order equation

(∂∂#)∗∂∂#f = 0 , (3.1)

since 〈f, (∂∂#)∗∂∂#f〉L2 = ‖∂∂#f‖2
L2 . Every complex-valued solution f of

(3.1) therefore is associated with a holomorphic vector field Ξ = ∂#f . The

set of holomorphic vector fields arising in this way can be characterized [9]

in the following simple manner:

Proposition 1 Let (M,J, g) be a compact Kähler manifold and let Ξ be a

holomorphic vector field on M . Then there exists a function f : M
C∞→ C

such that Ξ = ∂#
g f iff Ξ vanishes at some point of M .

Let h(M) be the complex Lie algebra of holomorphic vector fields of

the complex manifold (M,J); since we assume that M is compact, this is

precisely the Lie algebra of the group of biholomorphism of (M,J). We

denote by h0(M) ⊂ h(M) the subset of vector fields with zeroes. Proposition

1 then tells us that h0(M) is— miraculously enough— a linear subspace of

h(M). Indeed, a more detailed analysis [9] proves that h0(M) is actually an

ideal, and that the quotient algebra h(M)/h0(M) is Abelian.

The self-adjoint operator (∂∂#)∗∂∂# is elliptic. Indeed, for any Kähler

metric one has

(∂∂#)∗∂∂#f := ∇j∇k∇k∇
jf

= ∇j(∇j∇k∇kf − Rkj`
k∇`f)

= ∇j(∇j∇k∇kf + rj`∇`f)

=
1

4
∆2f + rj`∇j∇`f + (∇jr

j`)∇`f
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=
1

4
∆2f +

1

2
rµν∇µ∇νf +

1

2
(∇`s)∇`f

=
1

4
(∆2 + 2r · ∇∇+ 2(∂s) ∂#)f , (3.2)

where we have used the contracted Bianchi identity ∇µs = 2∇νrµν . Notice,

incidentally, that the operator in question is only real if our metric g happens

to have constant scalar curvature s.

The dimension of the space of complex-valued solutions of equation (3.1)

is independent of the choice of Kähler metric. But as the operator (∂∂#)∗∂∂#

is not generally real, the dimension of the space of real solutions of (3.1) will

generally depend on g. Fortunately [9], this pathology can be completely

understood in geometric terms:

Proposition 2 Let (M,J, g) be a compact Kähler manifold. If f is a real

solution of (∂∂#
g )∗∂∂#

g f = 0, then =m∂#f is a Killing field of g. Moreover,

a Killing field arises this way iff it has a zero.

Given a Kähler metric g and a vector field Ξ ∈ h0(M) which vanishes at

some point of M , the Proposition 1 guarantees the existence of a function

fg,Ξ such that Ξ = ∂#
g fg,Ξ. The dependence of this function on the metric

may be described [9] as follows:

Proposition 3 Let L2
k+1,C denote the Sobolev space of complex-valued func-

tions on M whose first k + 1 distributional derivatives are in L2, with the

usual Hilbert space inner product induced by some fixed but arbitrary Kähler

metric g on (M,J), and let F1,1
k be similarly the space of (1, 1)-forms on

(M,J) of Sobolev class L2
k. Let G be the Green’s operator of the Laplacian

of g. Then the bounded C-bilinear map

h0(M)×F1,1
k

P−→ L2
k+1,C

(Ξ, χ) 7→ 2iG∂
∗
g(Ξ χ)

has the property that

∂#
g̃ P(Ξ, ω̃) = Ξ

whenever ω̃ is the Kähler form of a Kähler metric g̃ (and so is real, closed,

and positive).
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In this article, we will be interested in a very special class of Kähler

metrics:

Definition 1 A C2 Kähler metric g is said to be extremal if its scalar cur-

vature s satisfies ∂∂#
g s = 0.

Of course, this is equivalent to saying that s satisfies (3.1), and it is in this

form [3] that the extremal condition arises from the Euler-Lagrange equations

of the variational problem (1.1). The above definition, however, makes the

proof of the following regularity result particularly simple:

Proposition 4 Let g be an extremal Kähler metric on a compact complex

manifold. Then g is smooth with respect to the complex atlas.

