Lecture 13 - Vectors as directional derivatives

March 9, 2009

1 Coordinates

Let M be some space, say Euclidean n-space, Minkowski $1+n$-space, or the like. Coordinates are functions on the space M that assign to each point some unique set of numbers. It is important to understand that a given space M is not a vector space, and coordinates are not basis vectors of any kind. Coordinates are functions, pure and simple.

2 Vectors, tangent spaces, and the tangent bundle

Intuitively, a vector is a magnitude and a direction. This is not a rigorous definition, however. A concept that can be made precise is the notion of the derivative of a function along a curve. To define this concept, let $p \in M$ be a point, let $f : M \to \mathbb{R}$ be a function, and let $\gamma : (-\epsilon, \epsilon) \to M$ be a curve parameterized by $\tau \in (-\epsilon, \epsilon)$ with $\gamma(0) = p$. Then the derivative of f along γ at p is defined to be

$$\frac{d}{d\tau} \bigg|_p f \triangleq \lim_{h \to 0} \frac{f(\gamma(h)) - f(\gamma(0))}{h}.$$

One computes this expression using partial derivatives: if $\{x^1, \ldots, x^n\}$ are coordinates on M, we can write $f = f(x^1, \ldots, x^n)$ and compute

$$\frac{d}{d\tau} f = \frac{dx^1}{d\tau} \frac{\partial}{\partial x^1} f + \ldots + \frac{dx^n}{d\tau} \frac{\partial}{\partial x^n} f,$$

that is, the operator $\frac{d}{d\tau}$ is a linear combination of the operators $\frac{\partial}{\partial x^i}$.

We have not defined the term "vector" yet, but intuitively two paths $\gamma(\tau)$ and $\tilde{\gamma}(\tilde{\tau})$ which pass through the point p posses the same velocity vector at p if $\frac{dx^i}{d\tau} = \frac{dx^i}{d\tilde{\tau}}$, which is to say that $\frac{d}{d\tau} = \frac{d}{d\tilde{\tau}}$.

1
Our intuitive notion of vectors seems to coincide with the mathematically precise notion of directional derivatives. Thus we say \(v \) is a vector based at \(p \in M \) if \(v_p \) is a linear combination of the directional derivatives \(\partial / \partial x^i \):

\[
v = v^i \frac{\partial}{\partial x^i} \bigg|_p.
\]

Note that we are justified in say that the partials \(\partial / \partial x^i \) are directional derivatives: \(\partial / \partial x^i \) is obtained by varying \(x^i \) and fixing all other coordinates.

The tangent space at \(p \), denoted \(T_p M \), is defined to be the vector space of all vectors based at \(p \).

The tangent bundle of \(M \), denoted \(TM \), is defined to be the collection of all tangent spaces \(T_p M \) based at all points \(p \) of \(M \).

3 Change of coordinates

If the coordinate functions are changed, it is important to know how to change the basis vectors of each tangent space \(T_p M \). Let \(\{ x^1, \ldots, x^n \} \) and \(\{ y^1, \ldots, y^n \} \) be two coordinate systems on \(M \). We have the relationship

\[
\frac{\partial}{\partial x^i} = \frac{\partial y^j}{\partial x^i} \frac{\partial}{\partial y^j}.
\]

For example, if \(r, \theta \) are the so-called polar coordinates on the Euclidean plane and \(x = r \cos \theta \), \(y = r \sin \theta \) are the corresponding rectangular coordinates, we have

\[
\frac{\partial}{\partial r} = \frac{\partial x}{\partial r} \frac{\partial}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial}{\partial y} = \cos(\theta) \frac{\partial}{\partial x} + \sin(\theta) \frac{\partial}{\partial y} = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}
\]

\[
\frac{\partial}{\partial \theta} = \frac{\partial x}{\partial \theta} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial}{\partial y} = -r \sin(\theta) \frac{\partial}{\partial x} + r \cos(\theta) \frac{\partial}{\partial y} = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}
\]