SAMPLE MIDTERM 2 MAT 142 Midterm will be Thursday, Nov 15, 2001

- 1. Place the letter corresponding to the correct answer in the box next to each question.
 - (i) If we divide 3x + 2 into $3x^2 7x$, the remainder term is (a) 0 (b) -1 (c) 1 (d) 6 (e) 2 (f) none of these.
 - (ii) What is the limit of the sequence given by $a_n = n^{1/n}$? (a) 0 (b) 1/2 (c) 1 (d) e (e) e^2 (f) none of these.
 - (iii) Suppose $\frac{x-1}{(x+1)^3} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3}$. Then $C = (\mathbf{a}) 2 (\mathbf{b}) 1 (\mathbf{c}) 0 (\mathbf{d}) 1$ (e) 2 (f) none of these.
 - (iv) Which of the following improper integrals converges? (a) $\int_0^1 \frac{1}{x} dx$ (b) $\int_0^1 x^{-2} dx$ (c) $\int_0^1 x^{-1/2} dx$ (d) $\int_1^\infty \frac{1}{x} dx$ (e) $\int_1^\infty x^{-1/2} dx$ (f) none of these.
 - (v) Suppose $\frac{x^2+1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}$. Then A = (a) -2 (b) -1 (c) 0 (d) 1 (e) 2 (f) none of these.
 - (vi) Which of the following improper integrals diverges? (a) $\int_0^\infty e^{-x} dx$ (b) $\int_0^\infty (1 + x^2)^{-1} dx$ (c) $\int_1^\infty \frac{x}{1+x^2} dx$ (d) $\int_1^\infty \frac{x}{1+x^3} dx$ (e) $\int_0^\infty \frac{\sin x}{1+x^2} dx$ (f) none of these.
 - (vii) If we use the substitution $x = \tan \theta$, the integral $\int \frac{dx}{\sqrt{4+x^2}}$ becomes (a) $\int \sec \theta d\theta$ (b) $\int \tan \theta d\theta$ (c) $\int \sin^2 \theta d\theta$ (d) $\int \sec \theta \tan \theta d\theta$ (e) $\int \sec^2 \theta d\theta$ (f) none of these.
 - (viii) Suppose f is positive and decreasing and $\int_0^\infty f(x)dx$ converges. Then which of the following must be true?

 (a) $\int_0^\infty f^2(x)dx$ must converge (b) $\int_0^\infty f^2(x)dx$ must diverge (c) $\lim_{x\to\infty} f(x) > 0$ (d) $\lim_{x\to\infty} f(x)/x = 1$ (e) $\int_0^\infty x f(x)dx$ must diverge (f) none of these.
 - (ix) What is the limit of the sequence $\sqrt{n}/\sqrt{n+2}$? (a) 0 (b) 1/2 (c) $1/\sqrt{2}$ (d) 1 (e) 2 (f) none of these.
 - (x) Evaluate the series $1 2x + 4x^2 8x^3 + 16x^4 32x^5 + \dots$ where it converges. (a) $\frac{1}{1-x}$ (b) $\frac{1}{1-2x}$ (c) $\frac{1}{1+2x}$ (d) $\frac{1}{1+x^2}$ (e) $\frac{2}{1-x}$ (f) none of these.

- 2. Find each of the following integrals.
 - (i) $\int x^2 \sin x dx$
 - (ii) $\int \frac{x}{(x-1)(x-2)} dx$
 - (iii) $\int \frac{dx}{x^2\sqrt{x^2+1}}$
 - (iv) $\int \frac{1-x}{\sqrt{1-x^2}} dx$
 - (v) $\int \frac{1}{1+\sin x} dx$ (Hint: multiply and divide by $1-\sin x$)
- 3. Determine whether each of the following infinite series converges or diverges (you do not need to find the limit if it converges) and explain why.
 - $(i) \sum_{n=1}^{\infty} \frac{n^2}{3+n^3}$
 - (ii) $\sum_{n=1}^{\infty} n^3 3^{-n}$
 - (iii) $\sum_{n=1}^{\infty} n^{-n}$
 - (iv) $\sum_{n=1}^{\infty} (\sqrt{n+1} \sqrt{n})$
- 4. Evaluate each of the following limits.
 - (i) $\lim_{x\to 0} \frac{1-\cos x}{x^2}$
 - (ii) $\lim_{x\to 0^+} x \ln x$
 - (iii) $\lim_{x\to 1} (x^2 2x + 1)^{x-1}$
 - (iv) $\lim_{x\to\infty} \frac{3x-5}{2x^2-x+2}$
 - (v) $\lim_{x\to\infty} (1+\frac{1}{x})^x$.
- 5. For what values of p does the series $\sum_{n=1}^{\infty} \frac{n^p}{\sqrt{n^3+1}}$ converge? Justify your answer.
- 6. Find the sum of the infinite series $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$. Justify your answer.
- 7. Prove that if $\{a_n\}$ is a bounded sequence then it has a subsequence which is monotone.