Proof. By assumption, the metric is of Hölder class C1,α for any α ∈ (0, 1).

We will now show by induction that it is of class C`,α for all ` ∈ N.

The gradient of the scalar curvature s is, by assumption, the real part of a

holomorphic vector field, and so real-analytic. If the metric g is of class C`,α,

it therefore follows that ds is of class C`,α, and s is itself therefore of class

C`+1,α. But the equation that the scalar curvature is s may be rewritten in

a complex coordinate chart as the pair of equations

−2gjk ∂2

∂zj∂zk
u = s (3.3)

det (gjk) = eu . (3.4)

From (3.3) and the regularity theory of linear elliptic operators [8] it follows

that u is of class C`+2,α; but, since `+2 > 0, the regularity theory [1] for the

Monge-Ampère equation (3.4) in turn guarantees that g is of class C`+2,α.

The claim thus follows by induction on `.

The isometry group of any compact Kähler manifold is always a compact

subgroup of the complex biholomorphism group. But if the Kähler metric is

extremal, much more is true. Indeed, generalizing earlier work of Matsushima

and Lichnerowicz, Calabi [4] proved the following result, which will be critical

importance for us:
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Proposition 5 (Calabi) Let g be an extremal Kähler metric on a compact

complex manifold (M,J). Let G denote the identity component of the isom-

etry group of (M, g), and let H denote the identity component of the biholo-

morphism group of (M,J). Then G ⊂ H is a maximal compact subgroup.

Corollary 1 Let g and g̃ be two extremal Kähler metrics on a compact com-

plex manifold (M,J). Then there is a biholomorphism Φ of M such that the

identity components of the isometry groups of g and Φ∗g̃ coincide.

Proof. Let G and G̃ denote the identity components of the isometry groups

of g and g̃, respectively. By Proposition 5, G and G̃ are maximal compact

subgroups of the connected Lie group H, and so, by a theorem of Iwasawa ([7],

p.530), they are conjugate: there is an element Φ ∈ H such that G̃ = ΦGΦ−1.

But since every element of Φ−1G̃Φ automatically preserves Φ∗g̃, we conclude

thatG is the identity component of the isometry group of the extremal Kähler

metric Φ∗g̃.

Thus, modulo biholomorphisms, the search for extremal Kähler metrics is

completely equivalent to the search for extremal metrics among the Kähler

metrics which are invariant under the action of a fixed maximal compact

subgroup G ⊂ H of the connected biholomorphism group. However, for a

host of technical reasons, the latter problem will turn out, for our purposes,

to be much more tractable.

4 Scalar Curvature as an Operator

If (M,J) is a complex manifold, we will use H1,1(M,R) to denote the kernel

of the natural homomorphism H2(M,R) → H2(M,O) induced by the inclu-

sion R ↪→ O. Equivalently, H1,1(M,R) is the linear subspace of H2(M,R)

consisting of those deRham classes which are representable by real closed

(1,1)-forms. This equivalence is an immediate consequence of the fact that
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we have a commutative diagram

0 → R → E0
R

d→ E•R
↓ ↓ ↓

0 → O → E0,0 ∂→ E0,•

of fine resolutions. Indeed, the kernel of H2(M,R) → H2(M,O) is thereby

identified with

{real 2-forms γ | dγ = 0, γ0,2 = ∂ν0,1}/{exact forms}.

But any such class [γ] can also be represented by the real closed (1, 1)-form

γ − d(ν + ν).

If M is now compact and we are given a Kähler metric g on M , Hodge

theory [5] tells us that H1,1(M,R) may be identified with the space H1,1(M)

of real-valued g-harmonic (1,1)-forms on M . We will now assume that g is

smooth, so that elliptic regularity implies that H1,1(M) consists entirely of

smooth forms, and we will denote the Kähler form of g by ω.

Let k > n, and let U ⊂ H1,1(M) × L2
k+4(M) be the open neighborhood

of (0, 0) consisting of pairs (α, ϕ) such that ω̃ = ω + α + i∂∂ϕ is the Kähler

form of a C2 Kähler metric. We may then consider the map

H1,1(M)× L2
k+4(M) ⊃ U S−→ L2

k(M)

(α, ϕ) 7→ s(ω̃) ,
(4.1)

where s(ω̃) = s(ω + α+ i∂∂ϕ) is the scalar curvature of the metric with the

Kähler from ω + α+ i∂∂ϕ. We have observed elsewhere [9] that

Proposition 6 For k > n the map S in (4.1) is well-defined and C1. More-

over, its Fréchet derivative at the origin is given by

DS(0,0) =
[
−2(ρ, · ) − 1

2
(∆2 + 2r · ∇∇)

]
, (4.2)

where r· denotes full contraction with the Ricci tensor of g.

Notice that the fourth-order operator L = −1
2
(∆2 + 2r · ∇∇) occurring in

the above result also appeared in (3.2), which we may now rewrite as

L = −2(∂∂#)∗∂∂# + ∂s ∂# . (4.3)
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5 Openness

Let (M,J, g) be a compact complex manifold with C2 extremal Kähler metric.

Proposition 4 then informs us that g is actually smooth, while Proposition

5 tells us that the connected component G of the isometry group of g is a

maximal compact Lie group of the the biholomorphism group H.

Let L2
k,G denote the real Hilbert space of G-invariant real-valued functions

of class L2
k. Now every g-harmonic form is invariant under G, since the con-

nected isometry group G obviously sends every harmonic form to a harmonic

form in the same cohomology class. Setting V = U ∩ (H1,1(M)× L2
k+4,G), it

then follows that for (α, ϕ) ∈ V the Kähler metric g̃ with Kähler form

ω̃ = ω + α+ i∂∂ϕ

is G-invariant, and hence its scalar curvature s̃ is G-invariant, too. For k > n,

Proposition 6 therefore tells us that

H1,1(M)× L2
k+4,G ⊃ V SG−→ L2

k,G

(α, ϕ) 7→ s(ω + α+ i∂∂ϕ)
(5.1)

is a C1 map whose Fréchet derivative at (0, 0) is just the restriction of (4.2)

to H1,1(M)× L2
k+4,G.

Let z ⊂ g denote the center of g, and let z0 = z∩g0, where g0 ⊂ g is the

ideal of Killing fields which have zeroes. If g̃ is any G-invariant Kähler metric

on (M,J), then, as a consequence of Proposition 2, each element of z0 is of

the form J grad f for a real-valued solution of (∂∂#
g̃ )∗∂∂g̃f = 0. Moreover, z0

thereby precisely corresponds to the set of real solutions f which are invariant

under G, since

∂# : ker[(∂∂#
g̃ )∗∂∂g̃] → h0

is a homomorphism of G-modules.

These observations now allow us to show that the kernel of the restriction

of (∂∂#
g̃ )∗∂∂g̃ to L2

k+4,G depends smoothly on the G-invariant metric g̃. In-

deed, choose a basis {ξ1, . . . , ξm} for z0, and, for each (1, 1)-form χ on (M,J),

set p0(χ) = 1 and

pj(χ) = 2iG∂
∗
g((Jξ + iξ) χ), j = 1, . . . ,m.
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If ω̃ is the Kähler form of a G-invariant metric g̃, then, by Theorem 5

and Propositions 2 and 3, the pj(ω̃) are real-valued and form a basis for

ker(∂∂#
g̃ )∗∂∂g̃. Moreover, (α, ϕ) 7→ pj(ω+α+ i∂∂ϕ) is, for each j, a bounded

linear map H1,1(M)× L2
k+4,G → L2

k+3,G.

With respect to the fixed L2 inner product, let {f 0
ω̃, . . . , f

m
ω̃ } be the or-

thonormal set extracted from {pj(ω̃)} by the Gram-Schmidt procedure. We

then let

Πω̃ : L2
k,G → L2

k,G

u 7→
m∑

j=0

〈f j
ω̃, u〉L2f j

ω̃ (5.2)

denote the associated projector. Thus (α, ϕ) 7→ Πω̃ defines a smooth map

from V ⊂ H1,1(M)× L2
k+4,G to the real Hilbert space End(L2

k,G) ∼=
⊗2 L2

k,G.

Since the expressions 〈f j
ω, f

`
ω̃〉L2 are continuous functions on V , (0, 0) has

an open neighborhood V0 ⊂ V such that

det
[
〈f j

ω, f
`
ω̃〉L2

]
6= 0

for all (α, ϕ) ∈ V0. This has the useful consequence that

ker (1− Πω)(1− Πω̃) = ker (1− Πω̃) (5.3)

whenever ω̃ = ω + α+ i∂∂ϕ for some (α, ϕ) ∈ V0.

For any integer `, we let I` ⊂ L2
`,G denote the orthogonal complement of

the kernel of (∂∂#
g )∗∂∂g, and set W = V0 ∩ (H1,1(M)× Ik+4). Since a Kähler

form ω̃ is extremal iff its scalar curvature is killed by 1 − Πω̃, it is quite

natural to use these function spaces in order to find G-invariant extremal

Kähler metrics. For obvious technical reasons, though, we’d like to construct

a surjective map between fixed Hilbert spaces. In light of (5.3), it is thus

reasonable to introduce the map

H1,1(M)× Ik+4 ⊃ W S−→ H1,1(M)× Ik

defined by

S(α, ϕ) = (α, (1− Πω)(1− Πω+α+i∂∂ϕ) SG(α, ϕ) ) (5.4)
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where SG(α, ϕ) is defined in (5.1) and Πω+α+i∂∂ϕ = Πω̃ is defined in (5.2).

We would like to compute the Fréchet derivative at the origin of the map

(5.4), assuming that the metric we begin with is extremal. This derivative

in the direction of (α, ϕ) is given by the evaluation at t = 0 of

d

dt
(1− Πω)(1− Πω̃t) SG(tα, tϕ) ,

where ω̃t = ω + t(α+ i∂∂ϕ). Using the Leibnitz rule, this equals

d

dt
(1− Πω)(1− Πω̃t) SG(tα, tϕ)

∣∣∣∣∣
t=0

= (1−Πω)(D(0,0)SG)

(
α

ϕ

)
−(1−Πω) (

d

dt
Πw̃t)

∣∣∣∣∣
t=0

s ,

(5.5)

where s denotes the scalar curvature of the original metric g. Since

DSG(0,0) = [−2(ρ, · ) L]

is already known, we now just need to compute (1− Πω)( d
dt

Πw̃t)|t=0s.

Now Πw̃ts =
∑m

j=0〈f
j
ω̃t
, s〉L2f j

ω̃t
, where {f 0

ω̃t
, . . . , fm

ω̃t
} is the orthonormal

set constructed above. Consequently,

(1− Πω) (
d

dt
Πω̃t)

∣∣∣∣∣
t=0

s = (1− Πω)
∑
j

[
〈 d
dt
f j

ω̃t

∣∣∣∣∣
t=0

, s〉L2f j
ω0

+ 〈f j
ω, s〉L2

d

dt
f j

ω̃t

∣∣∣∣∣
t=0

]

=
∑
j

〈f j
ω, s〉L2(1− Πω)

d

dt
f j

ω̃t

∣∣∣∣∣
t=0

, (5.6)

because each f j
ω̃0

= f j
ω is in the kernel of (1− Πω).

Lemma 1 Suppose the Kähler metric g is extremal. Then

(1− Πω) (
d

dt
Πω̃t)

∣∣∣∣∣
t=0

s = (1− Πω)[2iG∂
∗
g(∂

#
g s α) + (∂s ∂#

g ϕ)] .

Proof. If s were constant, the left-hand-side would vanish because Πω̃t1 ≡ 1

for all t. But in this case the right-hand-side would also vanish, since we

would then have ∂#
g s = 0.
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We may thus henceforth assume that ∂#
g s 6≡ 0. Since the extremal con-

dition implies that =m∂#
g s is a Killing vector field, we may then choose our

basis {ξj} for z0 so that Jξ1 + iξ1 = ∂#
g s. Now recall that any choice of basis

gives rise to a family of t-dependent potentials pj(ω̃t) = 2iG∂
∗
g((Jξ+iξ) ω̃t),

from which f 0
ω̃t
, . . . , fm

ω̃t
are then manufactured by the Gram-Schmidt proce-

dure. With the choice of basis made as indicated, f 0
ω̃t

= (vol(M))−1/2, while

f 1
ω̃t

=
p1(ω̃t)

‖p1(ω̃t)‖L2

,

where p1(ω̃t) = 2iG∂
∗
g(∂

#
g s ω̃t). Also notice that p1(ω̃0) = s − s0, where s0

is the average value of s.

Since s is perpendicular to each f j
ω for j > 1, and since d

dt
f 0

ω̃t
= 0, the

only surviving term in (5.6) corresponds to j = 1, and we have

(1− Πω) (
d

dt
Πω̃t)

∣∣∣∣∣
t=0

s = 〈 s− s0

‖s− s0‖
, s〉(1− Πω)

d

dt
f 1

ω̃t

∣∣∣∣∣
t=0

= ‖s− s0‖L2(1− Πω)
d

dt
f 1

ω̃t

∣∣∣∣∣
t=0

.

But
d

dt
f 1

ω̃t
≡ 1

‖p1(ω̃t)‖L2

d

dt
p1(ω̃t) mod p1(ω̃t) ,

and p1(ω̃0) = s− s0 is in the kernel of (1− Πω). It therefore follows that

(1− Πω) (
d

dt
Πω̃t)

∣∣∣∣∣
t=0

s = (1− Πω)
d

dt
p1(ω̃t)

∣∣∣∣∣
t=0

.

To compute this last derivative, observe that

d
dt

2iG∂
∗
g(∂

#
g s ω̃t)

∣∣∣
t=0

= 2iG∂
∗
g(∂

#
g s α) + 2iG∂

∗
g(∂

#
g s i∂∂ϕ)

= 2iG∂
∗
g(∂

#
g s α)− 2iG∂

∗
g∂(∂#

g s i∂ϕ)

= 2iG∂
∗
g(∂

#
g s α) + (∂#

g s ∂ϕ) + constant,

since ∂#
g s is a holomorphic vector field and 2G∂

∗
g∂ is the identity on the

orthogonal complement of the constants. But

∂#s ∂ϕ = ∂s̄ ∂#ϕ̄ = (grad s− iJ grad s) dϕ
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is real, since J grad s is a Killing field and ϕ is real and G-invariant. Our

last expression thus equals 2iG∂
∗
g(∂

#
g s α) + (∂s ∂#

g ϕ) + constant, and the

result therefore follows because the constant is killed by (1− Πω).

Proposition 7 For k > n, equation (5.4) defines a C1 map whose Fréchet

derivative at the origin is given by

DS(0,0) =

(
1 0

0 1− Πω

)[
1 0

−2(ρ, · )− 2iG∂
∗
g(∂

#
g s · ) −2(∂∂#)∗∂∂#

]
.

(5.7)

Proof. That the map is C1 follows from the fact that the scalar curva-

ture operator SG is C1 and the fact that the projection Πω+α+i∂∂ϕ depends

smoothly on (α, ϕ).

The first row of our formula for the derivative is obvious, while the second

row is a consequence of the Leibnitz and chain rules. Indeed, we know that

the derivative at (0, 0) in the direction of (α, ϕ) of the second component of

(5.4) is given by (5.5); and, in view of the Lemma 1 and (4.2), this is just

(1− Πω)
(
−2(ρ, · )− 2iG∂

∗
g(∂

#
g s · ) L − ∂s ∂# ·

)( α

ϕ

)
.

The result now follows from (4.3).

Proposition 8 Let (M,J, g) be a compact extremal Kähler manifold. Then

the map S defined in (5.4) becomes a diffeomorphism when restricted to a

sufficiently small neighborhood of the origin.

Proof. By the Banach-Space Inverse Function Theorem [1] [10], it suffices

to show that DS(0,0) is an isomorphism. Since (∂∂#)∗∂∂# is elliptic of fourth

order, DS(0,0) is Fredholm, and we therefore need merely to show that its

kernel and cokernel are trivial.
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Let us first examine the kernel. Suppose that DS(0,0)(α, ϕ) = 0. Then

(5.7) tells us that α = 0 and

(1− Πω)(∂∂#)∗∂∂#ϕ = 0 .

By (5.2), the latter is equivalent to saying that

(∂∂#)∗∂∂#ϕ =
m∑

j=0

cjf
j
ω

for suitable constants cj. Therefore,

〈(∂∂#)∗∂∂#ϕ, f j
ω〉L2 = 〈ϕ, (∂∂#)∗∂∂#f j

ω〉L2

= 0

because the f j
ω are, by construction, a basis for the kernel of (∂∂#)∗∂∂#. The

coefficients cj are thus all zero, and (∂∂#)∗∂∂#ϕ = 0. But ϕ ∈ Ik+4, and the

latter is by definition the orthogonal complement of ker(∂∂#)∗∂∂# ⊂ L2
k+4,G.

Hence ϕ = 0, and kerDS(0,0) = {(0, 0)}.
Now for the cokernel. If (β, ψ) ∈ H1,1(M)× Ik ⊂ H1,1(M)× L2

k,G(M) is

L2-orthogonal to the image of (5.7), then

〈α, β〉L2−〈(1−Πω)[2(ρ, α)+2iG∂
∗
g(∂

#
g s α+2(∂∂#)∗∂∂#ψ], ψ〉L2 = 0 (5.8)

for all (α, ψ) in H1,1(M)× Ik+4. In particular, setting α = 0, we see that

〈ψ, (∂∂#)∗∂∂#ψ〉L2 = 〈ψ, (∂∂#)∗∂∂#(1− Πω)ψ〉L2

= 〈(1− Πω)(∂∂#)∗∂∂#ψ, ψ〉L2 = 0

for all ψ ∈ Ik+4. Hence the component of (∂∂#)∗∂∂#ψ perpendicular to

ker(∂∂#)∗∂∂# must be zero, and

(∂∂#)∗∂∂#ψ =
m∑

j=0

cjf
j
ω

for some coefficients cj. Our previous argument then shows that the coeffi-

cients cj are all zero. Hence ψ ∈ Ik ∩ ker(∂∂#)∗∂∂# = {0}. Equation (5.8)

now tells us that 〈α, β〉L2 = 0 for all α ∈ H1,1(M), so that β = 0, too. Thus

cokerDS(0,0) = {(0, 0)}, and DS(0,0) is an isomorphism.

This now implies our main result:
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Theorem A Let (M,J) be a compact complex manifold, and let E ⊂ H1,1(M,R)

be the set of Kähler classes of extremal Kähler metrics on M . Then E is open.

Proof. By Proposition 7, there is a neighborhood Ŵ ⊂ W of the origin in

H1,1× Ik+4 such that S|Ŵ is a diffeomorphism onto an open neighborhood of

the origin in H1,1×Ik. Define V0 ⊂ H1,1 by [V0×{0}] := S(Ŵ)∩ [H1,1×{0}],
and let φ : V0 → Ik+4 be defined by the diagram

V0
φ−→ Ik+4

↓ ↑ .

V0 × {0}
(S|Ŵ )−1

−→ H1,1 × Ik+4

For each harmonic form α ∈ V0, we then have

(α, 0) = S(α, φ(α)) = (α, (1− Πω)(1− Πω̃)s(α, φ(α))) ,

where ω̃ = ω+α+ i∂∂φ(α). By (5.3), we therefore have (1−Πω̃)s(α, φ(α)) =

0, which is to say that the scalar curvature s̃ of the metric g̃ corresponding

to ω̃ is in the span of {f j
ω̃}m

j=0. Hence ∂̄∂#
g̃ s̃ = 0, and g̃ is an extremal Kähler

metric. Identifying H1,1(M,R) with H1,1 and setting V := [ω] + V0 then

completes the proof.

The solution space of the extremal Kähler metric equation thus behaves

stably with respect to deformations of the Kähler class. However, examples

of Burns and de Bartolomeis [2] show that there is no analogous stability

with respect to deformations of the complex structure.
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